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Abstract

This paper reports the systems we submit-
ted to the Microblog Track shared in TREC
2014 which focuses on ad hoc retrieval (i.e.,
retrieving top 1, 000 relevant tweet for ev-
ery given topic). To address this task, we
adopted a two-stage framework, i.e., firstly,
we performed query expansion (i.e., ex-
panding relevant inforamtion using pseudo-
relevance feedback and Google search engine
results) to retrieve more relevant tweets, then
extracted several effective semantic features
(e.g., Jansen-Shannon Distance, Overlap Sim-
ilarity, Lucene Score, etc) from retrieved re-
sults and built ranking model using supervised
machine learning algorithms with the aid of
these features to perform re-ranking. Our sys-
tems ranked 3th out of 21 teams.

1 Introduction

Microblog is a form of personal content sharing
which derives from blog, and focuses on the social
network-style interactions timely and rapidly. In the
past few years, there has been a huge growth in the
use of microblog platforms such as Twitter1, Face-
book2. Promoted by that growth, companies and
media organizations are increasingly seeking ways
to mine microblog for information about the view
points of certain topics (Kouloumpis et al., 2011).
The first challenge of mining information from mi-
croblog is data retrieval.

The microblog track in TREC 2014 focuses on
the real-time search on Twitter, namely, Temporally-
Anchored Ad Hoc Retrieval. This ad hoc retrieval

1http://twitter.com
2http://facebook.com/

task can be summarized as follows: “At time T ,
retrieve the most relevant tweets about an informa-
tion need expressed as query Q.” There are two key
points in this task: real-time and precise, which
means that we should retrieve the most relevant
tweets posted within a certain period of time. Thus,
for each given query, participating team is required
to return the top 1000 tweets ranked in decreasing
order of predicted relevance score, which are pub-
lished prior to (including) the query time defined by
the organizers.

Twitter usually used to mine information because
of its large amount of social information and time-
less property. Although there are a wide variety of
researches on microblog data for various data min-
ing tasks (e.g., sentiment analysis, entity linking, se-
mantic similarity, etc), relatively few work has done
on microblog retrieval (Ferguson et al., 2012). (Mas-
soudi et al., 2011) developed a language model with
aid of two groups of quality indicators and proposed
a dynamic query expansion model to perform mi-
croblog retrieval. (O’Connor et al., 2010; Li et al., ;
Zhu et al., ) implemented simple but effective query
expansion methods which much improved the per-
formances of retrieval. Apart the common methods
used in retrieval systems, some unique properties of
microblog are exploited for retrieval purpose (Lau
et al., 2011). For example, (Efron, 2010; Huang et
al., 2010) showed the usefulness of Hashtag# in rel-
evance feedback and query expansion. (Magnani et
al., 2011; Nagmoti et al., 2010; Kwak et al., 2010)
employed user information for retrieving conversa-
tions from microblog.

Following many previous work (Li et al., ; Qiang
et al., ; Zhu et al., ; Hasanain et al., ; Han et al., 2012;
Zhu et al., 2012; Hoang Van Duc et al., 2012) on this



Figure 1: The framework of our proposed system.

task, we adopt a two-stage framework to address this
work, i.e., query expansion (i.e., adding relevant in-
formation to query) and re-ranking (extracting sev-
eral semantic features and using supervised machine
learning algorithm to perform re-ranking).

The paper is organized as follows. Section 2 de-
scribes the framework of our system. Section 3 re-
ports the experimental setting and results on training
and test data. Finally, Section 4 concludes this work.

2 System Overview

In this work, we employed a two-stage framework to
settle the microblog retrieval, i.e., query expansion
and re-ranking.

Figure 1 depicts the architecture of our proposed
system, where the left part is a query expansion
module and the right part is a re-ranking mod-
ule. In query expansion, we expanded the query
from two distinct sources (i.e., tweet feedback and
Google returned results) and optimized the best
combination to perform query expansion. As for re-
ranking part, we first extracted several effective se-
mantic features (i.e., JansenShannon Distance,
Overlap Similarity and Lucence Score, etc)
from preliminary retrieval results, then we explored
two ranking strategies (i.e., point-wise and pair-
wise) and compared several supervised machine
learning algorithms with the aid of above features
to perform re-ranking.

2.1 Query Expansion

Since the text length in Twitter is usually short (lim-
ited to 140 words), given a query, the relevant tweets
may not contain all the words in a query. Therefore,
simply using keyword matching may not be able to
retrieve all relevant tweets. In order to overcome the
lexical gap between tweets and query, we proposed
two methods to perform query expansion. The first
method aims at using tweet feedback provided by
organizers to extract the relevant information from
tweets. The second is to use the returned results
from Google search engine to expand the query. The
difference between these two methods lies on the
source of relevant information, i.e., internal (tweets)
and external (Google search engine).

2.1.1 Tweet Feedback
Since organizers provided a API to retrieve

tweets ranked by initial Lucene ranking score and
these top tweets are expected to be closely relevant
to the search query, we proposed to expand queries
with the aid of the information from these top K
feedback tweets. Here we adopt a variant of tf ∗ idf
to calculate the weight of each word as follows:

Fweightw =
K∑
j=1

(
freq (w)

len (Tj)
· scorej

)
where Fweightw is the weight of word w in feed-
back tweets, Tj is the jth tweet returned by the
API and scorej is the corresponding Lucene rel-
evant score provided by API, ferq(w) is the fre-



quency of word w in Tj , len(Tj) is the total number
of words in Tj . Since different words have quite dif-
ferent Fweightw scores, we performed L1 normal-
ization. In this way, we expanded query words by
adding top P words from the top K feedback tweets
according to their Fweightw scores. Obviously, this
tweet feedback-based query expansion method takes
both the relevancy of tweet and the frequency of
word into consideration and thus it is expected to be
able to comprehensively evaluate word relevance.

2.1.2 Google Returned Results
The second query expansion method is to use

Google returned results. This is based on the ob-
servation that the titles and snippets of Web pages
returned by Google search engine are closely related
to the search query. Similar to the above tweet feed-
back approach, we used the top K results returned
by Google search engine to expand query. To select
the significant words from the results, we adopted
the traditional tf ∗ idf (Joachims, 1996) to measure
the relevance of the words with given query.

2.2 Re-Ranking

After the above query expansion processing, we first
extracted three types of semantic relevancy features
between each expanded query and tweet, and then
adopted supervised learning-to-rank algorithms to
perform tweet re-ranking.

2.2.1 Preprocessing Tweets
Firstly, we used the API provided by organiz-

ers to collect top 10, 000 tweets for each given
query. Since the collected tweet dataset contains a
lot of noise, we conducted a series of preprocessing
procedures, including removing non-English tweets
and retweets (retweets and Non-English tweets are
judged as non-relevant), removing stop words and
punctuations. After that, we changed words to their
lowercase and performed tokenization and stem-
ming.

2.2.2 Features
To measure the semantic relevance between query

and tweet, we used the following three types of sur-
face text similarity measures.

Jensen-Shannon Divergence (JSD): JSD (Fu-
glede and Topsoe, 2004) is a symmetrized and

smoothed variant of Kullback-Leibler divergence,
which is calculated as following:

Jensen− Shannon Divergence (S, T ) =

1

2
KL (PS ∥ Q) +

1

2
KL (PT ∥ Q)

Q (w) =
1

2
(PS (w) + PT (w))

KL (P ∥ Q) =
∑
x∈X

P (x) log
P (x)

Q (x)

where Q (w) denotes the distribution of the docu-
ment collection of T and S, KL (P ∥ Q) means the
Kullback-Leibler divergence between distribution P
and Q. Here we proposed four JSD features by cal-
culating the JSD between tweet and original query
in unigram and bi-gram, denoted as JSD TvQu and
JSD TvQb, and the JSD between tweet and Google
returned results in unigram and bi-gram, denoted as
JSD TvGu and JSD TvGb, respectively.

Overlap Similarity (OS): OS is a simple and ef-
fective similarity measure and calculated as follows:

Overlap Similarity =
|A ∩B|
|A|

or
|A ∩B|
|B|

where |A ∪B| denotes the size of intersection of set
A and set B and |A| means the size of set A. We
denote the word sets collected from tweet, query and
Google returned results as T , Q and G. The ratio of
|T ∩Q| to |Q| (denoted as OS TvQ) and the ratio of
|T ∩G| to |G| (denoted as OS TvG) were calculated
as OS features.

Lucene Score (LS): Lucene Score is a state-of-
the-art similarity score which combines several mea-
sures3, e.g., cosine formula and dirichlet prior. It is
calculated as follows:

Lucnne Score(q, d) = coordq,d·queryNormq·∑
t in q

(tft,d · idft,d · weightt · normt,d)

where coordq,d is a grade factor defined as
Overlap

MaxOverlap , queryNormq is a normalizing factor
which does not affect the ranking, tft,d denotes the
term frequency in d, idft,d is the inverse document
frequency, weightt is the weight of term t in query
q and normt,d is encapsulated by a small part of
weightt and the length of document d. The official
API provides this Lucene Score between query and
returned tweets.

3http://lucene.apache.org/core/2 9 4/api/core/org/apache/luc-
ene/search/Similarity.html



2.2.3 Learning-to-rank
We used supervised learning-to-rank approach to

perform re-ranking. Generally, the learning-to-rank
approach can be divided into three groups: point-
wise, pair-wise and list-wise. In this work, we
adopted the first two strategies.

In point-wise strategy, given a query, for each re-
turned tweet, we first built a query-tweet pair with
its relevant label. Then we adopted regression al-
gorithm to build a regression model. For each un-
labeled query-tweet pair, we used the regression
model to calculate its relevant score. In this work
we employed two regression algorithms, i.e., SVR
and KNeighors Rrgressor.

In pair-wise strategy, given a query and several
returned tweets, we constructed many tweet1-tweet2
pairs. If tweet1 is more relevant than tweet2 in terms
of the given query, this pair label is set as 1, other-
wise 0. By doing so, we adopted supervised classifi-
cation method to predict the label of each pair. Since
the classification model provides a confidence score
for each instance, then these tweets are ranked by
this confidence score.

3 Experiments

3.1 Datasets

The organizers provided two data sets of microblog
track with gold annotation in TREC 2011 and TREC
2013. Therefore, we experimented on these two
training datasets and employed the configured sys-
tems on TREC 2014.

In the microblog track of TREC 2014, the partic-
ipants could interact with a tweet collection stored
remotely via a search API. The motivation for this
evaluation-as-a-service design is to increase the size
of the collection while adhering to Twitter’s terms of
service. Past arrangements allowed teams to acquire
local copies of a canonical corpus. But the logis-
tics of this approach prohibited scaling the corpus
size up dramatically. The total amount of tweets we
obtained from the API is about 243 million which
gathered from the public Twitter stream from Febru-
ary 1, to March 31, 2013 (inclusive).

The tweets downloaded form API are in JSON
format, which contain many fields, i.e., id (the
unique identifier assigned by twitter), rsv (the
relevance score of tweet), text (text of tweet),

retweeted count (the number of times this tweet has
been retweeted) etc. Since the raw text of each tweet
contains a lot of noise, we performed data prepro-
cessing to remove non-English tweets and retweets.
We also used Natural Language Toolkit4 for tok-
enization, stemming and removing stop words.

Totally for each query, we collect up to 10, 000
tweets from API ranked by Lucene score as our orig-
inal datasets.

3.2 Performance Evaluation

The evaluation metrics provided by organizer are
Mean Average Precision (MAP), Precision at rank
30 (P@30) and Reciprocal Precision (R-Prec)
which are defined as follows.

MAP: Mean average precision depends on the
precision at each point when a new relevant tweet
gets retrieved which is calculated as:

MAP =
1

N
·

N∑
j=1

1

Qj
·

Qj∑
i=1

P (Ti)

where Qj denotes the number of relevant tweets for
query j, N presents the number of the queries and
P (Ti) is the precision of the relevant tweets in top
i tweets. MAP provides a single-figure measure of
quality across recall levels.

P@30: This metric denotes that the precision of
top 30 tweets. It has advantage of not requiring any
estimate of the size of the set of relevant tweets and
the total number of relevant tweets for query has a
strong influence on P@30.

R-Prec: If there are |Rel| relevant tweets for a
query, we examine the top |Rel| tweets returned by
the system, and find that r tweets are relevant, then
the R-Prec is calculated as r/ |Rel|. Specifically, the
recall of this tweets set is also r/ |Rel|.

In these three evaluation metrics, MAP is the main
evaluation criteria for this task.

3.3 Preliminary Experiments on Training Data

In order to determine the optimum system config-
uration, we conducted preliminary experiments on
the datesets of TREC 2011 and TREC 2013. To
make reasonable comparison, we performed cross-
over experiments on the two datasets.

4http://www.nltk.org/



3.3.1 Query Expansion

Due to the shortness of information of initial
query provided by organizer, we performed several
query expansion methods with the aid of original
query, tweet feedback and Google returned results.
Only Query (Q):

We performed API search using the initial
query Q provided by organizer only. This
serves as our baseline for query expansion. The
weight of each word in Q is calculated as the
ratio of corresponding word frequency in query
to the total number of words in query.

Query + Tweet Feedback (Q+T):
This query expansion pattern consists of the

initial query and the top 20 relevant words ex-
tracted from the top 20 feedback tweets (T )
The weight of each word in this query pattern
is the sum of respective word weight in two set
(If word w not exist in set, the weight of w is 0
in corresponding set).

Tweet Feedback + Google Returned (T+G):
We assumed that the top 20 Google returned

results are quite relevant to the current query.
Besides, we extracted the top 20 relevant words
from these top 20 Google returned results as set
G, then built a new expansion pattern consisted
of T and G. Towards the weight of each term,
the calculation is the same as before.

Query + Tweet Feedback + Google Returned
(Q+T+G):

We combined all elements mentioned before
(i.e., initial query, the top 20 relevant words
in top 20 tweets of feedback results and the
most relevant 20 words in top 20 documents of
Google returned results) as a new query expan-
sion pattern. For the weight of each term, the
computational method is similar as before but
three sets rather than two sets.

To compare the performance of different query
expansion patterns, we used the top 1, 000 tweets
returned by API.

Table 1 shows the results of different query expan-
sion methods on two TREC training datasets. We
find that the query expansion pattern by combining
tweets feedback with Google returned results out-
performed other query expansion patterns. Based on

Datasets TREC 2011 TREC 2013
Metric MAP(%) P@30 MAP(%) P@30

Q 25.68 30.00 20.44 37.56
Q+T 41.17 45.99 28.30 46.50
T+G 46.84 50.07 32.99 52.89

Q+T+G 44.70 50.02 32.01 52.00

Table 1: Performances of different query expansion
methods on two training datasets.

Dataset 2011 2013
Metric MAP(%) P@30 MAP(%) P@30

T+G(1:1) 46.84 50.07 32.99 52.89
T+G(2:1) 45.93 50.02 32.75 53.22
T+G(3:1) 47.34 50.34 33.02 53.56
T+G(5:1) 47.11 50.00 33.00 53.72

Table 2: Results of different ratio of T and G on two train-
ing datasets.

our observation of the words in the three sets Q, T ,
G, we find that the words appearing in Q also have
high weights in the other two sets. However, the
words in T and G are quite different. That means,
the words from the two query expansion methods
may make up for their shortage of information and
improve the performance. Thus, for the following
experiments, we adopted the T+G pattern to perform
query expansion.

Furthermore, in order to examine the different
contributions made from the two components (i.e.,
tweet feedback and Google returned results), we
also conducted further experiments on different ra-
tios between these two sets. Table 2 lists the further
experimental results with different ratios between T
and G. Since the query expansion pattern of tweets
feedback and Google returned results with the ratio
of 3 : 1 performed best, for the follow-up experi-
ments, we used the returned tweets by API with this
setting as datesets.

3.3.2 Re-ranking
We adopted two learning-to-rank strategies to

perform re-ranking. For point-wise strategy, we
adopted a rbf -based SVR algorithm with c = 1
and a Kneighors Regressor algorithm with K = 1.
For pair-wise strategy, the Random Forest and Rank-
Boost algorithms with default parameters were used.

Table 3 shows the results of re-ranking part with
different strategies and algorithms. From Table 3,



Strategy Point-wise Pair-wise
Algorithm SVR Kneighors Regressor Random Forest RankNet

Metric MAP P@30 MAP P@30 MAP P@30 MAP P@30
2011 50.29 53.33 37.73 43.67 50.74 52.65 47.15 48.71
2013 34.70 55.22 28.60 50.44 36.12 56.39 32.60 53.33

Table 3: Results of re-ranking part on two training datasets.

it is interesting to see that the pair-wise strategy
method generally outperformed the point-wise strat-
egy method in terms of MAP measure. In terms of
P@30 measure, the performance of SVR is close to
that of Random Forest. Thus, for the final systems,
we selected these two algorithms with correspond-
ing parameters to perform re-ranking.

3.4 System Configuration

Based on the preliminary experiments on training
data, we chose the setting of tweets feedback and
Google returned results with the ratio of 3 : 1 for
query expansion part.

According the results of re-ranking part, we
adopted a rbf -based SVR algorithm with c = 1 im-
plemented in scikit-learn toolkit5 and Random For-
est algorithm with default parameters implemented
in RankLib6. With regard to the setting in RankLib
tooklit, the metric is set as MAP and the iteration is
set as 300 times.

Besides, we find that the performance of using
TREC 2013 as training data is much better than that
of using TREC 2011. However, since the dataset of
TREC 2013 contains more relevant tweets (9, 000
relevant tweets) than that of TREC 2011 (3, 000 rel-
evant tweets), we also consider to build model on
TREC 2013 only.

In summary, the configurations of our four sub-
missions are shown in Table 4.

System TrainData
F G Re-rank

Algorithm
Ratio Strategy

SVRALL 2011,2013 3:1 Pointwise SVR(kernel=rbf,c=1)
SVR2013 2013 3:1 Pointwise SVR(kernel=rbf,c=1)
RFALL 2011,2013 3:1 Pairwise RF(para=default)
RF2013 2013 3:1 Pairwise RF(para=default)

Table 4: Configurations of our four submissions. RF
stands for Random Forest algorithm.

5http://scikit-learn.org/stable/
6http://people.cs.umass.edu/ vdang/ranklib.html

System MAP(%) P@30(%) R-Prec(%)
SVRA 53.51 70.00 53.30
SVR13 53.86 70.61 53.57
RFA(3) 55.29(3) 71.33(2) 54.27(5)
RF13 55.19 71.15 54.88
PKUICST3(1) 58.63(1) 72.24(1) 57.27(1)
hltcoe3(2) 57.07(2) 71.21(3) 56.60(2)
Best 67.51 83.45 66.59
Median 41.55 62.61 43.95

Table 5: Results of our four submissions, the top2 ranked
systems, the best and median synthetic aggregated runs
released by TREC official for the ad hoc search task. The
numbers in the brackets are the rankings of corresponding
metric.

3.5 Results and Discussion

Table 5 shows the official released results of our sub-
mitted four runs with the top 2 ranked systems and
the best and median synthetic aggregated runs re-
leased by TREC official for ad hoc task.

Form Table 5, it is interesting to find following
observations.

Firstly, the pair-wise strategy methods outperform
point-wise strategy method. This consequence is
consistent with the results on training data, which
indicates that pair-wise is more applicable to this
re-ranking task than point-wise. Furthermore, the
regression model for point-wise strategy costs vast
amounts of training time. Thus, we prefer to employ
pair-wise strategy.

Secondly, the TREC 2013 dataset only is quite
general to build the model. The performance of
different datasets is almost equal in terms of the
same re-rank strategy. There are almost no sig-
nificantly improvement with the addition of TREC
2011. Moreover, the time cost of building model
on TREC 2013 is much lower than which on TREC
2011 with TREC 2013.

In summary, the best result of our submissions
ranked 3th out of 21 teams. Comparing with the



top2 ranked systems, our systems are promising, al-
though the simple features were adopted.

4 Conclusion

To address TREC 2014 Microblog track, we ex-
plored a two-stage framework, i.e., query expansion
and re-ranking. For query expansion, the combi-
nation of two methods based on different sources
of relevant information, i.e., internal (tweets) and
external (Google search engin), outperformed each
method alone. To re-rank tweets, the pair-wise strat-
egy outperformed the point-wise strategy.

In future work, we would investigate more effec-
tive query expansion methods. Also we will explore
more features, such as URL information, to enrich
the feature set and improve the performance of re-
ranking.
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