
San Francisco State University at TREC 2014:  

Clinical Decision Support Track and Microblog Track 
Aayush Bhandari, James Klinkhammer, and Anagha Kulkarni 

Department of Computer Science, San Francisco State University 

San Francisco, California 

{aayushb, jamesk , ak}@sfsu.edu 
 

ABSTRACT 

 The Clinical Decision Support Track in TREC 2014 

involved identifying biomedical articles that could assist 

in answering generic clinical questions.  This paper 

discusses the methodologies adopted by the system, 

Runsystem2, that we built for answering these medical 

questions. Runsystem2 operates by translating a 

narrative of a patient's case report into a list of structured 

medical concepts which are then used to generate the 

query.  The articles retrieved for the query are then re-

ranked based on their ability to answer the three types of 

clinical questions studied in this track: diagnosis, 

treatment and test. The experimental results demonstrate 

that the developed system performed close to the median 

performance on most metrics.  

 Our approach to the ad-hoc retrieval task focused on on 

query expansion, language and re-tweet filtering, and 

URL boosting. Query expansion used pseudo relevance 

feedback based on frequency of reoccurring terms. The 

various filters were then applied over the results from the 

expanded query after which the remaining tweets were 

re-ranked via URL boosting. The experimental results 

demonstrate that the best search effectiveness is obtained 

when all three techniques are employed. 

 

CLINICAL DECISION SUPPORT TRACK 

 

1. INTRODUCTION 

 
The Clinical Decision Support track ran for the first time 

in TREC 2014. The specific retrieval task defined under 

this track was that of answering Generic Clinical 

Questions. The goal is to assist medical professionals by 

retrieving biomedical articles that answer different types 

of clinical questions that are related to a particular 

patient’s case report. Three types of clinical questions 

were included in the 2014 task:  diagnosis, treatment or 

test.  

                                                        
1 http://www.lemurproject.org/indri/ 
2 http://metamap.nlm.nih.gov/ 

We approached the problem by designing our system 

Runsystem2 which consisted of three main components: 

treatment/test score generation, retrieval, and post-

processing. Section 2 describes the steps taken to build 

the index from a provided corpus of biomedical articles 

using Indri1. The assignment of each document in the 

corpus with a score, based on the relevance of treatments 

or tests is also illustrated. Section 3 describes the use of 

MetaMap 2  and MeSH 3  for transforming a patient’s 

narrative into a set of weighted structured queries. 

Section 4 describes the post-processing step, where 

documents are re-ranked based on the type of the clinical 

question/information need.  The experimental results are 

described in section 5. The paper ends with conclusions 

in section 6. 

 

2. SYSTEM ARCHITECTURE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Search System Flow Diagram for 

Runsystem2 

 

3 http://www.nlm.nih.gov/mesh/ 

Corpus 
Index 

 

Search 

Engine 

Structured 

Query 

Test and 

Treatment 

Document 

Relevance 

Score 

Document 

Relevance 

Score 

Final 
Document 

Score 



2.1 Index Building 
 

The 4 PMC-text bundles provided to the participants 

were transformed into an inverted index for efficient and 

convenient access using Indri. The krovetz stemmer was 

employed for morphological normalization. The index 

creation process was straightforward because Indri 

supports documents in xml formats. The indexing 

allowed documents to be identified by their filename, 

which were the same as the articles PMC Identification. 

This number also allowed easy access for viewing 

formatted versions online. In order to perform focused 

search of certain sections of a document, such as, the 

abstract, and the article title, which is supported by Indri, 

some of the fields were included in the indexing process. 

These fields included abstract, body, article-id, article-

title and reference-list.  

 

2.2 Treatment and Test Scores 
 

When studying the document collection one of our 

observations was that documents that specify one or 

more treatments for a particular medical condition may 

not always use the term treatment in the document. We 

saw similar pattern for medical tests as well. This posed 

a challenge for the retrieval algorithm when answering 

treatment and test type questions. The solution we 

developed for this problem made use of an external 

resource, specifically a list of 421 treatment names from 

rightdiagnosis.com, and 819 test names from 

webmd.com. Each name from these lists was used as an 

individual query with the goal of assigning a treatment 

score and a test score to each collection document. The 

fields for searching the treatment and test names was 

restricted to title, abstract and the body. This field 

restriction modelled our intuition that a document should 

be considered relevant to a particular treatment or test 

only if the key sections (title, abstract, body) mention it, 

and not if only the references section contains the 

treatment or test name.  

The collection documents were ranked for each 

treatment and test name individually, using Indri. The 

relevance score assigned by Indri to each document was 

then divided by the rank of the document to calculate a 

weighted score. This score decay operation rapidly 

dampens the document scores down the list. This was 

done to obtain a small but robust candidate set of relevant 

documents for the treatment or test name, which is then 

used in the final step of post-processing. The weighted 

scores for a document retrieved by multiple treatment or 

test queries were summed up to assign a final treatment 

and test score to such document. Documents that were 

not retrieved by any of the treatment or test queries were 

assigned the score of 0 by default. 

 

As a last step the score calculated for treatments and tests 

were normalized between 0 and 1. Hence, each document 

in the corpus was assigned with two scores: the treatment 

score, and the test score. 

 

3. QUERY GENERATION and RETRIEVAL 
 

The Clinical Decision Support Track provided 30 

different evaluation topics. Each topic consists of a 

summary and a description of the patient’s case report. 

We chose to use the description section of the topic to 

develop our queries since it contained much more 

detailed explanation than the summary section. 

Upon investigating many biomedical articles we saw 

numerous medical terms occurring in pairs or triples. 

Words such as “heart attack” and “myocardial 

infarction” would make very different sense if they were 

to appear in a different order, or farther apart. This 

motivated us to convert the given patient narrative into a 

set of structured query terms. Upon further inspection we 

saw cases where instead of being pairs, two or more 

terms occurred very close to one another. For example 

the word chest and pain may be portrayed as “chest pain” 

or “pain around the chest region”. To consider these 

cases such groups of terms each structured term was 

given term proximity of an ordered or unordered window 

of length 5. After generating the structured queries each 

of them were assigned with a weight based on a list of 

rules described in section 3.2. 

 

3.1 MetaMap Concepts 
 

Recognizing medical concepts in a patient’s case report 

was the most vital step for our system to generate 

meaningful queries. We decided to use MetaMap, a tool 

used for mapping biomedical text to the UMLS Meta 

thesaurus. We employed MetaMap to identify 

biomedical terms and concepts from the given case 

report. 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Regular output of MetaMap for a phrase 

 

Figure 2 provides an example of of MetaMap’s parse 

and annotations for the phrase “A 15-year-old girl 

presents to the ER with abdominal pain.” MetaMap 

brokes down the input sentence into phrases, which are 

then further divided into individual terms or pairs of 

terms. MetaMap also provides synonyms or hyponym 

wherever possible and appropriate for the parsed terms. 

For instance, “female child” is the annotation assigned to 

the query term “girl” in the above example. The 

synonyms are specified in round brackets right after the 

parsed term by MetaMap. One of the most useful pieces 

of information that MetaMap provides are the semantic 

type annotations for the parsed terms. These annotations 

are specified in square brackets. In the above example, 

“sign or symptoms” is the semantic type assigned to 

“abdominal pain”.  

One of the parameters used with MetaMap during this 

run was -y (word sense disambiguation). The option 

causes MetaMap to attempt to disambiguate among 

concepts scoring equally well in matching input text. For 

example in the phrase “An 8-year-old boy fell from his 

bike” the word “fell” would be mapped into “fall” and 

categorized as the season autumn for the Meta candidate 

with a rank of 1. Using the word sense disambiguation 

feature allows, “fall” to be categorized to a much more 

relatable concept of “falling” for the first Meta candidate.  

Another MetaMap feature that was utilized was the  --

negex feature that outputs a list of negated UML 

concepts occurring in the input and the associated strings 

that caused the negation.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Negex output for MetaMap 

 

In Figure 3 we see the –-negex output of MetaMap for 

the phrase “She denies diabetes and 

hypercholesterolemia.” Any concepts that were 

categorized as negations were not included in the 

query generation process.  
 

3.2 MetaMap Semantic Group Weighting 

MetaMap categorizes every identified concept into 

one of the 133 available semantic types. The semantic 

types contain concepts such as “clinical drug”, “sign 

or symptom”, “population group” etc. The input 

phrases that are annotated with semantic type that are 

directly associated with patient’s health, such as "sign 

or symptoms" and "disease and syndrome", were 



added to the query as phrasal components, that is, the 

order of the terms and the proximity within terms 

specified in the input phrase was required in a 

matching document. Less stringent rules were applied 

to the input phrases that were annotated with other 

semantic types. Specifically the order of the terms was 

not enforced and the terms could be at most 5 terms 

apart. Input phrases with fewer than 5 terms were 

added in this manner to the query. The longer phrases 

were ignored because typically they were not coherent 

concepts, and also not central to the query topic.  

The semantic type was also used to assign weights to 

the input phrases, based on the following rules.  The 

semantic type of “population group” was given a low 

weight based on the observation that they are often too 

generic, and thus would not contribute to answering 

clinical questions. Similarly "geographic areas" and 

"language" was also given a weight of zero. 

Conceptual semantic types such as "temporal concept" 

and "spatial concept" were give a low weight. For 

example, the word “right” (spatial concept) in "right 

arm" would be assigned a very low weight, as the main 

focus of the concept would be the arm and not which 

side the arm is in. On the other hand semantic types 

such as, “disease and syndrome”, "sign or symptoms", 

"body part" were assigned the highest possible weight, 

as they would be very critical is determining the 

relevance of a biomedical article. Other semantic types 

that fell under health, biology and chemistry related 

topics were given a medium weight. Such topics 

include, "biological functions", "laboratory or test 

result" "body system", "neoplastic process" and 

"mental behavior". 

The synonymy and hyponymy annotations assigned 

to input phrases with highly weighted semantic types 

were used to expand the input phrase. These 

expansions were however given one-third weight than 

of the original concept to avoid query drift. 

 

3.3 MeSH 
Query expansion has been shown to be very important 

in improving retrieval effectiveness in medical 

systems [6]. MetaMap was able to provide expansion 

for a few terms but many concepts were still missing 

expansions. As an alternative method of query 

expansion, MeSH (National Library of Medicine- 

Medical Subject Headings) descriptors data’s entry 

terms were used to expand the concepts with the 

sematic type of “sign or symptoms” and “disease and 

syndrome”. At most 2 top entry terms were chosen for 

any given concept. For example the concept 

“syncope” would be expanded with “drop attack” and 

“fainting”. These expansion terms were also structured 

and assigned with a weight that was one third of the 

original term to avoid query drift.  
 

3.4 Retrieval  
After generating the query based on structure, weight 

and term proximity, there were two other approaches 

taken before retrieving the documents. The first step 

was determining the article field restriction. Abstract 

and body were chosen as the two fields because they 

were descriptive and highly likely to cover the article’s 

central topic. Article-Title was not included as a field, 

since most of the queries contained very generic terms 

whereas most article title contained very specific 

medical terms. The reference field was not included 

because they contained author names and article titles, 

which were not good representative of the patient’s 

case report.  

The second step was using filter requirements, which 

made it mandatory for a document to contain the 

prioritized concepts. Most of the highly weighted 

concepts representing MetaMap semantic group such 

as “sign or symptom” and “disease and syndrome” 

were used as the filter terms. Hence, any document 

that would not contain these terms of the query would 

just be filtered out.  

Using the above described methodology a query was 

generated for each of the 30 topics. The language 

modelling and inference network based retrieval 

algorithm, Indri, was used to run the queries against 

the collection of biomedical articles, and to obtain a 

ranked result list for each query.  
 

4. POST-PROCESSING 

 
Upon examining several biomedical articles retrieved 

for a given patient’s case report, we observed that most 

of the articles provided some discussion about the 

patient’s diagnosis. However, this did not hold true for 

treatment or test. Hence it was important to filter and 

re-rank the retrieved documents based on the type of 

the query topic.  
 

4.1 Final Score Generation 
At this point all the documents that were retrieved 

from the query had three different scores. Indri’s 

relevance score based on the weighted structured 

query assigned to the document, the normalized 

treatment score, and the normalized test score 

computed based on the methodology described in 



Section 2.2.   For the treatment query type, the 

relevance score of every retrieved document was 

boosted by adding the corresponding treatment score 

of the document. A similar score boost was applied for 

test query types using the test scores. The retrieved 

documents were then re-ranked based on the updated 

scores for both, treatment and test query types. For the 

diagnosis query types only Indri’s relevance scores 

were used, and thus re-ranking of documents was 

unnecessary.  
 

 

  InfAP  infNDCG  R-prec  P@10  Recall 

Median 0.0316 0.1514 0.1257 0.2333  

Runsys

tem2 
0.0195 0.1194 0.0926 0.1867 0.2792 

 

Table 1: Runsystem2’s search effectiveness, as 

compared to the median performance. 
 

5. RESULTS 

 
The results are reported in Table 1. For most 

evaluation metrics the Runsystem2’s results are 

slightly lower than the corresponding median score. 

Although some queries resulted in a low P@10, the 

total number of relevant document retrieved was 

greater, which resulted in a slightly higher average 

recall. 

The query-level analysis for P@10 metric shows that 

for most queries Runsystem2’s performance is close to 

the median.  For some queries, such as, topics 14 and 

19, Runsystem2 performed better than the median, but 

for others, such as, topics 15 and 21, our system did 

worst. We analyze these queries in further detail in the 

next section. 

 

5.1 Query Level Analysis 
The queries generated for topic 14 and 19 had very few 

terms in the filter requirements. The filter requirement 

for topic 14, “85-year-old man who was in a car 

accident 3 weeks ago, now with 3 days of 

progressively decreasing level of consciousness and 

impaired ability to perform activities of daily living.” 

is shown in Figure 4. In contrast, the filter 

requirements for topic 15 and 21 contained 4 times as 

many words. The filter requirement for topic 21, “21-

year-old female with progressive arthralgias, fatigue, 

and butterfly-shaped facial rash. Labs are significant 

for positive ANA and anti-double-stranded DNA, as 

well as proteinuria and RBC casts.” is shown in 

Figure 5. This suggests that too many filter 

requirements can overly constrain the query and thus 

degrade its performance. As such, the rules used to add 

the filter requirements to the query need to be 

revisited.  

 

Also, the structured query generated by our system for 

topic 14 and 19 contained few words with high 

weights, and many words with low weights. The 

structured query for topic 14 is shown in Figure 6. We 

believe such a distribution of weights creates a query 

that is well-focused on a coherent topic (the high 

weight terms), and also derives support from several 

related concepts (the low weight terms).  

In contrast, the queries generated for topics 15 and 

21 consisted of many terms with high weights. The 

structured query for topic 21 is shown in Figure 7. We 

believe this type of weight distribution leads to low 

retrieval performance because the query focus is too 

diffused and the central topic of the query is not clear. 

This suggests that it be worth revisiting the term 

weight assignment rules used by our system, and to 

allocate high weights to terms more selectively.  

Overall, our system is a work in progress, especially 

so because this is our very first time working with 

biomedical data and retrieval task. We have identified 

a couple of promising venues for improvement, and 

we hope to make further progress once the relevance 

judgments are made available.  

 

 
Figure 4: Filter requirements for topic 14 

 

 

6. CONCLUSION 
We presented our system Runsystem2, which uses 

MetaMap and MeSH to generate a structured query 

from a case report narrative, and utilizes Indri search 

engine to find the most relevant biomedical articles for 

a given patient summary. The documents were further 

filtered and re-ranked in a post-processing step to 

adapt the retrieval results to the different types of 

clinical questions. 



 
Figure 5: Filter requirements for topic 21 

 
Figure 6: Structured queries for topic 14 

 

 

 

REFERENCES 
 

[1] MeSH Browser. Software. U.S. National Library 

of  Medicine, 1999. Web. 

[2]  "Medical Tests and Tools A to Z." WebMD. 

WebMD, 2005-2014. 

Web.  http://www.webmd.com/a-to-z-

guides/tests/default.htm 

[3] MetaMap - A Tool For Recognizing UMLS 

Concepts in Text. Software. National Library of 

Medicine (NLM), 2013. 

[4]  "TREC Clinical Decision Support Track." 

TREC, Feb.         

2014. Web. http://www.trec-cds.org/ 

[5] "List of Treatments." RightDiagnosis.com. Health 

Grades Inc, 17 Jun.2014. 

Web.http://www.rightdiagnosis.com/lists/treats.ht

m 

[6]  Aronson, Alan R. Aronson R.. and Thomas C..       

Rindflesch. "Query Expansion Using the 

UMLS® Metathesaurus®." Print. 

http://skr.nlm.nih.gov/papers/references/query_e

xpansion.97.pdf 

 

 

http://www.webmd.com/a-to-z-guides/tests/default.htm
http://www.webmd.com/a-to-z-guides/tests/default.htm
http://www.trec-cds.org/
http://www.rightdiagnosis.com/lists/treats.htm
http://www.rightdiagnosis.com/lists/treats.htm
http://skr.nlm.nih.gov/papers/references/query_expansion.97.pdf
http://skr.nlm.nih.gov/papers/references/query_expansion.97.pdf


      
 

Figure 7: Structured queries for topic 21 

Figure 8: Precision@10 for Runsystem2 and the best & median across all TREC Systems. 

  

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Best Median RunSystem2



MICROBLOG TRACK: Ad-hoc Task 
 

1   Introduction 
 Microblogs, such as Twitter, are becoming more 

popular. Their short nature, 140 characters in the case 

of Twitter, makes searching microblogs unique in 

comparison to traditional web searches. The 2014 

TREC microblog track contains both a temporally-

anchored ad hoc search task, and a tweet time line 

generation task. We chose to participate in only the ad 

hoc task. The purpose of this task is to retrieve at most 

the 1000 most relevant tweets to query Q posted before 

time T. This year’s track uses the same corpus as the 

2013 microblog track, consisting of 243 Million 

tweets, accessed through the twitter-tools API [1]. 
 

2   Query Expansion 
 Query expansion involves adding terms in to the 

original query to improve retrieval effectiveness. 

Our query expansion method uses a simplified 

pseudo relevance feedback. First, a baseline 

search is performed on the corpus using the 

twitter-tools API and the original queries. The 

first 20 tweets retrieved for the query are assumed 

to be relevant. With the help of the Twitter NLP 

and Part-of-Speech Tagger [2] the proper nouns 

are extracted from the pseudo-relevant text. All 

terms that already appear in the query are 

removed from this set. The three most commonly 

occurring proper nouns for each query, with a 

minimum occurrence of 5, are then inserted into 

the original query. A baseline search with the API 

is then run using the new expanded queries. We 

experimented with a range of settings for each of 

the parameters specified above, such as, the 

number of top tweets that are considered relevant, 

and the number of new terms added to the query. 

The query set and relevance data from the TREC 

2011 and 2013 Microblog tracks were used as a 

tuning set to select the parameter values.   

 

3   Filtering 
 One of the recurring trends we observed was that 

the tweets retrieved for the expanded query 

contained significant fraction of tweets that were 

of sub-par quality due to one of the following two 

reasons. We developed simple techniques to 

identify such tweets, with the goal of removing 

them from the result list to improve search 

effectiveness.  

  

3.1   Re-Tweet Filter: Re-tweets are copies of 

tweets that were originally posted by another user. 

Upon inspecting the returned tweets we found 

many re-tweets, beginning with the text “RT@”. 

Because re-tweets are not original content, we 

presume them to be irrelevant and filter them out 

by removing tweets beginning with “RT@”. For 

example, a baseline run on the first query (include 

the query text) in the 2013 query set returns the 

tweet “RT @anayaseth: whole summer iz left n 

shortage of water how some1 cn waste water 4 

playing holi” as the fourth most relevant tweet.   

  

3.2   Language Filter: While non-English tweets 

are not necessarily irrelevant, the queries are all 

English text. While experimenting with the 2013 

track's queries, we observed a large number of 

non-English tweets that were ranked relatively 

high but deemed irrelevant. Based on this 

observation, we decided to remove non-English 

tweets. Using the Language Detection Library for 

Java [3], developed by Shuyo Nakatani, all non-

English tweets were removed from the results. 

Table 1 shows a sample of the results from the re-

tweet filter. 

 

4   URL Boosting 
 URL boosting refers to increasing the relevancy 

rank of results if they contain a URL. Tweets 

containing URLs can contain far more 

information than just 140 characters and are more 

likely to provide information relevant to the query 

than a tweet without a URL. URL boosting has 

demonstrated consistent improvement of search 

effectiveness in past microblog tracks [4], [5]. In 

our experiment, tweets containing a URL had 

their relevancy rank boosted by a factor of 1.1. We 

experimented on the 2011 and 2013 queries and 

data sets with a range of factors between 2.0 and 

1.0 and additionally experimented with lowering 

the rank of tweets not containing URLs. 

Ultimately A boosting factor of 1.1 was found to 

provide the best results on the 2011 and 2013 

queries. Table 2 illustrates the change URL 



boosting had on the first query.  

 

id 

 

query 

num_rel_ret / num_ret   

(language filter = off) 

num_rel_ret / num_ret 

(language filter = on) 

172 Merging of US Air and American 296/706 296/548 

174 Hubble oldest star 13/867 13/734 

175 commentary on naming storm Nemo 257/617 252/591 

181 Costa Concordia shipwreck 23/733 22/411 

183 Evernote hacked 274/808 266/468 

185 National Zoo Panda, insemination 22/742 21/562 

193 Bulgarian protesters self immolate 90/763 89/667 

200 UK passes marriage bill 78/643 78/624 

201 Higgs Boson discovery 280/721 277/484 

211 Downton Abbey, Lady Mary, beau 16/823 16/782 

Table 1. Comparison of the number of relevant results returned and the total results returned with 

language filter on and off (runs ER and ERL)

 

 

 

 

 

Query ID, Top 20 tweets relevance Top 20 tweets post URL boost relevance 

299651936842571777 16.79 307496241623883776 16.95 

307360182604820481 16.77 302903789118173185 16.94 

307462808801513472 16.30 299651936842571777 16.79 

307216821277310977 16.22 307360182604820481 16.77 

300671001728000000 16.22 307534271374061568 16.44 

   

Table 2. The top 20 returned tweet ids on query MB171 “Ron Weasley birthday” and their relevance 

rating before and after URL boosting is applied 

 

5   Data 
 

The data set used for the 2014 microblog track is 

the same set used in the 2013 track. It consists of 

243 million tweets taken from the public Twitter 

stream between February and March of 2013 [6]. 

The data set cannot be downloaded and is only 

accessible by running the query set through the 

twitter-tools API. The difference this year is the 

query set. The query set consists of 55 different 

queries varying in length and content. Table 3 

summarizes the query set. 

 

 

 

  



query length number of queries with content relating to: 

Minimum maximum average people/objects locations events 

2 9 3.76 28 13 35 

Table 3. Summarization of the query set. Query content is an approximation. Queries may relate to 

multiple content categories, or none at all 

 

6   Results and Conclusion 
 
In this paper we have described the methods we 

used in the 2014 TREC microblog track ad-hoc 

task. We submitted four runs to the ad-hoc task 

with various features enabled and disabled. Table 

4 depicts the features enabled and the results of 

each run. Query expansion and the re-tweet filter 

were both applied to all runs. URL boosting and 

the language filter were then applied in turn, with 

the final run making use of all methods. The mean 

average precision and precision at 30 are the 

official evaluation metrics for this track. We found 

that the run making use of all methods performed 

the best, with the highest MAP and p@30. Using 

the ER (expansion re-tweet) run as a baseline for 

ERL and ERU, the language filter had a more 

significant impact on the p@30 while URL 

boosting more greatly affected the MAP. 

 

 

Runtag 

Query 

Expansion 

Re-Tweet 

Filter 

Language 

Filter 

URL 

Boosting 

 

MAP 

 

p@30 

ER Yes Yes No No  0.4013 0.6024 

ERL Yes Yes Yes No 0.4074 0.6170 

ERU Yes Yes No Yes 0.4141 0.6073 

ERLU Yes Yes Yes Yes 0.4200 0.6291 

Table 4. Run configurations and comparison 

 

 

 

References 
 

[1] J. Lin. Twitter Tools. 

https://github.com/lintool/twitter-tools 

 

[2] CMU ARK Lab. Twitter NLP and Part-of-

Speech Tagging.     

      http://www.ark.cs.cmu.edu/TweetNLP/ 

 

[3] S. Nakatani. Language-Detection. 

https://code.google.com/p/language-detection/ 

 

 

 

 

 

 

 

[4] R. McCreadie, and C. Macdonald. Relevance 

in Microblogs: Enhancing Tweet Retrieval using 

     Hyperlinked Documents In Proc. of TREC 

2013. 

 

[5] R. Berendsen E. Meij D. Odijk M. Rijke and 

W. Weerkamp. The University of Amsterdam at             

     TREC 2012 In Proc. of TREC 2012. 

 

[6] J. Lin. TREC 2014 Track Guidelines. 


