
BJUT at TREC 2014 Temporal Summarization Track

Yun Zhao, Fei Yao, Huayang Sun, Zhen Yang*
College of Computer Science, Beijing University of Technology, China

yangzhen@bjut.edu.cn

Abstract

This paper describes the second participation of BJUT
in the temporal summarization track. We performed the
experiments on the TREC KBA 2014 stream corpus us-
ing the classic information retrieval models, such as B-
M25, vector space model. Also, we introduce the details
of our system, which consists of corpus pre-processing,
information retrieval module and information process
module.

Introduction
The TREC Temporal Summarization Track runs for the sec-
ond time in this year, and different from 2013[1], this year’s
track focuses on only one task: Sequential Updates Sum-
marization. All participants should answer a query based on
topic a set of relevant and novel sentences ranked by time
from a time-ordered stream of documents, through which
users can efficiently monitor the information associated with
an event (such as a natural disaster) over time[2]. Another
primary difference lies in the data size, which reduced to
559G from 4.5T. The corpus, namely TREC-TS-2014F, is
a filtered version of the full track. It is designed for using
by participants of the TREC-TS track, aiming to provide a
dataset with which groups can participate in the TREC-TS
track without having to process the full corpus. The corpus
consists of a set of time stamped documents from a variety
of news and social media sources covering the time period
from Oct.2011 to Apr. 2013. A document contains a set of
sentences, each with a unique identifier.

SYSTEM
According to the task of Temporal Summarization Track,
system should emit relevant, important and novel sentences
to a specific event. We submitted three runs for this task and
the implementation framework of our system is shown in
FIG. 1.

As shown in FIG. 1, the framework of our temporal
summarization system can be described as follows, which
mainly includes corpus pre-processing, information retrieval
module and information process module.

• Information pre-processing module
The corpus downloaded locally from streamcorpus −
2014−v0 3 0− ts−filtered[3] is encrypted file, which

cannot be used directly. In this sense, firstly, decrypting
the files uses the authorized key and converts the .GPG file
format to .SC file format; Secondly, parsing the .SC files
use stream corpus toolbox to .TXT files. The stream cor-
pus toolbox is given by TREC and provides a common da-
ta interchange format for document processing pipelines
that apply language-processing tools to large streams of
text.

• Information retrieval module
Firstly, building index for the .TXT files. Then, combin-
ing with query expansion for retrieval to get relevant sen-
tences.

• Information process module
Text similarity and clustering can improve the accuracy
and recall rate of the retrieval results. We used two meth-
ods to complete this part. After the topic clustering, the
centers of the different clustering are chosen to build the
summarizations. Then the summarizations are ranked by
time factor and similarity factor.
The frame with solid line in FIG. 1 is the main methods

we used for the temporal summarization track. The details of
our work will be introduced in the next section. We emphasis
on the description of the two key parts: information retrieval
module and information process module.

Information Retrieval Module
• Information Retrieval

In this part, we use Lemur[4] for information indexing
and retrieval. Lemur is a toolkit designed to facilitate re-
search in language modeling and information retrieval
(IR). It supports the construction of basic text retrieval
systems using language modeling methods such as BM25
[5]. Our experiment has two steps to build the index. First,
create a parameter file tell the lemur toolkit how to index;
Secondly, use IndriBuildIndex.exe application to build in-
dex. Accordingly, the realization of retrieval also has two
steps. First, create a parameter file tell the lemur toolkit
how to retrieve; Second, use IndriRunquery.exe applica-
tion to retrieve.

• Query expansion
Generally, when we retrieving information based on query
words, there always exists one problem, namely word
mismatch, which can be explained that people often use

In this part, we use Lemur[4] for information indexing and

retrieval. Lemur is a toolkit designed to facilitate research in

language modeling and information retrieval (IR). It

supports the construction of basic text retrieval systems

using language modeling methods such as BM25[5]. Our

experiment has two steps to build the index. First, create a

parameter file tell the lemur toolkit how to index; Secondly,

use IndriBuildIndex.exe application to build index.

Accordingly, the realization of retrieval also has two steps.

First, create a parameter file tell the lemur toolkit how to

retrieve; Second, use IndriRunquery.exe application to

retrieve.

 Query expansion

Generally, when we retrieving information based on query

words, there always exists one problem, namely word

mismatch, which can be explained that people often use

different words to describe the same concepts between the

queries and documents. To solve this problem, in this paper

we used a method called query expansion. Query expansion

can augment a query word, and through which, the query

word can match more sentences, thus potentially increasing

the number of relevant results. The query word is extended

by using words with similar meaning to those in the query,

and the chance of matching words in the relevant documents

is therefore increased.

B. Information Process Module

After information retrieval module, we got a set of

sentences related to a topic. Considering the large amount of

these sentences, in order to simplify the computation, we

first judge whether these sentences are in the range of each

topic’s begin time and end time. If a sentence is not in the

time period, abandon it, and the rest sentences can be treated

as candidate sentences, which should be had further

processes such as text similarity calculation and text

clustering.

 Text Similarity

We used two methods based on Vector Space Model

(VSM) [6], which is composed of eigen values extracted from

documents and its weight. Vector Space Models is an

algebraic model for representing text documents (and any

objects, in general) as vectors of identifiers, such as, for

example, index terms. It is used in information filtering,

information retrieval, indexing and relevancy rankings. In

VSM, sentences and queries are represented as vectors:

1, 2, ,(, ,...,)j j j t jd w w w

(1)	

Each dimension corresponds to a separate term. If a term

occurs in the sentence, its value in the vector is non-zero.

There are several ways to compute these values (also called

weight), and in this paper, we use tf-idf weighting. The VSM

model is known as the term frequency-inverse document

frequency model. The weight vector for document distance:

1, 2, ,(, ,...,)T
d d d N dV w w w

(2)

Where

, ,

| |
log

|{ | } |t d t d

D
w tf

d D t d

(3)

FIG. 1 The framework of the temporal summarization track

stream corpus pre-processing retrieval

candidate
sentence

abandon
sentencequery expansion

relevant
sentences

is it in the range of
time ?

text
similaritytest clustering

select
sentence

temporal
summarization

No

Yes

Information Retrieval Module

Information Process Model

Figure 1: The framework of the temporal summarization track.

different words to describe the same concepts between the
queries and documents. To solve this problem, in this pa-
per we used a method called query expansion. Query ex-
pansion can augment a query word, and through which,
the query word can match more sentences, thus potential-
ly increasing the number of relevant results. The query
word is extended by using words with similar meaning to
those in the query, and the chance of matching words in
the relevant documents is therefore increased.

Information Process Module
After information retrieval module, we got a set of sentences
related to a topic. Considering the large amount of these sen-
tences, in order to simplify the computation, we first judge
whether these sentences are in the range of each topic’s be-
gin time and end time. If a sentence is not in the time period,
abandon it, and the rest sentences can be treated as candi-
date sentences, which should be had further processes such
as text similarity calculation and text clustering.
• Text Similarity

We used two methods based on Vector Space Model (VS-
M)[6], which is composed of eigen values extracted from
documents and its weight. Vector Space Models is an al-
gebraic model for representing text documents (and any
objects, in general) as vectors of identifiers, such as, for
example, index terms. It is used in information filtering,
information retrieval, indexing and relevancy rankings. In
VSM, sentences and queries are represented as vectors:

di = (w1,j , w2,j , · · · , wt,j) (1)

Each dimension corresponds to a separate term. If a ter-
m occurs in the sentence, its value in the vector is non-
zero. There are several ways to compute these values (also

called weight), and in this paper, we use tf-idf weighting.
The VSM model is known as the term frequency-inverse
document frequency model. The weight vector for docu-
ment distance:

Vd = (w1,d, 22,d, · · · , wN,d) (2)

Where

wt,d = tft,dlog(
|D|

|{d′ ∈ D|t ∈ d′}|
) (3)

And tft,d is term frequency of term t in document d (a lo-
cal parameter), log |D|

|{d′∈D|t∈d′}| is inverse document fre-
quency (a global parameter). |D| is the total number of
documents in the document set; |{d′ ∈ D|t ∈ d′}| is the
number of documents containing the term t.
After getting the vectors, the VSM similarity between two
documents can be calculated by using the cosine distance:

sim(di, dj) =
di · dj

||di|| · ||dj ||
(4)

Another method we used to calculate similarity is
based on mutual information preserving mapping (MIPF),
which is a manifold learning algorithm that computes
low-dimensional, neighborhood-preserving based on mu-
tual information of high-dimensional inputs. With suf-
ficient data set, we expect each document text can be
expressed as its neighbors’ mutual information and its
neighbors are lie on or close to a locally linear patch of the
manifold. Then each text data can be reconstructed from
its neighbors which are based on information content. Re-
construction errors are measured by the cost function

Σi|I(Xi)−
∑
j

WijI(Xi;Xj)|2 (5)

Table 1: Experimental Result.

EG C F
Q0 Q1 AVG Q0 Q1 AVG Q0 Q1 AVG

Topic

11 0.0504 0.0396 0.0358 0.1030 0.0962 0.3221 0.0677 0.0561 0.0552
12 0.0171 0.0176 0.0096 0.2367 0.2341 0.1986 0.0320 0.0327 0.0168
13 0.0538 0.0570 0.0172 0.6300 0.6295 0.4463 0.0992 0.1046 0.0314
14 0.0239 0.0271 0.0051 0.1833 0.1963 0.3317 0.0423 0.0477 0.0094
15 0.0701 0.0732 0.0439 0.7267 0.6977 0.7259 0.1278 0.0477 0.0094
16 0.0895 0.1253 0.0634 0.9812 1.0405 0.8336 0.1278 0.1326 0.0754
17 0.0414 0.0482 0.0240 0.6024 0.5279 0.6562 0.1641 0.2237 0.1146
18 0.0445 0.0358 0.0210 0.2479 0.1989 0.4575 0.0754 0.0607 0.0388
19 0.0796 0.0938 0.1043 0.4695 0.5284 0.4601 0.1361 0.1593 0.1237
20 0.0535 0.5552 0.0172 1.0214 1.0214 0.8989 0.1016 0.1047 0.0332
21 0.0955 0.0626 0.0341 0.4137 0.3841 0.4648 0.1551 0.1077 0.0552
22 0.1046 0.0973 0.0773 0.5108 0.5009 0.4625 0.1737 0.1629 0.1267
23 0.0805 0.0805 0.0612 0.1235 0.1235 0.1911 0.0975 0.0975 0.0840
24 0.0739 0.0739 0.0373 0.3847 0.3847 0.3589 0.1240 0.1240 0.0633
25 0.0992 0.0992 0.0329 0.4483 0.4483 0.4516 0.1624 0.1624 0.0570

Mean
ALL 0.0389 0.4840 0.0620
Q0 0.0652 0.4722 0.1091
Q1 0.0658 0.4675 0.1110

In order to minimize the reconstruction errors, we can get
the weight W . By using the weight, the low-dimensional
vector Y can be measured by the embedding cost func-
tion: ∑

i

|I(Yi)−
∑
j

WijI(Yi;Yj)|2 (6)

Unlike traditional manifold methods for images, MIPF
applies on text field, and its optimizations use the relation-
ship between different texts. Meanwhile it remains the ad-
vantages of the manifold method. By exploiting the local
symmetries of reconstructions, MIPF is able to learn the
global structure of mutual-information-based manifolds,
such as those generated by documents of text.

• Text Clustering
The k-means [7] clustering is chosen after many exper-
iments. The k-means clustering is a popular method for
cluster analysis in data mining. The k-means clustering
aims to partition n observations into k clusters, in which
each observation belongs to the cluster with the nearest
mean, serving as a prototype of the cluster.

• Sentence Selection
After text clustering, we can get the clusters based on top-
ics between different events for information expansion.
We choose the centers of the clusters and the top sen-
tences as the summarization. Finally each event we totally
choose about 100 sentences from the thousands sentences.
The last step is to rank these central sentences. Time and
similarity are the two factors that used to rank the summa-
rizations. After this step, the final temporal summarization
can be obtained.

EXPERIMENT RESULTS
Evaluation
According the TREC authority, there are three metrics:

• Expected Gain. One way to evaluate an update system is
to measure the expected gain for a system update. This is
similar to traditional notions of precision in information
retrieval evaluation.

• Comprehensiveness. Similar to tradition notions of recall
in information retrieval evaluation.

• F measure. In order to summarize expected gain and com-
prehensiveness, we use an F measure based on both Ex-
pected Gain and Comprehensiveness.

Results
Table 1 shows the results of our system. In the first line of
Table 1, EG signifies the scores of the expected gain, C sig-
nifies the scores of the comprehensiveness, F signifies the
scores of F measure. In the second row, Q0 and Q1 is the
runs we submitted, AVG is the mean score for each topic
over all runs submitted to the track. In the first column of
Table 1, the meaning of per-topic is obviously, mean signi-
fies the average values of the scores over the 15 topics are
given for each run. In the second column of Table1, All sig-
nifies the mean score over all topics and all runs submitted
to the track.

Through Table 1, the performance of Q0 and Q1 with re-
spect to the metrics Expected Gain and F measure are most-
ly better than AVG, which means that our methods are effec-
tively. However, there are several topics whose Comprehen-
siveness value is smaller than the AVG, which means that
our methods are not so well in recall. Through the contrast
of the last three lines, we come to the conclusion that expect

Comprehensiveness, our run’s performance is better than the
average.

Conclusion
In this paper, we presented the implementation details of our
runs for Temporal Summarization Track, and our runs per-
formed well respect to Expected Gain and F score, but not
so well respect to Comprehensiveness. The possible reason
is that we excessive emphasis on the relevance between topic
and sentence, and ignored the comprehensiveness of topic.
Therefore, the future work’s emphasis should be on how to
improve the Comprehensiveness (or recall).

References
1. Z. Yang, F. Yao, H. Sun, Y, Zhao, BJUT at TREC 2013
Temporal Summarization Track, 2013
2. http://www.trec-ts.org/
3.http://s3.amazonaws.com/aws-
publicdatasets/trec/ts/streamcorpus-2014-v0 3 0-ts-
filtered/index.html
4. http://www.lemurproject.org
5. http://en.wikipedia.org/wiki/BM25
6. G. Salton, A. Wong, C. S. Yang, A vector space model for
automatic indexing. Communications of the ACM, 18(11),
613-620, 1997
7. T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an
efficient data clustering method for very large databases.
ACM SIGMOD Record, 25(2), 103-114, 1996.

