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Abstract: 

An ad hoc retrieval task aims at return the most 

relevant documents based on a particular query. 

And high precision and recall always depends on 

clear query and elaborative documents. If the 

query is ambiguous while document is short and 

general, common retrieval models may not work 

well on the feedback. In this way, more 

expansive information will be needed to add in 

order to implement original queries and 

documents. That is the main purpose of 

microblog track of 2014 TREC Conference. 

The paper describes the first participation of 

University of Pittsburgh in 2014 TREC 

microblog track. The data is based on tweet 

collection which gathered in 2013. We got two 

runs for the final results which are base on 

BM25 feedback algorithm. The details of our 

retrieval model include query expansion, 

document expansion and retrieval model for the 

final rank.   
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Introduction: 

The corpus of TREC 2014 microblog track is the 

same as the corpus used in 2013. It is much 

larger than the tweet collection used in 2011 and 

2012. Approximately, the corpus includes 

almost 260 million tweets within a two month 

period ( 2/1/2013 - 3/31/2013 inclusive ). And 

we can obtain the whole collection through 

official API however we can only get 10 

thousand relevant tweets for a particular query. 

The tweets’ information is encoded in json 

format which includes tweet id, screen name, 

text and retweeted information, etc. Under this 

condition, our goal seems simple : re-rank the 10 

thousand tweets through our own retrieval 

method to modify original results.  

 2011 2012  2013  2014 

Number of 

topics 

50 50  60 55 

Total 

documents 

16M 16M 260M 260M 

 

We divided the whole task into three sub 

divisions: query expansion, document expansion 

and feedback retrieval model.  

For the query expansion, there are many ways to 

implement query items, such as wordNet, 

Google search API, Bing search API and Yahoo 

Boss search API, etc. In the end, after several 

trials, we decided to use Google search results as 

our main method to expand query instead of 

other kinds of APIs. 

As for document expansion. Because tweets are 

always short documents and can’t more than 140 

words, we chose two ways to get document 



expansion: implement original tweets with its 

most relevant tweets and crawl its affiliated link 

as another implementation of tweet documents. 

Because affiliated links always related to the 

tweet content, it is always regarded as 

introduction and spread of the original tweet. 

For the feedback retrieval model, there are many 

retrieval models to use, including boolean 

retrieval model, vector space model and 

language model. After compared the results with 

different kinds of model, we decided to use 

BM25 as the main retrieval method because it is 

more accurate to generate related results based 

on our whole retrieval system. 

System Design：  

1. Data Preparation  

We download twitter-tools-core 
1
project from 

github, and then when turn it into maven project. 

We find we can only use command to get the 

tweet result. Then we modify the java code so 

that we can use IDE to deal with it. We then 

decide use eclipse as our IDE and java as 

programming language to finish the task. After 

we import the project to eclipse and test the 

baseline result of former year, we start to use 

new query set to retrieve tweet ranking lists. For 

each query, we can get a ranking list with 10,000 

tweets. The information of the tweet include 13 

items. We extract id, text as most useful 

information for retrieval model. 

2. Query Expansion 

In this part, we have considered several ways to 

expand query such as WordNet or Google search 

API. However, after we do several trials, we find 

another way that is not only more accurate but 

also easier to handle for query expansion, which 

is key words extracted from Google results.  
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 https://github.com/lintool/twitter-tools 

After we choose a particular query, we use it to 

get the first 10 Google result pages. Then we 

crawl these pages, extract their main contents as 

final documents. And using tf*idf method to 

rank the weight of each word in these 10 

documents. After several experiments for 

considering the amount of words as query 

expansion, we find that 10 keywords are enough 

to support the query. So in the end, we choose 

the first 10 words ranking in tf*idf retrieval lists 

besides original words of query itself as the 

query expansion. 

3. Document Expansion 

As tweets are short documents(A recent study in 

Harvard shows that the average words per tweet 

is 15 words  ), if we use usual retrieval method, 

it will lose accuracy. For example, if the query is 

" Ron Weasley birthday" while a tweet's content 

is just " ron weasley! ron weasley! ron weasley! 

ron weasley!", the tweet will rank high under 

usual retrieval model, but this tweet doesn't 

match the query well because it doesn't contain 

the main word "birthday". To avoid this 

condition, we need to document expansion. 

We divide the expansion into two parts. One part 

is 100 related tweets and the other part is 

affiliated link. 

Due to the short length of a tweet, a way to 

increase its length is to add related tweets' 

content to it. Based on former research, we 

choose the top 100 related tweets for each tweets 

as tweet expansion. 

Based on former research, we find if a tweet 

contains a link at the end of itself, the link can 

shows more information related to query. In this 

way, the tweet should weight higher in the final 

ranking list. So if a tweet contains a link at the 

end, we crawl the content of the link and then 

regard it as link expansion. 



We count these two expansion together with 

different weight, and re-rank the 10,000 

expanded tweets by using BM25 method, then 

we get the final ranking list as results. 

4. Design of Approach 

The approach contains several steps. First of all, 

the query set offered by TREC Conference has 

55 different queries. We divided these queries 

and get their related tweets separately. And then 

we deal with individual query through the 

following steps. The graph showed below is an 

overview of the whole procedure. 

 

First thing is to deal with query. We crawl 

Google result page of a particular query and get 

the first 10 Google results. Then we crawl the 

then Google result pages and extract their main 

contents and filter stop words. After this step, 

each query get 10 Google result pages' content. 

We regard each page as a document and use tf-

idf weight method to get the first 10 words 

which are not appeared in the query. We add the 

10 words to the original query and then the new 

query forms expanded query. We have checked 

the results of our way and of Google API 

manually and we find by using our way can get 

more accurate and related words for the original 

query. 

We use q to denote a query and use t to denote a 

term in a query. The frequency of term t in a 

document d is denoted by f(t,d). And tf(t,d) is 

regarded as the term frequency of t in d. D 

means the whole documents in the collection c. 

And N means the number of D. So the algorithm 

is defined as below: 

        
      

          

 

            
                 

               
 

                             

                       

   

 

 As for the original 10,000 tweets, we need to do 

refinement on these original tweets. First of all, 

we filter all retweets and non-English tweets. 

And then, we use Lucene to build index with 

stemming and filtering stop words. Then we use 

the index and vector space model to generate 

each tweet's related tweet ranking list. We 

choose the first 100 tweets out of 9,999 tweets 

and regard them as related. We add the content 

of 100 tweets to the original tweet to form tweet 

expansion. We denote   (     ) as the current 

model. The algorithm of vector space model is 

defined below:  

                      

                      

         
     

        
 

For the link expansion part, we first process the 

original tweet. If a tweet contains a link at the 

end of itself, we extract the link, crawl its web 

page and get the main content as link expansion 

of a tweet. 



In the end, we get two sub-divisions for tweet 

document expansion: link expansion and tweet 

expansion. 

The next step is to build index for queries. We 

use each tweet document expansion result as a 

document. Both link expansion result and tweet 

expansion result are regarded as a field of a 

document. We store the two filed in a document 

and then build index. We use   and   to judge 

the weight of tweet expansion and link 

expansion in the final retrieval model. We 

denote    to link expansion and    to tweet 

expansion. And the model is defined below. 

For the retrieval model , after we considered 

several classic models, we decided to use a 

vector space model BM25 as our final feedback 

algorithm because it has better recall and 

precision when compared to other method we 

considered. And it runs faster to get the result 

than other method in our project. We have 2 

runs in the final project and both of them use the 

same retrieval model with different weight. For 

the first run Upitt, we set       and      , 

while the other run NewBee is       and 

     . We set the different weight because 

both of them give a good feedback while we 

don't how much affiliated link weighs for the 

final official evaluation. 

                     

   

             

                          
 

                         

Based on classic BM25 algorithm, we set 

               . And we denote       to 

average length of a document in the whole 

collection. 

Finally, we use the expanded query to match the 

10,000 expanded documents, and generate final 

ranking list as final result.  

Results: 

Based on our retrieval model, we have 2 runs in 

the final. The feedback results are listed below: 

Run R-Prec MAP P @ 30 

UPitt 0.2020 0.1648 0.4164 

NewBee 0.3176 0.2745 0.4485 

 

The statistics in the Ad-hoc runs column are 

computed over all 77 ad-hoc runs that were 

submitted to the track.  The statistics in 

Automatic ad-hoc runs column are computed 

over only the 73 automatic ad-hoc runs. In the 

task, we mainly use R-Precision, average 

precision and P@30 to evaluate the results. 

Judgment pools are created using depth 100 

across all submitted ad-hoc runs, plus a random 

selection of 100 documents per topic from each 

TTG run.  These pools are further reduced by 

removing retweets (declared irrelevant by track 

fiat) and then clustered so that textually similar 

tweets are close to one another (a step taken to 

enhance judgment consistency).  Tweets are 

judged on a three-way scale of not relevant, 

relevant, and highly relevant (represented as 0, 

1, and 2 respectively in the judgment file).  The 

judgment file, qrels2014.txt, is posted on the 

tracks page in the active participants' section of 

the TREC web site. 

Evaluation Automatic ad-hoc 

runs(73runs) 

Ad-hoc runs (77runs)    

Best Median Worst Best Median Worst 

R-Prec 0.6659 0.4395 0.0043 0.6668 0.4437 0.0043 

AvgPrec 0.6751 0.4155 0.0039 0.6772 0.4208 0.0039 

P @ 30 0.8345 0.6261 0.0115 0.8370 0.6309 0.0115 

 

Conclusion: 

Our system uses query expansion and document 

expansion to enlarge the size of each document 



in order to get a more clear sense of document. 

By using Google result to extract key words as 

expanded query as well as finding relevant 

tweets and crawling related links as expanded 

documents. We finally realize the goal of 

generating better feedback result for a specific 

query based on tweet collection. However, 

There are still some flaws in our retrieval 

system. First of all, it is not easy to consider 

some particular characters in queries. For 

example there is a query " Mad Men season 6 ". 

For the number"6", it is really hard to be 

considered in retrieval system. Moreover, the 

retrieval model is just simply used classic model 

BM25, we don't modify it for the particular task. 

In the future, we can improve the retrieval model 

in order to be more suitable for the particular 

task. And another flow is that when we extract 

main content from a web page, we create our 

own method to realize it. After finishing the 

task, we find by using Boilerpipe library we can 

get better result for extracting main content of a 

web page.  
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