
University of Pittsburgh at TREC 2014 Microblog Track

Zheng Gao

School of Information Science

University of Pittsburgh

zhg15@pitt.edu

Rui Bi

School of Information Science

University of Pittsburgh

rub14@pitt.edu

Abstract:

An ad hoc retrieval task aims at return the most

relevant documents based on a particular query.

And high precision and recall always depends on

clear query and elaborative documents. If the

query is ambiguous while document is short and

general, common retrieval models may not work

well on the feedback. In this way, more

expansive information will be needed to add in

order to implement original queries and

documents. That is the main purpose of

microblog track of 2014 TREC Conference.

The paper describes the first participation of

University of Pittsburgh in 2014 TREC

microblog track. The data is based on tweet

collection which gathered in 2013. We got two

runs for the final results which are base on

BM25 feedback algorithm. The details of our

retrieval model include query expansion,

document expansion and retrieval model for the

final rank.

Key Words:

Information retrieval, query expansion, Google

result, document expansion, BM25

Introduction:

The corpus of TREC 2014 microblog track is the

same as the corpus used in 2013. It is much

larger than the tweet collection used in 2011 and

2012. Approximately, the corpus includes

almost 260 million tweets within a two month

period (2/1/2013 - 3/31/2013 inclusive). And

we can obtain the whole collection through

official API however we can only get 10

thousand relevant tweets for a particular query.

The tweets’ information is encoded in json

format which includes tweet id, screen name,

text and retweeted information, etc. Under this

condition, our goal seems simple : re-rank the 10

thousand tweets through our own retrieval

method to modify original results.

 2011 2012 2013 2014

Number of

topics

50 50 60 55

Total

documents

16M 16M 260M 260M

We divided the whole task into three sub

divisions: query expansion, document expansion

and feedback retrieval model.

For the query expansion, there are many ways to

implement query items, such as wordNet,

Google search API, Bing search API and Yahoo

Boss search API, etc. In the end, after several

trials, we decided to use Google search results as

our main method to expand query instead of

other kinds of APIs.

As for document expansion. Because tweets are

always short documents and can’t more than 140

words, we chose two ways to get document

expansion: implement original tweets with its

most relevant tweets and crawl its affiliated link

as another implementation of tweet documents.

Because affiliated links always related to the

tweet content, it is always regarded as

introduction and spread of the original tweet.

For the feedback retrieval model, there are many

retrieval models to use, including boolean

retrieval model, vector space model and

language model. After compared the results with

different kinds of model, we decided to use

BM25 as the main retrieval method because it is

more accurate to generate related results based

on our whole retrieval system.

System Design：

1. Data Preparation

We download twitter-tools-core
1
project from

github, and then when turn it into maven project.

We find we can only use command to get the

tweet result. Then we modify the java code so

that we can use IDE to deal with it. We then

decide use eclipse as our IDE and java as

programming language to finish the task. After

we import the project to eclipse and test the

baseline result of former year, we start to use

new query set to retrieve tweet ranking lists. For

each query, we can get a ranking list with 10,000

tweets. The information of the tweet include 13

items. We extract id, text as most useful

information for retrieval model.

2. Query Expansion

In this part, we have considered several ways to

expand query such as WordNet or Google search

API. However, after we do several trials, we find

another way that is not only more accurate but

also easier to handle for query expansion, which

is key words extracted from Google results.

1
 https://github.com/lintool/twitter-tools

After we choose a particular query, we use it to

get the first 10 Google result pages. Then we

crawl these pages, extract their main contents as

final documents. And using tf*idf method to

rank the weight of each word in these 10

documents. After several experiments for

considering the amount of words as query

expansion, we find that 10 keywords are enough

to support the query. So in the end, we choose

the first 10 words ranking in tf*idf retrieval lists

besides original words of query itself as the

query expansion.

3. Document Expansion

As tweets are short documents(A recent study in

Harvard shows that the average words per tweet

is 15 words), if we use usual retrieval method,

it will lose accuracy. For example, if the query is

" Ron Weasley birthday" while a tweet's content

is just " ron weasley! ron weasley! ron weasley!

ron weasley!", the tweet will rank high under

usual retrieval model, but this tweet doesn't

match the query well because it doesn't contain

the main word "birthday". To avoid this

condition, we need to document expansion.

We divide the expansion into two parts. One part

is 100 related tweets and the other part is

affiliated link.

Due to the short length of a tweet, a way to

increase its length is to add related tweets'

content to it. Based on former research, we

choose the top 100 related tweets for each tweets

as tweet expansion.

Based on former research, we find if a tweet

contains a link at the end of itself, the link can

shows more information related to query. In this

way, the tweet should weight higher in the final

ranking list. So if a tweet contains a link at the

end, we crawl the content of the link and then

regard it as link expansion.

We count these two expansion together with

different weight, and re-rank the 10,000

expanded tweets by using BM25 method, then

we get the final ranking list as results.

4. Design of Approach

The approach contains several steps. First of all,

the query set offered by TREC Conference has

55 different queries. We divided these queries

and get their related tweets separately. And then

we deal with individual query through the

following steps. The graph showed below is an

overview of the whole procedure.

First thing is to deal with query. We crawl

Google result page of a particular query and get

the first 10 Google results. Then we crawl the

then Google result pages and extract their main

contents and filter stop words. After this step,

each query get 10 Google result pages' content.

We regard each page as a document and use tf-

idf weight method to get the first 10 words

which are not appeared in the query. We add the

10 words to the original query and then the new

query forms expanded query. We have checked

the results of our way and of Google API

manually and we find by using our way can get

more accurate and related words for the original

query.

We use q to denote a query and use t to denote a

term in a query. The frequency of term t in a

document d is denoted by f(t,d). And tf(t,d) is

regarded as the term frequency of t in d. D

means the whole documents in the collection c.

And N means the number of D. So the algorithm

is defined as below:

 As for the original 10,000 tweets, we need to do

refinement on these original tweets. First of all,

we filter all retweets and non-English tweets.

And then, we use Lucene to build index with

stemming and filtering stop words. Then we use

the index and vector space model to generate

each tweet's related tweet ranking list. We

choose the first 100 tweets out of 9,999 tweets

and regard them as related. We add the content

of 100 tweets to the original tweet to form tweet

expansion. We denote () as the current

model. The algorithm of vector space model is

defined below:

For the link expansion part, we first process the

original tweet. If a tweet contains a link at the

end of itself, we extract the link, crawl its web

page and get the main content as link expansion

of a tweet.

In the end, we get two sub-divisions for tweet

document expansion: link expansion and tweet

expansion.

The next step is to build index for queries. We

use each tweet document expansion result as a

document. Both link expansion result and tweet

expansion result are regarded as a field of a

document. We store the two filed in a document

and then build index. We use and to judge

the weight of tweet expansion and link

expansion in the final retrieval model. We

denote to link expansion and to tweet

expansion. And the model is defined below.

For the retrieval model , after we considered

several classic models, we decided to use a

vector space model BM25 as our final feedback

algorithm because it has better recall and

precision when compared to other method we

considered. And it runs faster to get the result

than other method in our project. We have 2

runs in the final project and both of them use the

same retrieval model with different weight. For

the first run Upitt, we set and ,

while the other run NewBee is and

 . We set the different weight because

both of them give a good feedback while we

don't how much affiliated link weighs for the

final official evaluation.

Based on classic BM25 algorithm, we set

 . And we denote to

average length of a document in the whole

collection.

Finally, we use the expanded query to match the

10,000 expanded documents, and generate final

ranking list as final result.

Results:

Based on our retrieval model, we have 2 runs in

the final. The feedback results are listed below:

Run R-Prec MAP P @ 30

UPitt 0.2020 0.1648 0.4164

NewBee 0.3176 0.2745 0.4485

The statistics in the Ad-hoc runs column are

computed over all 77 ad-hoc runs that were

submitted to the track. The statistics in

Automatic ad-hoc runs column are computed

over only the 73 automatic ad-hoc runs. In the

task, we mainly use R-Precision, average

precision and P@30 to evaluate the results.

Judgment pools are created using depth 100

across all submitted ad-hoc runs, plus a random

selection of 100 documents per topic from each

TTG run. These pools are further reduced by

removing retweets (declared irrelevant by track

fiat) and then clustered so that textually similar

tweets are close to one another (a step taken to

enhance judgment consistency). Tweets are

judged on a three-way scale of not relevant,

relevant, and highly relevant (represented as 0,

1, and 2 respectively in the judgment file). The

judgment file, qrels2014.txt, is posted on the

tracks page in the active participants' section of

the TREC web site.

Evaluation Automatic ad-hoc

runs(73runs)

Ad-hoc runs (77runs)

Best Median Worst Best Median Worst

R-Prec 0.6659 0.4395 0.0043 0.6668 0.4437 0.0043

AvgPrec 0.6751 0.4155 0.0039 0.6772 0.4208 0.0039

P @ 30 0.8345 0.6261 0.0115 0.8370 0.6309 0.0115

Conclusion:

Our system uses query expansion and document

expansion to enlarge the size of each document

in order to get a more clear sense of document.

By using Google result to extract key words as

expanded query as well as finding relevant

tweets and crawling related links as expanded

documents. We finally realize the goal of

generating better feedback result for a specific

query based on tweet collection. However,

There are still some flaws in our retrieval

system. First of all, it is not easy to consider

some particular characters in queries. For

example there is a query " Mad Men season 6 ".

For the number"6", it is really hard to be

considered in retrieval system. Moreover, the

retrieval model is just simply used classic model

BM25, we don't modify it for the particular task.

In the future, we can improve the retrieval model

in order to be more suitable for the particular

task. And another flow is that when we extract

main content from a web page, we create our

own method to realize it. After finishing the

task, we find by using Boilerpipe library we can

get better result for extracting main content of a

web page.

Reference:

1. Cheng Li, Yue Yang, Qiaozhu Mei. A User-

in-the-Loop Process for Investigational Search:

Foreseer in TREC 2013 Microblog Track . In

TREC,2013

2. Jinhua Gao, Guoxin Cui, Shenghua Liu,

Xueqi Cheng. ICTCENT at Microblog Track in

TREC 2013. In TREC,2013

3. Taiki Miyanishi, Sayaka Kitaguchi, Kazuhiro

Seki, Kuniaki Uehara. TREC 2013 Microblog

Track Experiments at Kobe University. In

TREC,2013

4. Zhen Yang, Guangyuan Zhang, Shuyong Si,

Yingxu Lai, Kefeng Fan. BJUT at TREC 2013

Microblog Track. In TREC,2013

5. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,

C. Becker, R. Cyganiak, and S. Hell-mann.

Dbpedia - a crystallization point for the web of

data. Web Semant., 7(3):154-165, 2009.

6. J. Teevan, D. Ramage, and M. R. Morris.

#twittersearch: a comparison of microblog

search and web search. In Proceedings of the

fourth ACM international conference on Web

search and data mining, WSDM '11, pages 35-

44, New York, NY, USA, 2011. ACM.

7. A. Marcus, M. S. Bernstein, O. Badar, D. R.

Karger, S. Madden, and R. C. Miller. Twitinfo:

aggregating and visualizing microblogs for

event exploration. In Proceedings of the ACM

SIGCHI Conference on Human Factors in

Computing Systems, pages 227-236, 2011.

8. K. Raman, P. N. Bennett, and K. Collins-

Thompson. Toward whole-session relevance:

Exploring intrinsic diversity in web search. In

Proceedings of the 36th International ACM

SIGIR Conference on Research and

Development in Information Retrieval, SIGIR

'13, pages 463-472. ACM, 2013.

