
Towards a Simple and Efficient Web Search Framework

Di Xu, Jamie Callan

Language Technologies Institute, School of Computer Science, Carnegie Mellon University
Pittsburgh, PA, USA

dix@cs.cmu.edu, callan@cs.cmu.edu

Abstract
The Web Track of 2014 Text REtrieval Conference (TREC) ad-
dresses the most fundamental problem of Information Retrieval.
We did not intend to craft a system that beats the state-of-the-art
search engines, but to design a light weight and cost-effective
system with comparable performances. We introduce a two-
pass retrieval framework, with the first pass consisting of a sim-
ple and efficient retrieval model that focuses on recall, and the
second pass a wave of feature extraction algorithms run on the
set of top ranked documents, followed by Learning to Rank
(LETOR) algorithms that provide different precision oriented
rankings, and their outputs are combined using data fusion. We
have focused on using statistical Language Models with novel
and well-known smoothing techniques, different LETOR meth-
ods, and various data fusion techniques. In addition, we have
also tried using topic modelling with Hierarchical Dirichlet Al-
location for query expansion in the hope of improving diver-
sity of our results. However, the topic modelling approach has
turned out to be unsuccessful, and we have not been able to
spot the problem and benefit from it in this work. In addition,
we also present some further analyses demonstrating that our
approach is robust against overfitting, and some general studies
on overfitting in the context of LETOR.
Index Terms: Information retrieval, search engine, language
Model, learning to rank, machine learning, data fusion

1. Introduction
Ad-hoc retrieval addresses the most fundamental problem of In-
formation Retrieval (IR) and has been studied extensively for
decades. Cliche as the topic sounds to most IR researchers,
there has been no single retrieval model proposed in the past
that consistently out performs others in general, and none of
the existing approaches has the performance that is close to hu-
man. In essence, the task requires the machine to be equipped
with the ability to accurately rank a document among others ac-
cording to its relevance to a given query, which requires a high
level of algorithmic approximation to human intelligence. The
algorithm not only needs to be able to understand the content
of a document and compare it with other candidates, but also to
interpret a query and enumerate multiple topics that the query
may address. Therefore, as long as Artificial Intelligence re-
mains under study, the fundamental problem of IR will continue
to remain unsolved.

The introduction of the well-known retrieval models intro-
duced in the past decades can be found in many well writ-
ten literatures such as [1], thus we will skip the introduction
of those well-known retrieval methods such as BM25, Vector
Space Models and Language Modelling approaches. In short,
the methods that have proved to be effective eventually come to
an agreement when calculating the statistics from documents. It

is remarkable that tf-idf heuristics still lies in the hard of most
retrieval methods, although they may be developed upon differ-
ent theories and assumptions.

Various applications of Machine Learning (ML) methods in
IR tasks has been proposed and studied extensively in the past
decade. It is becoming even more popular nowadays with the
advancement of ML techniques, bringing IR up to a new level.
The typical form of applying ML techniques in retrieval tasks is
Learning to Rank (LETOR). One advantage of LETOR is that it
allows incorporating features that addresses various character-
istics of a document and its relevance to a topic. Many of such
features cannot be easily integrated in the formulae of conven-
tional retrieval models due to lack of theoretical foundations.
Therefore, leaving them to a regression model can at least har-
vest some benefits, even though we do not know the exactly
correct way of calculating the relevance scores.

In spite of the abundant works done in the past, most works
were validated on relatively small datasets and failed to address
the scalability issue in the scale of the web. Web scale applica-
tions impose challenges upon the original ad-hoc retrieval prob-
lem, as the number of documents to be ranked is magnitudes
larger for some existing system to handle. This is particularly
important as web services are meant to be fast and reliable. An-
other important aspect of web search is that a significant portion
of web texts are spam that seriously affects the retrieval qual-
ity, while most retrieval models are quite vulnerable to spam.
Therefore, the precision of web search is typically low. On the
other hand, diversity has also been regarded as an important as-
pect of web search quality, because many top ranked documents
tend to suffer from redundancy issues.

People participated in previous years’ Web Tracks have
tried improving retrieval performances from many aspects.
Some tried enhancing the low-level knowledge representation
of text, such as using Latent Semantic Indexing. More recently,
in [2], Quantum Language Models were used, and documents
and queries were associated with a density matrix. Some other
works such as [3], where clustering was performed on the doc-
uments to exploit document wise distance and semantic rela-
tionships to improve document ranking. To tackle with noisy
web text, [4] tried utilizing the name entities from the Freebase
Dump provided by Google Inc., which was reported to be ef-
fective in enhancing precision. Moreover, in their work, term
proximity was also considered beyond the bag-of-words repre-
sentation, and a modified version of BM25 was used to incor-
porate phrase frequencies when computing document scores.
Apart from those, there are many other promising approaches
presented in the past. However, very few of them are promis-
ing in a practical sense, because most of them rely heavily on
sophisticated document representations and machine learning
algorithms, which are not scalable in real world web search ap-
plications.



We aim to design a simple precision oriented system that
does not rely on external resources such as spam ranking scores
or introduce extra processing engines such as name entity rec-
ognizer. We expect our system to be able to retrieve documents
as efficient as possible, without sacrificing too much of the per-
formance and still achieve competent precision and normalized
Discounted Cumulative Gain (nDCG).

In the rest of this paper, we will introduce the general
pipeline of our retrieval system in Section 2, followed by an in-
troduction to novel Language Modelling approaches in Section
3 that were used to generate features, and later in Section 4 we
introduce all other features and the LETOR algorithms. In addi-
tion, we also introduce our failed attempt of using topic models
to perform query expansion to capture documents of multiple
topics in section 5, and a brief reflection on why this approach
did not work. Finally in section 7 we report and discuss the
evaluation results.

2. General Pipeline
Our goal is set to design a system as simple as possible, without
using any external processing engine or resources, other than
the standard Indri toolkit and a third party LETOR toolkit. We
have implemented most of our ranking algorithms implemented
using Lucene.

We introduce a two-pass retrieval framework, where in the
first pass we aim to retrieve as many relevant document as pos-
sible to ensure a reasonable level of recall, and in the second
pass we process all the retrieved documents in the first pass and
extract features. Those features are then piped into different
LETOR algorithms to produce several rank lists, and eventually
all the rank lists are merged using the conventional Reciprocal
Rank based data fusion method.

In detail, in the first pass we use the standard Indri retrieval
algorithm and BM25 with pseudo relevance feedback on the top
10 highest ranked documents. The parameters of the two-stage
smoothing used by Indri and BM25 were tuned to optimize re-
call instead of precision, since the goal in the first pass is to
secure the recall of the final ranking. The goal of using both
Language Model based two-stage smoothing and tf-idf based
BM25 is that although they have demonstrated the same level
of performance empirically, the two methods are complimen-
tary as they tend to retrieve different sets of relevant documents.
Therefore by merging the results returned by both rankers, we
can harvest more relevant documents for further processing and
re-ranking. The implementation of Indri’s Search Engine al-
lows fast and parallel search over the entire ClueWeb12 corpus.
After we obtain the two rank lists generated using Indri, we fuse
them using the Reciprocal Rank method to generate a baseline
rank list, which is the final product of the first pass. In the fused
rank list, we reserve only the top 100,000 documents for each
query.

In the second pass, we extract various features that address
the relevance of a document to the query, and also some other
features that independently reflects the document’s character-
istics. In particular, the features we have extracted consists of
document-level and field-level relevance scores computed using
some well-known and novel ranking methods, and some simple
heuristic statistics that are likely to be associated to spam, and
other basic features such as document length. We have also
studied some less recognized but interesting language models
in Section 3. A more detailed summary of all features used in
this stage and the ensuing LETOR algorithms are presented in
Section 4. Multiple LETOR algorithms were used in this stage

to provide different rank lists for the same query. To properly
merge these results, we have compared several data fusion tech-
niques, including Reciprocal Rank, Borda Count and Condorcet
method, and have found that Reciprocal Rank is more effective
than the other two methods. A brief introduction and compari-
son of the three methods will be discussed in Section 6.

3. Discriminative Language Models
There have not been many efforts invested recently in the de-
velopment of statistical language models (LM) and smoothing
techniques applied in Information Retrieval. One important rea-
son is that the assumption on the distribution of token types that
most LMs are based does not hold noisy data such as web text
or twitter data. In web text, the type-token curve is less linear
comparing to those of standard text corpus such as Wall Street
Journal where most LMs and smoothing techniques were val-
idated. LMs need to be able to evaluate query terms in a dis-
criminative manner in order to do better in web search.

One simple idea is to introduce a Negative Language Model
(NLM) that accounts for common terms that are less mean-
ingful and mostly useless. This is analogous to idf heuristics,
but has better statistical foundations in the domain of statisti-
cal LMs. One interesting work on NLM that we consider is
”Negative Query Generation” proposed by Zhai and Lv in [5].
In their work, a denominator is introduced which addressed the
generation probability of a ”negative query” from a document,
which they interpret as the probability that a user who dislikes
the document would choose to use this query. Intuitively, this
can be regarded as measuring how far the query is from the
document in terms of the distance between their correspond-
ing LMs. With this idea, they have extended the traditional
Dirichlet Smoothing to discriminate documents based on the
corresponding query likelihood with negative query generation.
Their reported results on WT10G have demonstrated a certain
level of success. Therefore, we have implemented their pro-
posed LM with negative query generation, denoted as Dir-XQL.

Motivated by XQL, we have also come up with a similar
discriminative model based on Jelinek-Mercer Smoothing, de-
noted by JM-XQL.

4. Features and Learning to Rank
Apart from Indri, BM25, Dir-XQL and JM-XQL, we have also
implemented some other smoothing techniques such as Good
Turing and Absolute Discounting, and different similarity mea-
sures such as cosine similarity and KL divergence. In addition
to the scores of the document given by different rankers, we
have also computed the scores particularly for the body and an-
chor text of the documents, as they are likely to contain infor-
mation about the topic if the document is relevant. Moreover,
we have also recorded the corresponding scores for each query
term, and on top of that, computed the harmonic mean, geomet-
ric mean, variance and skewness. Our assumption is that if a
document is relevant to the query, it should address as many of
the query terms as possible.

We have also designed some heuristics features. We have
introduced a binary value addressing if at least one of the query
terms appeared in the title and URL, as we assume some of the
relevant documents may have parts of the query in their title and
URL. Moreover, the contextual distribution of the query terms
are investigated and for terms that appear more than once in
a document, we measure the mean, variance and skewness of
the contextual distance between their occurrences, normalized



by the length of the document. These features are designed to
target some query terms that appear too frequently, thus are less
meaningful and more likely to associate with spam.

Nonetheless, we also included some basic document statis-
tics such as the document vocabulary size, field lengths, and
skewness of document term frequencies. These features are
helpful in lowering the score for very long and potentially spam
documents. There are also features taken from the query that
are independent from documents, including query length, the
average, minimum, maximum of the collection frequencies of
the query terms.

Multiple LETOR methods have been tried, which are dif-
ferent in many ways and we expect them to be complimentary
during the final fusion.

Simple K-nearest neighbour (KNN) with K set to 20 and
Regression Tree was used to perform point-wise LETOR. They
are expected to works well when the features independently ad-
dress different aspects of the documents, but are more sensitive
to noises and less effective when the dimension of the feature
vector is too high. Our intuition is that rank lists generated by
point-wise methods are better at the top potions, but the preci-
sion drops quickly if we go further down the list, as they are
prone to over-fit to certain features that are most dominating.

We have tried using Support Vector Regression
(RankSVM) with linear kernel for pairwise LETOR, and
were trained on a set of error pairs collected using the
“web2013” relevance judgments file. We expect the pairwise
methods to perform better than point-wise approaches, as the
features collected from the error pairs are more meaningful as
they define relative distances.

For list-wise LETOR, we are using ListNet [6], which uses
a simple one layer Neural Network with Gradient Decent to op-
timize a defined list-wise loss function based on “top one proba-
bility”. The list-wise approach was proved to be more effective
than pairwise and point-wise approaches, as its optimization
criterion is closer to the actual evaluation metrics. According
to Cao et al. (2007), the loss function of the pairwise LETOR
methods are not inversely correlated with NDCG or other pre-
cision oriented metrics, whereas the loss function for list-wise
LETOR methods was demonstrated to be completely inversely
correlated to those metrics. They also pointed out that pairwise
methods converge more slowly than list-wise methods, making
it more difficult to train and reach an optimal solution. For both
RankSVM and ListNet, we have adopted the implementations
from RankLib, which is part of the Lemur Project [7].

In addition, we have also tried using Genetic Programming
(GP) [8] based LETOR, which is a new generation of LETOR
approaches. The implementation of the GP learner was pro-
vided by “the Learning to Rank Library” from Yandex School of
Data Analysis [9]. According to the authors, GP based LETOR
was able to achieve competitive performance with RankSVM
and RankBoost, but its computational cost is higher. The nature
of GP algorithms is also prone to overfitting.

All of the eager learning models were trained with 10-fold
cross validation.

It is also worth noticing that even though most of these fea-
tures are directly consistent to the relevance of a document to a
query, none of our LETOR methods include diversity into ac-
count. This is because we were counting on topic modelling
based query expansion to improve diversity performance, such
that we have not defined a dedicated list-wise optimization cri-
terion on top of the rank list that addresses diversity. How to
optimize towards diversity under the context LETOR is yet an-
other problem to be studied in future.

5. Query Expansion with Topic Modelling
Topic models have been widely studied for a long time [10] and
has proved to be useful in many applications [11], even for ap-
plications that does not deal with natural languages at all [12].
Latent Dirichlet Allocation (LDA) [13] is one popular imple-
mentation of topic models and have demonstrate its effective-
ness in many tasks [14] [15].

We have tried query expansion based on topic models to
address the diversity issue which is natural to web search. The
intuition is to use LDA to identify potential topics from the top
ranked documents. Originally, this was performed after the first
pass when most of the relevant documents are assumed to be
retrieved by using BM25 and Indri with pseudo relevance feed-
back. And we hopped to be able to generate weighted distri-
bution of words that could potentially identify multiple topics
of a query from the top ranked documents, and by using these
approximations of multiples topics, we can perform multiple
searches for the same query with different expansions, followed
by separate LETOR for each expanded query, and eventually
merge the results with data fusion.

Unfortunately, the LDA based topic mining approach has
failed in this task. The resulting topics generated by the topic
model did not carry any useful information about the various
aspects of a topic. For example, for the query “raspberry pi”,
it covers topics such as “what is raspberry pi”, “making a rasp-
berry pi”. However, the topics generated based on the 10 top
ranked documents do not make much sense to us in terms of
their keywords, as presented in Table 1. It is obvious that
the ”topics” generated by LDA do not really characterize the
real topics of relevance, and were completely overwhelmed by
words that have nothing to do with the query.

Topic Key terms in topic
1 blog,fedora,boards,35,manufacture,march,price
2 jacob,colours,cut,acrylic,related,blogthi,twitter
3 hardware,high,finally,propaganda,suede,batch,vodka

Table 1: Top terms (with the highest weights) for the topics
generated by the LDA topic model for query ”raspberry pi”.

One simple explanation is that web texts are too noisy and
unfocused for the LDA process to stabilize on the real topics
that we are interested. This makes sense because most web doc-
uments does not focus on one specific topic, the vocabulary is
large, and thus the LDA requires more documents of the same
topic to take effect. However, under the context of web search,
this is not feasible because very few documents are as focused
as what the LDA model expects. In order for the topic mod-
elling approach to work as we expect, the first pass rank list
must already have a high precision in the top of the list, but this
is not feasible in the first pass as our first pass retrieval focuses
on recall instead of precision. Therefore, we can conclude that
in the context of web search, we cannot use topic modelling
approach to extract topics in an early stage.

One potential alternative is to use the Dominating Set Ap-
proximation method (DSPapprox) [16] on the top portion of the
first pass rank list iteratively, which is yet another problem to be
studied in future.

6. Data Fusion
Data fusion has been proved useful in improving retrieval per-
formances, especially when the systems to be combined carry



different sources of information and are complimentary to each
other. Data fusion algorithms can be divided into two groups,
with one utilizes the scores of the posting lists during the combi-
nation, while the other considers only the rank positions. Many
previous studies on Data fusion [17] [18] [19] suggested that
when the scores of the systems to be combined are commen-
surable, using score based fusion methods are better than using
only the rank positions, but when the scores are incompatible or
if the systems generate different rank-score curves, rank based
fusion techniques are better. The latter is typical in our case
because the scores generate by different LETOR algorithms are
different in terms of scale and rank-score curves.

In particular, we have compared Reciprocal Rank, Borda
Count [20] and Condorcet method [21]. The latter two meth-
ods came from social theory of voting. On the Web Track 2013
query set, we performed data fusion on the posting lists gener-
ated by some of the LETOR algorithms mentioned above. We
chose to only use the top ranked 100 documents to perform the
experiments because Condorcet method requires global ranking
information and does not scale with much longer posting lists.

We have observed that Reciprocal Rank significantly out-
performed Borda Count and Condorcet method by more than
0.03 absolute in prec@30 and more than 0.05 in nDCG@30,
whereas the performance of the latter two were very similar.
This observation is similar to that in [22], and it is likely to be
the case that false positives that are common in all 4 posting lists
will likely to receive higher ranking than true positives that are
supported by a subset of posting lists. Our LETOR algorithms
behave differently on some topics, but Condorcet method tends
to ignore high votes from the minority, but instead prefer weak
votes from the majority. Therefore, we have adopted Reciprocal
Rank as the data fusion techniques in our final submissions.

7. Evaluation Results and Analyses
7.1. Submission Results

The evaluation results for our submissions on Web Track 2014
are shown in Table 2 and 3. We have submitted 3 runs. Zerg run
came from a primitive system that does not perform LETOR,
and instead performs data fusion directly on posting lists gener-
ated by different rankers such as BM25, Indri, XQL, etc., which
we regard as our baseline performance since LETOR was not
applied. Protoss run was generated exactly by our two-pass re-
trieval and ranking system introduced in this paper. Terran was
a slight modification of Protoss, and it did not involve KNN
during the data fusion stage. We excluded KNN for the consid-
eration because it is a lazy learning algorithm which contradicts
to our goal of generating a simple and efficient retrieval frame-
work, and also for the fact that KNN is unstable and sensitive to
noises.

ERR@20 p nDCG@20 p
median 0.1667 - 0.2548 -
Zerg 0.1740 0.2667 0.2670 0.1442
Protoss 0.1968 0.0098 0.2864 0.0092
Terran 0.2043 0.0090 0.2940 0.0064

Table 2: Results for standard gdeval metrics. P-values were
computed using directional Paired t-Test against Median.

It can be observed from Table 2 that our systems are gener-
ally better than the median in terms of gdeval metrics where di-
versity is ignored, especially for Protoss and Terran, which are

ERR-IA@20 p P-IA@20 p α nDGC@20 p
median 0.5747 - 0.4364 - 0.6592 -

Zerg 0.5360 .06 0.4364 .50 0.6289 .06
Protoss 0.5693 .42 0.4461 .24 0.6398 .19
Terran 0.5779 .45 0.4529 .12 0.6467 .27

Table 3: Results for standard ndeval (diversity) metrics. P-
values were computed using directional Paired t-Test against
Median.

shown to be significantly better with strong evidence. This also
suggests that our LETOR framework is effective in improving
the overall precision.

We are not surprised that our systems did not work well
on diversity metrics as shown in Table 3, because the diversity
module of our system was not functioning as we expected and
eventually we chose to not to include it in our pipeline. Still, at
least we are not significantly worse than the median.

7.2. Overfitting Analyses

We are interested in whether our features are effective and to
see if the LETOR models trained on top of those features are
robust against overfitting. We have conducted several sensitivity
analyses on the learning curve of ListNet on both the training
(Web 2013) and testing (Web 2014) query sets. Our assumption
is that if our features are effective and not random there is less
chance for the model to overfit to randomness in the training
data, thus its performance on the training query set is supposed
to be close to that on the testing query set.

Figure 1: The learning curve of ListNet in the first 3000 itera-
tions, with learning rate set to 0.01. The X-axis is the number
of iterations for the training of the 1-layer neural network (NN),
the Y-axis is the optimization criterion correlated to MAP. The
features were collected based on the full ClueWeb12 dataset.

It can be observed through Figure 1 that our features work
well with ListNet in terms of robustness against overfitting.
This experiment indicates that our features are not sensitive to
the queries because we are validating on a different query set.
This suggests that our features are stable with respect to differ-
ent kinds of queries.

Following this intuition, we are also interested in whether
our features are still robust when the underlying dataset has
changed. To simulate such condition, we took one step further
and re-performed the feature extractions on the ClueWeb12-
B13 dataset, which is a small sample (50 million documents)
of the full dataset (733 million documents). We then observed



again how the LETOR performance differs on the two query
sets.

Figure 2: The learning curve of ListNet in the first 1000 itera-
tions, with learning rate set to 0.1. The X-axis and Y-axis are
the same as in Figure 1. The features for Web 2013 were col-
lected based on the full ClueWeb12 dataset, but those for Web
2014 are collected on ClueWeb-B13 dataset.

According to Figure 2, it appears that the performance of
ListNet on Web 2013 and 2014 are still consistent with respect
to the number of iterations used for the NN training, even if for
Web 2014 the features were extracted based on a much smaller
dataset. This also suggests that our features are not sensitive to
the change of dataset, and they reflect general characteristics of
a document being relevant or irrelevant to a general query.

7.3. Reflections

In table 4, we compare our gdeval results with some well-known
teams who have participated in the Web Track in the past. It is
remarkable that top ranked teams such as ICTNET udel fang
and uogTr all featured in using the provided Freebase entity an-
notations to achieve impressive performances.

Group Run ERR@20 nDCG@20
ICTNET ICTNET14ADR1 0.208 (1st) 0.261 (6th)
udel fang UDInfoWebAX 0.207 (2nd) 0.307 (2nd)
Group.Xu Terran 0.204 (3rd) 0.294 (3rd)
uogTr uogTrDwl 0.195 (4th) 0.324 (1st)
UMASS CIIR CiirAll1 0.153 (11th) 0.250 (10th)

Table 4: This table documents the officially released evaluation
results for our (Group.Xu) submission Terran and the best sub-
mission from some of the “well-known” participants in the Web
Track. The number inside the parenthesis after each fraction is
their ranking among all the participants.

Comparing to all automatic runs, our Terran run won the
3rd place in the list in terms of both ERR@20 and nDCG@20,
according to Table 2 of the TREC 2014 Web Track Overview
[24]. This suggests that our approach works reasonably well
and our goal of constructing an low-cost and effective retrieval
framework was a partial success, in terms of non-diversity met-
rics. We have chosen not to use the provided Freebase entity
annotations because it contradicts to our goal of keeping the
system simple, because entity annotations are not always avail-
able in real world and real time web search.

Of course, our goal has not been completely fulfilled yet
because our diversity performance was mediocre at best. We

were not surprised because we eventually gave up on improving
the diversity performance, as we also need to submit our result
for the Contextual Suggestion Track. It is worth noticing that
the teams that achieved good diversity performance all featured
in using entity based query expansion techniques. Therefore,
improving diversity without explicit entity recognition will be
our challenge in future.

8. Conclusions
We can conclude that our precision oriented system works well
in generating ranked lists with competitive precision, and is
much simpler comparing to many more sophisticated systems
in the pass since it does not require any extra resources or ex-
ternal tool-kits. Our designed features and the LETOR frame-
work have achieved a level of success in dealing with spam texts
and improving the overall ranking quality, and we have demon-
strated the effectiveness of our features which incur limited ef-
fects of overfitting when learned with ListNet. We regret that
we could not get our LDA based topic model to work in min-
ing different themes of a query. In future, we plan to introduce
simpler and more effective strategies to improve the diversity
performance, such as DSPApprox [16] and maximum entropy
methods. We would also explore new document level features
to make the ranking system less sensitive to spam documents.

9. Acknowledgements
This work was supported in part by the Language Technologies
Institute of Carnegie Mellon University. We would like to thank
David Pane for providing the ClueWeb12 datasets and the Indri
index for both ClueWeb12 and ClueWeb12-B13.

10. References
[1] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to

information retrieval. Cambridge university press Cambridge,
2008, vol. 1.

[2] A. Sordoni, W. Yuan, and J.-Y. Nie, “Universit de montral at trec
2013: Experiments with quantum language models in the web
track,” DIRO, Universit de Montral, Tech. Rep., 2013.

[3] F. Raiber and O. Kurland, “The technion at trec 2013 web track:
Cluster-based document retrieval,” Faculty of Industrial Engineer-
ing and Management Technion Israel Institute of Technology,
Tech. Rep., 2013.

[4] Y. Xue, F. Guan, X. Yu, Y. Liu, and X. Cheng, “Ictnet at web track
201,” Chinese Academy of Sciences and University of Chinese
Academy of Sciences, Tech. Rep., 2013.

[5] Y. Lv and C. Zhai, “Query likelihood with negative query gener-
ation,” in Proceedings of the 21st ACM international conference
on Information and knowledge management. ACM, 2012, pp.
1799–1803.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank:
from pairwise approach to listwise approach,” in Proceedings of
the 24th international conference on Machine learning. ACM,
2007, pp. 129–136.

[7] J. Allan, J. Callan, K. Collins-Thompson, B. Croft, F. Feng,
D. Fisher, J. Lafferty, L. Larkey, T. N. Truong, P. Ogilvie
et al., “The lemur toolkit for language modeling and in-
formation retrieval,” The Lemur Project.[WWW document]
http://lemurproject. org (accessed 25 January 2012), 2003.

[8] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang, “Learning to rank
for information retrieval using genetic programming,” in Proceed-
ings of SIGIR 2007 Workshop on Learning to Rank for Informa-
tion Retrieval (LR4IR 2007), 2007.

[9] Y. S. of Data Analysis, “Learning to rank library,” 2013.



[10] D. Hall, D. Jurafsky, and C. D. Manning, “Studying the history
of ideas using topic models,” in Proceedings of the conference on
empirical methods in natural language processing. Association
for Computational Linguistics, 2008, pp. 363–371.

[11] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li,
“Comparing twitter and traditional media using topic models,” in
Advances in Information Retrieval. Springer, 2011, pp. 338–349.

[12] M. Bicego, P. Lovato, B. Oliboni, and A. Perina, “Expression mi-
croarray classification using topic models,” in Proceedings of the
2010 ACM Symposium on Applied Computing. ACM, 2010, pp.
1516–1520.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet alloca-
tion,” the Journal of machine Learning research, vol. 3, pp. 993–
1022, 2003.

[14] C. Zhai and J. Lafferty, “Model-based feedback in the language
modeling approach to information retrieval,” in Proceedings of
the tenth international conference on Information and knowledge
management. ACM, 2001, pp. 403–410.

[15] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi,
“Mining eclipse developer contributions via author-topic models,”
in Mining Software Repositories, 2007. ICSE Workshops MSR’07.
Fourth International Workshop on. IEEE, 2007, pp. 30–30.

[16] D. Lawrie, W. B. Croft, and A. Rosenberg, “Finding topic words
for hierarchical summarization,” in Proceedings of the 24th an-
nual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM, 2001, pp. 349–357.

[17] D. F. Hsu and I. Taksa, “Comparing rank and score combination
methods for data fusion in information retrieval,” Information Re-
trieval, vol. 8, no. 3, pp. 449–480, 2005.

[18] R. Nuray and F. Can, “Automatic ranking of information retrieval
systems using data fusion,” Information Processing & Manage-
ment, vol. 42, no. 3, pp. 595–614, 2006.

[19] K. Mc Donald and A. F. Smeaton, “A comparison of score, rank
and probability-based fusion methods for video shot retrieval,” in
Image and video retrieval. Springer, 2005, pp. 61–70.

[20] D. Black, “Partial justification of the borda count,” Public Choice,
vol. 28, no. 1, pp. 1–15, 1976.

[21] M. Montague and J. A. Aslam, “Condorcet fusion for improved
retrieval,” in Proceedings of the eleventh international conference
on Information and knowledge management. ACM, 2002, pp.
538–548.

[22] G. V. Cormack, C. L. Clarke, and S. Buettcher, “Reciprocal rank
fusion outperforms condorcet and individual rank learning meth-
ods,” in Proceedings of the 32nd international ACM SIGIR con-
ference on Research and development in information retrieval.
ACM, 2009, pp. 758–759.

[23] C. J. Burges, “From ranknet to lambdarank to lambdamart: An
overview,” Learning, vol. 11, pp. 23–581, 2010.

[24] K. Collins-Thompson, P. Bennett, F. Diaz, C. L. Clarke, and E. M.
Voorhees, “Trec 2014 web track overview,” MICHIGAN UNIV
ANN ARBOR, Tech. Rep., 2014.


