
BUPT_PRIS at TREC 2014 Knowledge Base

Acceleration Track
Yuanyuan Qi, Ye Xu, Dongxu Zhang, Weiran Xu
qiyuanyuan@bupt.edu.cn,bob.ye.xu@gmail.com,

zhangdongxuu@gmail.com ,xuweiran@bupt.edu.cn
Pattern Recognition and Intelligence System, Beijing University of Posts and

Telecommunications

Abstract
This paper describes the system in Vital Filtering and Streaming Slot Filling task
of TREC 2014 Knowledge Base Acceleration Track. In the Vital Filtering task,
The PRIS system focuses attention on query expansion and similarity calculation.
The system uses DBpedia as external source data to do query expansion and
generates directional documents to calculate similarities with candidate worth
citing documents. In the Streaming Slot Filling task, The BUPT_PRIS system
utilizes a pattern learning method to do relation extraction and slot filling.
Patterns of regular slots which mostly are same to TAC-KBP slots are learned
from KBP Slot Filling corpus. Other slots are manually picked up some training
seeds for those slot types that KBP didn’t contain to use bootstrapping method.

1 Introduction
The goal of KBA track is filtering a large stream of text to find documents that
can help update a knowledge base like Wikipedia. The KBA2014 includes three
tasks: Vital Filtering(VF) task ,Streaming Slot Filling task and Accelerate &
Create. The third task is new open track which is not evaluated. For the Vital
Filtering task, given a fixed list of target entities from Wikipedia and Twitter,
systems should filter documents worth citing in a profile of the entity. For the
Streaming Slot Filling task, given a slot for each of the target entities, systems
should detect changes to the slot value, such as location of next performance or
founder of an organization. Our team participated in Vital Filtering and Streaming
Slot Filling tasks.

2 Vital Filtering

2.1 System Overview
The Vital Filtering (VF) system focuses attention on query expansion, feature
generation and vital classification. The framework of our system is shown in
Figure 1.

mailto:qiyuanyuan@bupt.edu.cn
mailto:bob.ye.xu@gmail.com
mailto:zhangdongxuu@gmail.com
mailto:xuweiran@bupt.edu.

Figure 1 the framework of PRIS system for VF task

First of all, we decompress the corpus and filter the field what we are interested
in. Then we indexed the data we have filtered with ElasticSearch. The purpose of
indexing is to make it convenient for our algorithms. At the same time we expand
the entities with the DBpedia and wiki, then we used the training set to train a
classifier,the input is the features we have extracted from the documents.

2.2 Query Expansion
For each entity, the system chooses values of property name and values of
property label as expansion terms from the corresponding DBpedia page and
label these terms as Name and Label respectively;
If the entity doesn’t have a DBpedia page, the system chooses alternative names
and the link of homepage as expansion terms from the corresponding twitter page
and then visits the homepage to extract key words of homepages as expansion
terms too.

2.3 Feature Extraction
To present the document, we extract 10 features of one document as follows:
1.number of target name of an entity; 2.number of redirect name of an entity;
3.number of category of an entity; 4.number of target name in one document;
5.number of redirect name in one document; 6.number of category in one
document; 7.An entity’s first mention place in the document; 8. An entity’s last
mention place in the document; 9.length of a document; 10.the cosine similarity
of the document and the mean value of related documents of an entity..
The first nine features are calculated directly. The 10th feature is calculated as
formula 11

1 Formula 1 is the document is the mean value of all the related documents in
the training set represented by the 10 features.

2.4 Classify
We treat the task as a classify task, so we use three different ways to classify the
vital documents: 1. Support Vector Machine (SVM); 2. Random Forest (RF); 3.
K-Nearest Neighbor (KNN) and submit all the results generated by the 3 ways. In
the Random Forest way, we set the number of trees is 10, and in the KNN way,
we make the k=5;

3 Stream Slot Filling

3.1 System overview
For the Streaming Slot Filling task, our system achieved the goal of filling slots
by employing a pattern learning and matching method.
This automatic slot filling system contains three steps. First, with query
expansion and coreference resolution, we found relative sentences (to make the
search faster, we built index using ElasticSearch). Second, we found patterns of
slots which are same to TAC-KBP by using KBP training data, and then used
bootstrapping method with only single iteration to recall more patterns and also
make patterns suit for KBA corpus. Finally, we generated slot answers by
matching the patterns and ranking the candidate answers by scoring them with the
patterns it was matched. Specially, we manually picked up some training seeds
for those slot types that KBP didn’t contain to use bootstrapping method. And
there are also some rules found manually such as PER_GENDER,
PER_CONTACT, PER_EMAIL, ORG_CONTACT.
The system overview is shown in Fig.2.

Fig.2. The system overview of SSF task

3.2 Pattern Learning

3.2.1 Find Seed Pattern
We had to find different patterns for those 52 slots separately. Fortunately, we
could get training data, formed by sentences with specific query and slot value,
for those slots which are in the TAC-KBP slot filling task. For the last several
slots, we just collected some training data manually. Then, we used Stanford
Parser toolkit to parse each sentence and matched query and slot value on the
dependency tree of the sentence. After finding these two nodes, we extracted the
path connecting them combined with the entity types of two nodes as our pattern.
Notice that we jointed query and slot value which contained more than one word
using an underscore so that those words would become only one node on the tree.

3.2.2 Bootstrapping for More Pattern
After gathering pattern seeds, we expanded them on KBA corpus using
bootstrapping method so that we could get more patterns to improve the recall
and also make our patterns suit for KBA corpus better. Due to unbearable
computing time, we only took around 10GB clean text from the official corpus
for dependency tree parsing, and implemented bootstrapping method for only one
iteration concerning the semantic drift. After gathering lots of patterns by
bootstrapping, we pruned them by their frequency of occurrence and literal
length.

3.3 Pattern Matching

3.3.1 Find Relative Sentence
For prediction task, firstly we had to find relative sentences mentioned our 109
queries. With trigger words we obtained from task 1 and the coreference
resolution information officially supplied, we could search for relative sentences,
which we believed would contain most of the answers. Notice that we built an
index to speed up our system.

3.3.2 Pattern Matching and scoring
After found those relative sentences and parsed them with Stanford Parser, we
could match queries (or alias) and the specific entity type. If both query and slot
entity type existed, we would extract the dependency tree path between them and
matched that path with our pattern. Then if that path existed in pattern list relative
to the entity type, we should add the slot value into our candidate set with the
length of the pattern as a weight. After travel through all the relative sentences,
we scored those candidates by summing their weights and set a threshold to limit
the untrustworthy answers.

4 Result Analysis
Table 1 shows the retrieval performance of our submitted four runs for vital
filtering task with useful and vital documents. The primary evaluation metrics for
this year’s vital filtering are P(precision),R(recall),F(F-measure) and SU(Scaled
Utility).Among all the runs, Run 1 uses the original query without any expansion
to search the corpus and submit the retrieval documents. Run 2 uses nonlinear
SVM which uses radial basis function as the kernel function. Run 3 uses random
forest and with the setting of number of tree is 10. Run 4 uses K-Nearest
Neighbor and set the K=5.
 We can see from the table that runs using nonlinear SVM have better retrieval
performance than others.

Table 1 The performance of submitted runs with useful included
 P R F SU
Run 1 0.837 0.789 0.812 0.808
Run 2 0.928 0.772 0.843 0.828
Run 3 0.916 0.723 0.808 0.793
Run 4 0.875 0.240 0.377 0.482

Table 2 shows the retrieval performance of our submitted four runs for vital
filtering task with only vital documents.

We can see from the table that runs using random forest have better retrieval
performance than others.

Table 2 The performance of submitted runs with vital only
 P R F SU
Run 1 0.185 0.907 0.307 0.000
Run 2 0.201 0.879 0.328 0.000
Run 3 0.245 0.836 0.380 0.034
Run 4 0.200 0.245 0.220 0.170

Table 3 shows the retrieval performance of our submitted two runs for Stream
Slotting Filling task. The primary evaluation metrics for this year’s Stream
Slotting Filling are sokalsneath, cosine, dot and c_TT metrics. The difference
between Run 1 and Run 2 is filtering the short patterns.
 We can see from the table that Run 2 which has less short pattern gets better
retrieval performance than others.

Table 3 the result of SSF with 4 metrics

 sokalsneath metric cosine metric dot metric c_TT metric

Run 1 90.317 41.7237 601.000 380.000

Run 2 91.517 61.1207 782.000 481.000

5 Conclusion
In this paper, we present our systems for TREC 2014 Knowledge Base
Acceleration Track. In the vital filtering task, we apply some traditional
classification methods i.e. SVM, random forest , we focus on find ten features to
classification to classify big data but we should notice the novel information of
documents. In the SSF task, we apply bootstrapping method to find more pattern
to find more relative documents.

6 Acknowledgments
The work reported in this paper was supported by 111 Project of China under
Grant No. B08004, key project of ministry of science and technology of China
under Grant No. 2011ZX03002-005-01, National Natural Science Foundation of
China (61273217) and the Ph.D. Programs Foundation of Ministry of Education
of China (20130005110004)

References
[1] John R. Frank, Steven J. Bauer,Max KleimanWeiner, Daniel A. Roberts,

Nilesh Tripuraneni1,Ce Zhang, Christopher Ré,Ellen Voorhees, Ian Soborof.
Evaluating Stream Filtering for Entity Profile Updates for TREC 2013

[2]Yan Li, Zhaozhao Wang, Baojin Yu, Yong Zhang, Ruiyang Luo,Weiran
Xu, Guang Chen, Jun Guo. PRIS at TREC2012 KBA Track

[3] Chunyun Zhang, Weiran Xu, Ruifang Liu, Weitai Zhang, Dai Zhang,
Janshu Ji, Jing Yang. PRIS at TREC2013 Knowledge Base Acceleration Track

