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Abstract 
This paper describes the system in Vital Filtering and Streaming Slot Filling task 
of TREC 2014 Knowledge Base Acceleration Track. In the Vital Filtering task, 
The PRIS system focuses attention on query expansion and similarity calculation. 
The system uses DBpedia as external source data to do query expansion and 
generates directional documents to calculate similarities with candidate worth 
citing documents. In the Streaming Slot Filling task, The BUPT_PRIS system 
utilizes a pattern learning method to do relation extraction and slot filling. 
Patterns of regular slots which mostly are same to TAC-KBP slots are learned 
from KBP Slot Filling corpus. Other slots are manually picked up some training 
seeds for those slot types that KBP didn’t contain to use bootstrapping method. 

 

1 Introduction 
The goal of KBA track is filtering a large stream of text to find documents that 
can help update a knowledge base like Wikipedia. The KBA2014 includes three 
tasks: Vital Filtering(VF) task ,Streaming Slot Filling task and Accelerate & 
Create. The third task is new open track which is not evaluated. For the Vital 
Filtering task, given a fixed list of target entities from Wikipedia and Twitter, 
systems should filter documents worth citing in a profile of the entity. For the 
Streaming Slot Filling task, given a slot for each of the target entities, systems 
should detect changes to the slot value, such as location of next performance or 
founder of an organization. Our team participated in Vital Filtering and Streaming 
Slot Filling tasks. 

 

2 Vital Filtering 

2.1 System Overview 
The Vital Filtering (VF) system focuses attention on query expansion, feature 
generation and vital classification. The framework of our system is shown in 
Figure 1.  
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Figure 1 the framework of PRIS system for VF task 

First of all, we decompress the corpus and filter the field what we are interested 
in. Then we indexed the data we have filtered with ElasticSearch. The purpose of 
indexing is to make it convenient for our algorithms. At the same time we expand 
the entities with the DBpedia and wiki, then we used the training set to train a 
classifier,the input is the features we have extracted from the documents. 

2.2 Query Expansion 
For each entity, the system chooses values of property name and values of 
property label as expansion terms from the corresponding DBpedia page and 
label these terms as Name and Label respectively; 
If the entity doesn’t have a DBpedia page, the system chooses alternative names 
and the link of homepage as expansion terms from the corresponding twitter page 
and then visits the homepage to extract key words of homepages as expansion 
terms too. 

2.3 Feature Extraction 
To present the document, we extract 10 features of one document as follows: 
1.number of target name of an entity; 2.number of redirect name of an entity; 
3.number of category of an entity; 4.number of target name in one document; 
5.number of redirect name in one document; 6.number of category in one 
document; 7.An entity’s first mention place in the document; 8. An entity’s last 
mention place in the document; 9.length of a document; 10.the cosine similarity 
of the document and the mean value of related documents of an entity.. 
The first nine features are calculated directly. The 10th feature is calculated as 
formula 11 

1 Formula 1 is the  document  is the mean value of all the related documents in 
the training set represented by the 10 features. 

 

                                                             



2.4 Classify 
We treat the task as a classify task, so we use three different ways to classify the 
vital documents: 1. Support Vector Machine (SVM); 2. Random Forest (RF); 3. 
K-Nearest Neighbor (KNN) and submit all the results generated by the 3 ways. In 
the Random Forest way, we set the number of trees is 10, and in the KNN way, 
we make the k=5; 

 

3 Stream Slot Filling 

3.1 System overview 
For the Streaming Slot Filling task, our system achieved the goal of filling slots 
by employing a pattern learning and matching method. 
This automatic slot filling system contains three steps. First, with query 
expansion and coreference resolution, we found relative sentences (to make the 
search faster, we built index using ElasticSearch). Second, we found patterns of 
slots which are same to TAC-KBP by using KBP training data, and then used 
bootstrapping method with only single iteration to recall more patterns and also 
make patterns suit for KBA corpus. Finally, we generated slot answers by 
matching the patterns and ranking the candidate answers by scoring them with the 
patterns it was matched. Specially, we manually picked up some training seeds 
for those slot types that KBP didn’t contain to use bootstrapping method. And 
there are also some rules found manually such as PER_GENDER, 
PER_CONTACT, PER_EMAIL, ORG_CONTACT. 
The system overview is shown in Fig.2. 

 

 
Fig.2. The system overview of SSF task 



3.2 Pattern Learning 

3.2.1  Find Seed Pattern 
We had to find different patterns for those 52 slots separately. Fortunately, we 
could get training data, formed by sentences with specific query and slot value, 
for those slots which are in the TAC-KBP slot filling task. For the last several 
slots, we just collected some training data manually. Then, we used Stanford 
Parser toolkit to parse each sentence and matched query and slot value on the 
dependency tree of the sentence. After finding these two nodes, we extracted the 
path connecting them combined with the entity types of two nodes as our pattern. 
Notice that we jointed query and slot value which contained more than one word 
using an underscore so that those words would become only one node on the tree. 

3.2.2  Bootstrapping for More Pattern 
After gathering pattern seeds, we expanded them on KBA corpus using 
bootstrapping method so that we could get more patterns to improve the recall 
and also make our patterns suit for KBA corpus better. Due to unbearable 
computing time, we only took around 10GB clean text from the official corpus 
for dependency tree parsing, and implemented bootstrapping method for only one 
iteration concerning the semantic drift. After gathering lots of patterns by 
bootstrapping, we pruned them by their frequency of occurrence and literal 
length. 

3.3 Pattern Matching 

3.3.1  Find Relative Sentence 
For prediction task, firstly we had to find relative sentences mentioned our 109 
queries. With trigger words we obtained from task 1 and the coreference 
resolution information officially supplied, we could search for relative sentences, 
which we believed would contain most of the answers. Notice that we built an 
index to speed up our system. 

3.3.2  Pattern Matching and scoring 
After found those relative sentences and parsed them with Stanford Parser, we 
could match queries (or alias) and the specific entity type. If both query and slot 
entity type existed, we would extract the dependency tree path between them and 
matched that path with our pattern. Then if that path existed in pattern list relative 
to the entity type, we should add the slot value into our candidate set with the 
length of the pattern as a weight. After travel through all the relative sentences, 
we scored those candidates by summing their weights and set a threshold to limit 
the untrustworthy answers. 
 
 



4 Result Analysis 
Table 1 shows the retrieval performance of our submitted four runs for vital 
filtering task with useful and vital documents. The primary evaluation metrics for 
this year’s vital filtering are P(precision),R(recall),F(F-measure) and SU(Scaled 
Utility).Among all the runs, Run 1 uses the original query without any expansion 
to search the corpus and submit the retrieval documents. Run 2 uses nonlinear 
SVM which uses radial basis function as the kernel function. Run 3 uses random 
forest and with the setting of number of tree is 10. Run 4 uses K-Nearest 
Neighbor and set the K=5. 
  We can see from the table that runs using nonlinear SVM have better retrieval 
performance than others. 

Table 1 The performance of submitted runs with useful included 
 P R F SU 
Run 1 0.837 0.789 0.812 0.808 
Run 2 0.928 0.772 0.843 0.828 
Run 3 0.916 0.723 0.808 0.793 
Run 4 0.875 0.240 0.377 0.482 

Table 2 shows the retrieval performance of our submitted four runs for vital 
filtering task with only vital documents.  

We can see from the table that runs using random forest have better retrieval 
performance than others. 

Table 2 The performance of submitted runs with vital only 
 P R F SU 
Run 1 0.185 0.907 0.307 0.000 
Run 2 0.201 0.879 0.328 0.000 
Run 3 0.245 0.836 0.380 0.034 
Run 4 0.200 0.245 0.220 0.170 

Table 3 shows the retrieval performance of our submitted two runs for Stream 
Slotting Filling task. The primary evaluation metrics for this year’s Stream 
Slotting Filling are sokalsneath, cosine, dot and c_TT metrics. The difference 
between Run 1 and Run 2 is filtering the short patterns. 
   We can see from the table that Run 2 which has less short pattern gets better 
retrieval performance than others. 

Table 3 the result of SSF with 4 metrics 

 sokalsneath metric cosine metric dot metric c_TT metric 

Run 1 90.317 41.7237 601.000 380.000 

Run 2 91.517 61.1207 782.000 481.000 

 



5 Conclusion 
In this paper, we present our systems for TREC 2014 Knowledge Base 
Acceleration Track. In the vital filtering task, we apply some traditional 
classification methods i.e. SVM, random forest , we focus on find ten features to 
classification to classify big data but we should notice the novel information of 
documents. In the SSF task, we apply bootstrapping method to find more pattern 
to find more relative documents. 
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