
Query Transformations for Result Merging

Shriphani Palakodety
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
spalakod@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

callan@cmu.edu

ABSTRACT
This paper describes Carnegie Mellon University’s entry at
the TREC 2014 Federated Web Search track (FedWeb14).
Federated search pipelines typically have two components:
(i) resource-selection, and (ii) result-merging. This work
documents experiments to modify queries to merge results
in the federated-search pipeline. Approaches from previous
attempts at solving this problem involved custom query-
document similarity scores or rank-combination methods.
In this document, we explore how term-dependence models
and query expansion strategies influence result-merging.

Categories and Subject Descriptors
H.4 [Information Search and Retrieval]: Federated Search

General Terms
Algorithms, Experimentation

Keywords
Federated search, result merging, distributional word vec-
tors, term dependence, query expansion

1. INTRODUCTION
Federated search deals with the problem of aggregating

results from multiple search engines. The invidual search
engines are (i) typically focused on a particular domain or a
particular corpus, (ii) employ diverse retrieval models, and
(iii) do not necessarily expose statistics used in information
retrieval algorithms.

The problem of federated search thus involves (i) analyz-
ing a query to determine which search engines are appropri-
ate for addressing the information need (resource selection),
and (ii) merging the results returned by each of these engines
(result merging).

The TREC Federated Web Search Track is a setting for
evaluating approaches to federated search. The FedWeb14

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

track contained three components: (i) vertical selection, (ii)
resource selection, (iii) results merging. Vertical selection
involves predicting the quality of verticals (like sports and
news) for a query. Resource selection involves ranking the
available search engines given a particular query. Result
merging involves mixing results from a few chosen resources
for a given query. A typical system usually leverages vertical
selection and resource selection for producing a ranked list
of resources (search engines). Then, the query is issued to a
few highly-ranked resources and the documents returned by
these resources are merged in the result-merging phase.

In this work, we focus on the result-merging phase of
federated-search systems. In particular, we explore some
techniques that either modify or expand the query-terms
to improve performance on result merging tasks. Among
the approaches implemented, we leverage term-dependence
models and neural network word embeddings.

In the following sections, we describe existing approaches,
the methods implemented in this work and an evaluation of
the methods.

2. RELATED WORK
Federated search is a well-explored problem in information

retrieval research. The subproblems of resource-selection
and result-merging have been well studied in the past. Shok-
ouhi & Si [16] presented a comprehensive survey of tech-
niques in federated search. Si & Callan [18] presented a
semi-supervised approach to result merging in that used the
documents acquired by query-based sampling as training
data and linear regression to learn the resource and query-
specific merging models. Shokouhi & Zobel [17] presented a
technique for using documents sampled from a resource for
estimating the global scores of documents for a query.

A set of more than 150 real world search engines and
query-based samples from each were provided in the TREC
FedWeb13, 2013. Several approaches were employed for
merging results. For instance, Mourao et al [13] presented
approaches that combined several rank-combination tech-
niques. Di Buccio et al [6] presented a round-robin approach
for merging results. At TREC 2013, Guang et al [7], Bellogin
et al [1] and Pal et al [14] showed approaches where global
document scores for ranking were produced using a combi-
nation of query-document similarity measures that at times
included scores assigned to resources. However, several of
the successful methods assumed that (i) the entire set of
documents retrieved from the selected resources were avail-
able during the result-merging phase, and (ii) documents
retrieved by the resources were available for indexing and

searching. In a typical setting, these assumptions are not
necessarily valid.

Word embeddings are mappings from a word to a vector
which typically belongs to a continuous vector space. These
embeddings allow us to reason about the syntactic and se-
mantic words through linear algebra operations like simi-
larity and distance functions. Word-embeddings have been
extensively studied in the past. One of the earliest works in
this area was the LSI algorithm by Deerwester et al [4]. The
LSI algorithm constructed word embeddings from a Term
× Document matrix using a dimension-reduction operation.
Recent approaches for constructing these embeddings have
leveraged neural networks extensively. Bengio et al [2, 3]
demonstrated the benefits of using these embeddings in lan-
guage modeling. Embeddings produced by neural networks
have provided significant gains over the state-of-the-art ap-
proaches in several natural language processing (NLP) appli-
cations like sentiment classification, word clustering and so
on. Mikolov et al [11, 12]) produced word embeddings that
have been used in other NLP tasks. Our paper leverages the
embeddings from Mikolov et al [12] to augment queries with
additional terms and for weighting.

Metzler & Croft [9] modeled the dependencies between
query-terms in a query and demonstrated that these queries
produced performed better than a query that used individ-
ual query terms. In this paper, we use the sequential depen-
dence model (SDM) for modeling term dependencies.

Term weighting approaches have been used extensively in
information retrieval systems. Robertson & Zaragoza [15]
provide a survey of probablistic models - a few of which con-
tain term-weighting schemes (like the BM25 model). In this
paper, we use the word-embedding from [12] for weighing
terms.

3. APPROACH
In a federated search pipeline, the result-merging task fol-

lows a resource-selection step. The resource-selection step
returns a ranked-list of resources. The query (or a trans-
formation) is issued to a few of the top-ranked resources
and the results from all these resources are combined in the
resource-selection phase.

In FedWeb14, only the snippets returned by each of the
resources were provided. Thus, the following approaches op-
erate on an index of all the snippets returned by the top re-
sources for a query. In the following subsections we describe
the various methods implemented.

3.1 Unstructured Queries
Each of the documents (whose snippets we have access

to) is ranked using a classic retrieval model - Language-
Modeling with Dirichlet smoothing [19].

3.2 Sequential Dependence Model Queries
Sequential-dependence models assume a dependence be-

tween neighboring query terms. Essentially, the similarity
between a query and a document is measured as a weighted
combination of (i) a unigram score (each term individually),
(ii) an exact-match bigram score, and (iii) an unordered-
window bigram score. Table 1 shows an example of a query
and its sequential dependence variant.

In this approach, for each query, the new rankings of all
the snippets are given by the scores obtained from executing

Query
burning man tickets

SDM Query Indri Expression
#weight(

λ1 #combine(burning man tickets)

λ2 #combine(#1(burning man) #1(man tickets))

λ3 #combine(#uw8(burning man) #uw8(man tickets)))

Table 1: An example of a query and the associ-
ated indri expression for the sequential dependency
model (SDM) query.

the sequential-dependence query on the index. The retrieval
model employed is the standard Indri retrieval model [19].

3.3 Expanding Using Word Embeddings
Word-embeddings are a mapping from words to a vector

space. These embeddings often capture and/or preserve lin-
guistic properties of words. This allows scores or probabili-
ties that are computed for a term to be applied to a semanti-
cally similar term. A brief introduction to continuous vector
representations is provided below and the query-expansion
strategies used are described after.

Bengio et al [2] proposed the use of continuous representa-
tions of words for language modeling. The intuition behind
this approach was that these embeddings could capture se-
mantic similarities between words and thus help overcome
data sparsity issues in language modeling tasks. For ex-
ample, if the sentence the cat is walking in the room is
observed in the training corpus, then the evidence gath-
ered from this example must generalize to a sentence like
the dog is walking in the house. Data-sparsity issues
can lead to the latter sentence having zero evidence.

Generating a continuous vector representation for each
word allows us to transfer evidence from the term cat to the
term dog and from room to house. The representations for
(semantically) similar terms are thus expected to be similar.
Several approaches have been studied to construct such rep-
resentations. Neural network based language models aim to
learn these representations and a statistical language model
for the underlying text. These models mainly belong to two
categories described below.

• Models that learn the word representations and the
language model jointly. The language model described
in [2] falls in this category.

• Models that learn the word vector representations first
and then train the language model with the word vec-
tors. These models are computationally easier to con-
struct.

The Continuous Bag-of-Words model and the Continuous
Skip-gram model proposed by Mikolov et al in [10], belong
to the latter category. Word vector representations on a
Google News corpus with 100 billion words for a vocabulary
of 3 million words can be learned in less than one day us-
ing modest hardware. Word vectors learned by both models
have performed well in several semantic related task evalu-
ations as shown in [10]. An example is shown in Table 2. In
this example, the top 5 words close to the word france are
displayed. It is clear that the retrieved words are semanti-
cally similar (at least for this example).

Word Cosine Similarity
spain 0.678515

belgium 0.665923
netherlands 0.652428

italy 0.633130
switzerland 0.622323

Table 2: Five words most similar to the word france.

3.4 Query Expansion Strategies
We used two approaches to augment a query with addi-

tional terms. These approaches find additional terms that
are either (i) similar to the query as a whole, or (ii) similar to
individual terms in a query. In both approaches, the terms
retrieved for a query are similar to a vector (which repre-
sents terms or a query aggregate). For computing a vector
that represents the entire query, we obtain the vectors for
each of the terms and compute the mean vector.

Thus, in the first expansion strategy, we add a few terms
to the query that are closest to the query mean vector. In the
second strategy, for each term, we retrieve additional words
closest to the vector. In both cases, the terms added are
obtained from the global vocabulary of the word embeddings
available.

Once the additional terms are added to the query, the
snippets are scored based on this newer query using the
language-model with dirichlet smoothing retrieval model.

3.5 Term Weighting Strategies
Our approach uses word-embeddings from [10] to produce

weights for individual query-terms. We use two strategies to
weigh terms. In both cases, the weights applied to each term
are the distance between the term’s embedding and a certain
global vector. The distance metric is euclidean distance in
both approaches. The intuition behind using distance from
a vector is that the farther a term is from the global vector,
the more information it contains and thus it merits a higher
weight.

In the first of these approaches, the global vector used is
the query mean vector obtained by averaging the vectors
corresponding to the terms in the query. In the second ap-
proach, the global vector used is the average vector of the
entire vocabulary of the learned embeddings (close to 3 mil-
lion words and phrases).

4. EVALUATION
In this section, we elaborate on the FedWeb13 and Fed-

Web14 collections and present the results.

4.1 Data collections
FedWeb13 contains results sampled from from 157 real

world search engines in 24 verticals. 2000 queries were issued
to the search engines during the sampling phase. See Table
3 for a summary of data statistics of FedWeb13. In this
paper, we report experiments and analysis on the FedWeb13
dataset since as of this paper, the tools for evaluating on
FedWeb14 have not yet been released.

The data collection of FedWeb14 is built from 149 web
search engines crawled between April and May 2014. 4000
queries were issued to the search engines in the sampling
phase. Table 4 presents the data statistics of FedWeb14.
For the result merging phase, only snippets were provided.

Total Per Engine
Samples Snippets 1,973,591 12,570.6

(2000 Queries) Pages 1,894,463 12,066.6
Topics Snippets 143,298 912.7

Pages 136,103 866.9

Table 3: FedWeb13 collection statistics.

Total Per Engine
Samples Snippets 1,422,758 9548.7

(4000 Queries) Pages 3,471,773 23300.5
Topics Snippets 51458 345.3

Pages 0 0

Table 4: FedWeb13 collection statistics.

Only the results provided by the organizers are provided for
the FedWeb14 dataset since tools for performing a per-query
analysis are not yet released (as of this paper).

4.2 Experimental setup
We use the Indri search engine to index and search the

snippets for each search engine. Stop-word removal and
stemming did not aid system performance significantly and
since the embeddings were built on a large english corpus,
the risk of missing term vectors is minimal. In case, an
out-of-vocabulary term (OOV) was encountered, we did not
include the term vectors. All our approaches used a classic
retrieval model - language model with dirichlet smoothing.
The parameter µ for this retrieval model was set the Indri
default of 2500. For the sequential-dependence model im-
plementation, the weights assigned to the unigram, exact-
match bigram and window bigram components were 0.5,
0.25 and 0.25 respectively. For the query-expansion strate-
gies, at most 5 additional terms with cosine similarity scores
above 0.7 were chosen for both the strategies. For term
weighting, OOV terms were assigned a default weight of 1.0.
The word-vector representations used were 300-dimensional
vectors released by Google, trained on a Google News corpus
of about 100 billion words.

We assessed the runs with the gdeval.pl tool provided
by TREC and focus on NDCG@20 for the result merging
task. The results for the FedWeb13 data are in Table 5.
Performance of our system alone on FedWeb14 is provided
in Table 6 (since the best runs were not available at the
time of submission). In both tables, plain refers to the
approach in section 3.1, sdm refers to the approach in section
3.2, and Exp-Avg and Exp-Term refer to the query-expansion
strategies explained above.

All the result-merging scores were based on baseline resource-
selection runs provided by the organizers. In addition to the
best performing system we include the best performing sys-
tem that only used snippets since the FedWeb13 task allowed
participants to use the documents returned by each of the
resources during the result-merging phase. In FedWeb14,
only snippets were available for use. The results of the plain
retrieval model, the SDM queries and the expansion strate-
gies are also provided for FedWeb14. The term-weighting
approach was not submitted to the FedWeb14 task and thus
we only provide results on FedWeb13 for this approach.

Table 5 lists the performance of our system and the best
FedWeb13 runs. We observe that (i) in all cases, using only
snippets as opposed to documents automatically leads to a

Approach NDGC@20
FedWeb13-Docs-Best 0.257
FedWeb13-Docs-Median 0.162
FedWeb13-Snippets-Best 0.161
FedWeb13-Snippets-Median 0.142

FedWeb13-plain 0.210
FedWeb13-sdm 0.224

FedWeb13-expansion-1 0.188
FedWeb13-expansion-2 0.201
FedWeb13-weighting-1 0.213
FedWeb13-weighting-2 0.211

Table 5: FedWeb13 collection statistics.

Approach NDGC@20
FedWeb14-Best 0.323
FedWeb14-Median 0.289
FedWeb14-plain 0.277
FedWeb14-sdm 0.276

FedWeb14-expansion-1 0.285
FedWeb14-expansion-2 0.286

Table 6: FedWeb13 collection statistics.

massive drop in system performance. This is consistent with
the observations of the FedWeb13 organizers [5]. Thus, for
a realistic comparison we only consider the best submission
from FedWeb13 that did not use documents (shown as FW13-
SNIPPET-BEST). Our approaches clearly outperform the best
result-merging score from the FedWeb13 track (that only
considered snippets). In particular we note that most of
the models perform very similar to each other and there is a
minor performance drop when expanding a query with terms
close to the query mean vector.

We also report results for some of our techniques on the
FedWeb14 corpus (shown in Table 6). In this corpus, we no-
tice that our approaches are extremely close to the median
score and the performance gap between our approach and
the best system is slightly larger than the gap for the Fed-
Web13 corpus. In this case, the expansion strategies slightly
outperform the other approaches.

On a per-query basis, there are no particular kind of queries
in the FedWeb13 corpus that were aided by our approaches.
Between the various approaches implemented, the variance
is not particularly high.

5. CONCLUSIONS
In this work, we explored how query transformations can

be leveraged for merging results in the federated search pipeline.
The first observation from the FedWeb13 collection is that
when restricted to using snippets, the performance drops
quite severely - an observation made by the organizers as
well in [5]. The best performance on the FedWeb13 dataset
was obtained by employing sequential-dependence models.
The query-expansion approaches did not provide a perfor-
mance improvement compared to sequential-dependence mod-
els and classic retrieval models like the language-model with
dirichlet smoothing. On FedWeb14 however, the query-
expansion using word-vector provided a slight improvement
in performance. Newer advances in learning continuous rep-
resentations of paragraphs or documents (as demonstrated
by [8]) can be leveraged in the future to provide a more prin-

cipled approach to query expansion and document(snippet)
representation.

6. ACKNOWLEDGMENTS
This research was in part supported by National Science

Foundation (NSF) grant IIS-1160862. Any opinions, find-
ings, conclusions, and recommendations expressed in this
paper are the authors’ and do not necessarily reflect those
of the sponsor.

7. REFERENCES
[1] A. Belloǵın, G. G. Gebremeskel, J. He, J. Lin, A. Said,

T. Samar, A. P. de Vries, and J. B. Vuurens. CWI and
TU delft at TREC 2013: Contextual Suggestion,
Federated Web Search, KBA, and Web Tracks. In The
22nd Text Retrieval Conference (TREC 2013), 2013.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin.
A neural probabilistic language model. J. Mach.
Learn. Res., 3:1137–1155, Mar. 2003.

[3] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and
J.-L. Gauvain. Neural probabilistic language models.
In Innovations in Machine Learning, pages 137–186.
Springer, 2006.

[4] S. C. Deerwester, S. T. Dumais, and R. A. Harshman.
Indexing by latent semantic analysis. 1990.

[5] T. Demeester, D. Trieschnigg, D. Nguyen, and
D. Hiemstra. Overview of the TREC 2013 Federated
Web Search Track. In The 22nd Text Retrieval
Conference (TREC 2013). TREC, 2013.

[6] E. Di Buccio, I. Masiero, and M. Melucci. University
of Padua at TREC 2013: Federated Web Search
Track. 2013.

[7] F. Guan, Y. Xue, X. Yu, Y. Liu, and X. Cheng.
ICTNET at Federated Web Search Track 2013. In The
22nd Text Retrieval Conference (TREC 2013), 2013.

[8] Q. V. Le and T. Mikolov. Distributed representations
of sentences and documents. Proceedings of The 31st
International Conference on Machine Learning, 2014.

[9] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Proceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 472–479. ACM, 2005.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, pages –1–1, 2013.

[11] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and
S. Khudanpur. Recurrent neural network based
language model. In INTERSPEECH, pages
1045–1048, 2010.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages
3111–3119, 2013.

[13] A. Mourao, F. Martins, and J. Magalhaes. NovaSearch
at TREC 2013 Federated Web Search Track:
Experiments with Rank Fusion. In The 22nd Text
Retrieval Conference (TREC 2013), 2013.

[14] D. Pal and M. Mitra. ISI at the TREC 2013
Federated task. In The 22nd Text Retrieval
Conference (TREC 2013), 2013.

[15] S. Robertson and H. Zaragoza. The probabilistic
relevance framework: Bm25 and beyond. Found.
Trends Inf. Retr., 3(4):333–389, Apr. 2009.

[16] M. Shokouhi and L. Si. Federated search. Foundations

and TrendsÂő in Information Retrieval, 5(1):1–102,
2011.

[17] M. Shokouhi and J. Zobel. Robust result merging
using sample-based score estimates. ACM Trans. Inf.
Syst., 27(3):14:1–14:29, May 2009.

[18] L. Si and J. Callan. A semisupervised learning method
to merge search engine results. ACM Trans. Inf. Syst.,
21(4):457–491, Oct. 2003.

[19] C. Zhai and J. Lafferty. A study of smoothing methods
for language models applied to information retrieval.
ACM Trans. Inf. Syst., 22(2):179–214, Apr. 2004.

