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ABSTRACT 

 

This paper reports our contributions and results to TREC 2014 Microblog Track. Different from traditional web pages or 

database documents, microblogs have their own unique features. Considering sensitivity to time, we introduce a new factor to 

help to improve tweet retrieval effectiveness. The ranking score of a retrieved tweet is adjusted by considering how close the 

tweet time stamp is to the event using Event Identification Algorithm (EIA). In addition, we also evaluate the Query 

Expansion (QE) approach using Google as an external data corpus. There are 55 search topics and the data set contains a total 

of 243 million tweets provided by the TREC 2014 Microblog Track. Our initial results indicated that QE helped to improve the 

performance. We also discussed why the EIA approach failed to enhance the retrieval performance. 
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1. INTRODUCTION 

 

Twitter is one of the most popular microblog platforms. Microblogs help people to share messages and interact with their social 

relations in a convenient way and it becomes a valuable information source in addition to the traditional web and database 

documents. Today there are 230 million active users on Twitter and they post an average of 500 million Tweets a day. Tweets 

being posted are usually short (less than 140 characters) and time sensitive. Tweets include more social chats and social events, 

while traditional web pages contain more basic facts and navigational contents. It is interesting to explore new approaches for 

effective microblog information retrieval. A summary of issues and recent research progresses regarding this topic is provided 

by Efron (2011). 

 
The 2014 Microblog Track has two tasks: temporally-anchored ad hoc retrieval and tweet timeline generation (TTG). In this 

study we used data from the TREC 2014 Microblog Track and completed the first task. The task is to retrieve relevant tweet 

documents for each provided query. We tested the effectiveness of a new weighted Query Expansion approach. Considering 

the time sensitivity feature of microblogs, we also propose to adjust weighting factors for the tweet rank based on our model 

using an event detection algorithm. 
 

 
2. RELATED WORK 

 

Recent Query Expansion (QE) methods for microblog search utilize temporal properties derived from the real-time characteristic 

that many messages are posted by users when an interesting event has occurred. Massoudi (2011) presented that QE on 

microblog data can be done in a dynamic fashion (taking time into account) and should include specific terms like usernames, 

hashtags, and links. Louvan (2011) found the QE utilizing external search results combined with re-tweet value in the 

customized scoring function was the most effective. Metzler (2012) proposed an approach that is unsupervised in the sense that 

it makes use of a pseudo-relevance feedback-like mechanism when extracting expansion terms. Miyanishi (2013) indicated that 

by retrieving useful information from among a huge quantity of authors’ messages, QE is used to enrich a user query. This 
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approach leverages temporal properties for QE and combines them according to the temporal variation of a given topic. 

Experimental results show that this QE method using automatically combined temporal properties is effective at improving 

retrieval performance. 

 
Features of microblogs are used to detect the relevance to the query. Zhao (2011) focused on six factors of microblogs: the 

number of total tweets a user posts, the number of total followers a user has, the length of a tweet a user posts, the number of 

URLs a tweet contains, the number of retweets in a tweet, and the number of mentions in a tweet. They measured a user’s social 

influence, and each of them is highly relevant to the social network properties of the microblog authors and the properties of the 

microblog itself. Damak (2013) used 14 selected features to learn models to determine their effectiveness in a microblog search 

task. These features are evaluated in a context of microblog information retrieval. They found that tweet popularity, length, 

exact term matching, URL presence, URL popularity in the corpus, URL frequency in the microblog and the recency of the 

microblog are the features that are best connecting with the judgment of relevance. 

 
On the condition of multi-feature of microblog, faceted search was connected to microblog search. Facets are defined as “a set 

of meaningful labels organized in such a way as to reflect the concepts relevant to a domain" by Hearst (2006, p. 60). Abel 

(2011) proposed strategies for inferring facets and facet values on Twitter by enriching the semantics of individual Twitter 

messages (tweets) and by presenting different methods, including personalized and context-adaptive methods. Vosecky (2013) 

defined the Multi-Faceted Topic Model (MfTM) which is proposed to jointly model latent semantics among terms and entities 

and capture the temporal characteristics of each topic. According to the author, this approach could capture the dynamic and 

entity-oriented topics in microblogs. 

 
Microblog queries usually can be classified as: celebrity, social event and common queries (Teevan, Ramage, & Morris, 2011). 

The topic detection and clustering of microblogs are valuable methods used in microblog search. O'Connor (2010) completed 

the topic extraction system based on syntactic filtering, language modeling, near-duplicate detection, and set cover heuristics. 

Long (2011) proposed a unified workflow of event detection, tracking and summarization on microblog data. A bipartite graph 

is constructed to capture the relationship between two events occurring at adjacent times. The matched event pair is grouped into 

an event chain. Furthermore, inspired by diversity theory in Web search, the authors summarized event chains by considering 

the content coverage and evolution over time. Huang (2012) adopted the Single-pass Clustering technique by using the Latent 

Dirichlet Allocation (LDA) model in place of the traditional VSM model, to extract the hidden microblog topic information. 

Chen (2013) designed a novel scheme to crawl through the relevant messages related to the designated organization by 

monitoring multi-aspects of microblog content, including users, the evolving keywords and their temporal sequence, then 

developed an incremental clustering framework to detect new topics, employing a range of contents and temporal features to 

help in promptly detecting hot emerging topics. 

 
Ranking and re-ranking of tweets, as search results for a query is challenging, among other things because of the sheer amount 

of microblogs that are being generated in real time, as well as the short length of each individual microblog. Amati (2011) 

proposed Time Re-Ranking Component, which assumed that time and relevance are two dependent variables. Time and 

relevance yield two independent rankings, which need to be merged. This approach based on a comparison of score and 

timestamps of the retrieved messages. The main idea is to choose a particular score value as a filtering threshold. Miyanishi 

(2011) developed a two-step approach: re-ranking and filtering. The filtering step identifies and removes retweets and non-

English tweets, which was found to be crucial for this task. After filtering, tweets are re-ranked based on the Learning-to-Rank 

(L2R) model learned using five types of features. The re-ranking step further improved the search performance, achieving the 

best overall result. Roegiest (2011) used feature engineering and a variety of ranking methods, and combined them using 

Reciprocal-Rank-Fusion (RRF) as a method of meta-ranking the results. 
 

 
3. METHODOLOGY 

 

TREC microblog track 2014 dataset provided by NIST was collected via the Twitter streaming API over a two-month period: 

1 February, 2013 - 31 March, 2013 (inclusive). The collection consists of approximately 243 million tweets (statuses). 

In this study we conducted a total of four runs: 

 
 Run UWMHBUT1 

A Base run using TREC API (RunQueriesThrift.java). Some result records were duplicated. We removed duplicates, and added 

1001th records for these topics (MB178, MB179, MB189, MB194, and MB197). This TREC API was developed based on 

the Lucene project using language model. 
 

 Run UWMHBUT2 

A Query Expansion approach based on the term frequency from the first top 10 Google results with weight for each term. The 

title and abstract of the top 10 Google result items were used to calculate term frequency. After the stop words were removed, 



=0 

nine highest term frequency terms were added to the original query: Ti, (i=0…C-1, C=10, T0 = original query). Weight wj was 

given to each term Tj: 

wj = (C-j) / ∑−1(𝑖 + 1), j=0…C-1 
 

Where C=10. 
 

This approach is based on Kwok et al.’s (2005) idea by introducing web assistance for improved performance. 
 

 
 Run UWMHBUT3 

Same as previous QWR (UWMHBUT2), but with equal weight for each expanded term. 
 

 Run UWMHBUT4 

Event Identification Algorithm: The distribution of twitter records in a time period is assumed to be a Gaussian distribution. We 

assume that the mean value of that distribution also represents the maximum tweets posted about the topic. The time of search 

results is used to adjust their rankings. The top 30 search results were analyzed and the mean of the time posted was calculated. 

More weightage was given to tweets posted closer to the mean. For an example, when topic “Mad men season 6” is searched 

we assume that maximum number of tweets were posted regarding this topic when the season 6 was launched. In this case more 

weight was given to tweets posted during that period. 
 

Specifically, 

Rn = Ro (α + (1-α) E), 
 

where, Rn is the new ranking score, Ro is the original ranking score calculated from TREC Microblog APIs, and E is the event 

effect. Here α is adjusting parameter (we choose 0.8 for this run). The event weighing factor E is calculated by the following 
formula: 

 

E= f (t, µ, σ) * Ro 
 

where, f (t, µ, σ) is the Gaussian distribution, t is the time gap between the querytime and the time where the twitter record was 

posted, µ is the event center (or the “hot” point), and σ is the standard deviation.  We calculated the σ based on the top 1500 

search results. To smooth it, we use σ = 3* σ1 were σ1 is the standard deviation of the top 1500 search results in terms of days. 
 

 
4. RESULTS  

 
Table 1: Results from four runs (UWMHBUT1,2,3,4) using MAP and P@30 

 

RUNS MAP P@30 

UWMHBUT1 0.309 0.515 

UWMHBUT2 0.343†
 0.512 

UWMHBUT3 0.336 0.496 

UWMHBUT4 0.308 0.512 

† means difference with baseline (UWMHBUT1) is statistically significant 
 

Table 1 presents the MAP and P@30 scores for our four runs: UWMHBUT1, UWMHBUT2, UWMHBUT3 and UWMHBUT4. 

Using a T-test, we found the MAP score on UWMHBUT2 is significantly better than the baseline (UWMHBUT1) MAP score 

(df=54, p=0.025). 
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Figure 1: Average Precision comparison: BEST, MEDIAN, and QUERY EXPANSION (WEIGHTED) 

 

 
5. CONCLUSIONS 

 

Weighted QE based on external data corpus (here we used Google collection) approach (UWMHBUT2) provided improved 

MAP score as compared to the baseline. 
 

Event Identification Algorithm (EIA) was not found to be helpful in terms of both MAP and P@30 scores. One possible 

explanation is the data collection is from a short period of time (two months). 
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