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Abstract— We describe the participation of the Lowlands at the
Web Track and the FedWeb track of TREC 2013. For the Web
Track we used the Mirex Map-Reduce library with out-of-the-
box approaches and for the FedWeb Track we adapted our shard
selection method Taily for resource selection. Here, our results
were above median and close to the maximum performance
achieved.

I. INTRODUCTION

In this paper we describe the contribution from University
of Twente at Text Retrieval Evaluation Conference 2013. We
participate in the Web Track and the Federated Web Track,
which we also helped organizing. The remainder of this paper
is structured as follows. Section II describes our participation
in the web track and Section III describes our participation in
the Federated Web Track.

II. WEB TRACK PARTICIPATION

Our experiments are run by MIREX [6]1 (MapReduce
Information Retrieval Experiments), a library of MapReduce
programs to extract data and sequentially scan document rep-
resentations. Built on Hadoop, sequential scanning becomes a
viable approach. MIREX allows researchers to easily experi-
ment with different retrieval models, because the framework
is easy to extend.

Run P@5 P@10
ut22xact 0.404 0.384
ut22base 0.380 0.398
ut22spam 0.348 0.358

TABLE I: Precision at 5 and 10 (50 queries)

Table I shows the precision at 5 and 10 results of the three
official Web Track runs. All runs use anchor texts as document
representations, which we made available for download.2 The
first run, tagged ut22xact, matches the exact query string
to the anchors, and ranks the documents by the number of
exact matches found. This run finds exact matches for 41
out of 50 queries. We appended the results from the second
run, i.e. those documents that were not already found by
exact matches, to the run as the final result. The second run,
tagged ut22base, uses a simple unigram language model
with linear interpolation smoothing and λ = 0.95. A run
without smoothing (or λ = 1) retrieves the exact same top
10 documents for 47 out of 50 queries, and therefore also
achieves the same precision at 5 and 10 documents. The third

1http://mirex.sourceforge.net
2http://www.cs.utwente.nl/∼hiemstra/2013/anchor-text-for-clueweb12.html

run, tagged ut22spam, uses the same ranking as the second
run but removes the 50 % most spammiest documents from the
Waterloo spam rankings [5].3 The experimental results show
that ut22xact, exact matching of the full query string, out-
performs the other runs for precicion at 5 documents retrieved,
whereas ut22base, the language model, performs best at
precision at 10. Although, removing the 50 % spammiest
documents helps on various ClueWeb09 test collections, in
this case it hurts our results.

Run P@5 P@10
ut22xact 0.196 0.172
ut22base 0.170 0.168
ut22spam 0.132 0.119

TABLE II: High Relevance Precision (47 queries)

Table II shows the ability of the systems to retrieve doc-
uments judged as highly relevant, key, or navigational. So,
documents judged as relevant were not considered in this
evaluation. The results show that clearly, the exact query string
matching favours highly relevant documents for 5 and 10
documents retrieved.

Run J@10 J@20 J@30
ut22xact 1.000 0.894 0.745
ut22base 1.000 0.918 0.782
ut22spam 0.998 0.838 0.629

TABLE III: Fraction of judged documents (50 queries)

Different topics were pooled to different depths because
the original depth (20) resulted in too many documents to
be judged in the allotted amount of assessing time. Tables III
show the effects of the pool depth of the fraction of judged
documents for each run. Although the run ut22spam was not
part of the pool that was judged, it almost has all documents
judged in the top 10. Of the runs that did contribute to the
pool, at 20 documents retrieved, about 10 % of the documents
is not judged. At 30 documents retrieved, this drops to about
22 % to 25 %.

Qrels total per query
all judged 14474 290
highly rel. (> 1) 1106 22
relevant (> 0) 4150 83
irrelevant (= 0) 10090 202
spam (= −2) 234 5

TABLE IV: Number of documents judged

3http://www.mansci.uwaterloo.ca/∼msmucker/cw12spam/



Table IV shows general statistics of the TREC 2013 Web
Track collection. Of the total number of documents that are
judged, almost 29 % were judged relevant, so it is likely that
many more relevant documents would have been found if more
resources would have been available for judging.

We tried simple, out-of-the-box approaches to this year’s
Web track. It is amazing to see that very simple methods,
such as counting the number of exact query string matching
in anchor texts, provides relatively powerful retrieval results.
Search becomes easy if you have a lot of data.

III. FEDWEB TRACK PARTICIPATION

The Federated Web Track models a distributed search
scenario where users send requests to a broker which forwards
the requests to a set of search engines that are likely to produce
relevant results. The track consists of two tasks: 1) the resource
selection task, which requires selecting resources based on re-
source descriptions a search request and 2) the result merging
task, which requires the fusion of the results being returned
from search engines. This year we only participated in the
resource selection task.

The track provided sample texts and snippets form doc-
uments sampled from each search engine. Prior to resource
selection, these documents have to be transformed into a
resource description. Currently, resource descriptions based
directly on the sampled documents in a central sample index
are the most popular. However, this approach also requires
substantial storage space and administrative overhead when
selecting resources.

Our approach is to adapt Taily [1], which we recently
proposed for shard selection in centralized search, for feder-
ated web search. Instead of using a centralized sample index,
Taily uses vocabulary-based resource descriptions based on
statistics of term related features in each shard that are used
in ranking functions. Compared to this centralized setting, the
full collection is only represented by a sample and and the
ranking function of each individual search engine is unknown.
Therefore our main contributions in this paper is to adapt the
Taily method to a setting where only samples of documents
are available and the ranking function is unknown.

Taily assumes a gamma distribution for scores of a query,
which is inferred from the feature statistic. As we only have
only few document sample instead of the full collection, some
samples can overestimate the variance of the collection. As
the variance strongly influences the cumulative distribution
for gamma distributions, we also experiment with normal
distributions.

In the following we first present an extended intuition of the
Taily algorithm in Section III-A. Section III-B introduces the
used score function and Section III-C describes the statistics
that form Taily’s resource representation. Section III-D shows
how these statistics are used to estimate the parameters of
the score distributions for the search engines, and for the
whole collection. Section III-E describes how the number of
documents with all query terms in the whole collection and
per search engine can be estimated. Using the estimates for
the score distribution and the number of documents, we define

Taily’s search engine selection criterion in Section III-F. before
we adapt the algorithm to federate web search.

A. Intuition and Reasoning

We assume that each search engine uses the same score
function that assigns each document a score based on its term
frequencies. The broker aims to select those resources that
contain the highest ranked documents because they are the
most influential for most effectiveness measures. We therefore
want Taily to leave out search engines with no or only few
documents in the top of the complete document ranking. The
number of top-ranked documents that should be considered
can vary depending on the search scenario. Our algorithm
therefore considers a number of nc highly scored documents.
Expressed differently, these documents are the right tail of the
collection’s score distribution in response to the given query,
and hence we name our shard selection algorithm Taily. For
example, Figure 1a shows the score frequency distribution of
the query 843 pol pot in the Gov2 collection using language
model scores. A broker may want to preserve, e.g., the nc =
100 top-ranked documents. This corresponds to the documents
with a language model score of −14.6 or higher for this query.
The broker should therefore only select search engines that
index documents with score higher than −14.6.

The more accurate our model is in the right tail of the score
distribution, the more accurate we can expect our resource
selection to be. Score distributions are typically dominated by
low scores of documents that contain no or only few of the
query terms. We expect that it is difficult to model the tail
of this distribution. Instead, we model the score distribution
of documents that contain all query terms, which include the
top-ranked documents for most queries and empirically leads
to a better fit of the right tail, see Figure 1b.

Taily selects resources based on the number of documents
with a score above the cut-off score of the top-ncdocuments.
To estimate this number, Taily fits the score distribution in
each of the search engines, from which the probability of
a document in this shard with a score above that cut-off
point can be readily calculated. Because the resources search
engines index differ in size and high-scoring documents, a
search engine with a low right-tail probability might still have
a reasonable number of documents with scores higher than
the cut-off. We therefore also estimate the total number of
documents that participate in the considered score distribution
and select shards based on the expected number of documents
that are above the cut-off score. For example, Figure 1c shows
the empirical and fitted score distribution4 of the shards 19 and
41 of topical shards generated by Kulkarni and Callan [8].
Most documents in the selected tail of the collection’s score
distribution belong to shard 41. Therefore, Taily prefers shard
41 over shard 19 for this query.

A popular way to estimate score distributions is to use
scores of document samples from the top of the ranking [2].

4Note that Fig. 1 displays histograms with absolute frequencies. The fitted
lines are the estimated density functions (based on the Gamma distribution),
rescaled by the total number of documents included and its bin width, in order
to allow visual comparison with the histograms.
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Fig. 1: Intuition of the shard selection process for the web-track query 843 pol pot. The vertical bar indicates the cut-off
score of the nc = 100 highest scored documents. The shown distributions are Gamma distributions fitted using the maximum
likelihood and multiplied by the number of documents in the distribution.

However, because we avoid the use of a central sample index,
this type of estimation methods is not applicable here. Instead,
following Kanoulas et al. [7], we infer the query dependent
score distribution from query independent feature distributions
that are summed in the score function. The parameters of
the feature distributions form Taily’s resource representation,
which can be calculated offline.

B. Notation

We use the following notation throughout this paper. Quer-
ies and documents are denoted by lower case q and d respec-
tively. Sets of documents are denoted by D, and a particular
set is indicated by a subscript. In particular, let Dc be the set
of documents in the total considered collection (the union of
documents in all search engines), and let N be the number
search engines and D1, ...,DN be the sets of documents in
the respective resource. We often refer to either the set of
documents in the collection or the resources, for which we use
the subscript i. Terms are denoted by lower case t, the query
terms of a query q are denoted by ~q. The length of document
d is denoted by dl(d), the frequency of term t in document d
is written c(t, d), and the number of documents from set Di

that contain term t at least once is given by c(t,Di).
Taily infers a query’s score distribution from the distribu-

tions of the features that constitute the query’s score function.
In general, our algorithm can be used with any score function
that is a weighted sum of term-related feature values.5 To
facilitate experiments, which require a particular score func-
tion, we focus in this paper on the query likelihood model, as
implemented in the Indri search engine6. The query likelihood
model uses for a term t in a document d a term feature ft(d),

5Note that we consider score functions independently from their theoretical
motivation.

6http://www.lemurproject.org/indri/

which is defined as follows:

ft(d) = log

(
c(t, d) + µP (t|D)

dl(d) + µ

)
(1)

where P (t|D) =
∑

d c(t,d)∑
d dl(d) is the collection prior of term t,

and µ is the Dirichlet smoothing parameter. Note that the term
features in (1) are query independent. The score function s(d)
of a document d for a query q is a sum of the features for the
query terms:

s(d) =
∑
t∈~q

ft(d). (2)

where the term-related features f are defined in (1).

C. Statistical Shard Representation

In order to infer the score distributions in search engines
and the collection, we represent them by the distribution
parameters of term features. The main statistics of a feature ft
for term t in document set Di are the expected value Ei[ft] and
the variance vari[ft] of the feature, which can be calculated as
follows, if all documents of the search engine i, d ∈ Di are
available:

Ei[ft] =

∑
d∈Di

ft(d)

c(t,Di)
(3)

Ei[f
2
t ] =

∑
d∈Di

ft(d)2

c(t,Di)

vari[ft] = Ei[f
2
t ]− Ei[ft]

2 (4)

where Ei[f
2
t ] is the expected squared feature value. These

quantities can be calculated by a single scan through the
collection. In federated web search we usually do not have
all documents of a resource Di but only a sample of those
documents Di,s ⊆ Di. Therefore, we approximate these the

http://www.lemurproject.org/indri/


expectations above through the values in the sample Di:

Ei[ft] '
∑

d∈Di,s
ft(d)

c(t,Di,s)
(5)

Ei[f
2
t ] '

∑
d∈Di,s

ft(d)2

c(t,Di,s)
(6)

The language model score function used in this paper
produces negative values. However, the Gamma distribution
that we use for the score function is defined for positive values.
To be able to shift the score distribution in the next section,
we also store for each feature f its minimum value in the
collection c:

minc[f ] = min{f(d)|d ∈ Dc, c(t, d) > 0}

The expected feature values from (3), the feature variances in
(4), and the above minimum values, form the representation
used to calculate the score distribution in the shards and the
total collection.

D. Inferring Score Distributions

Given the shard representation described in the previous
section, we derive the distribution parameters of the query
specific score distribution. Because the score function used
in this paper produces negative scores, we instead consider a
score distribution that is shifted by its minimum value, similar
to Arampatzis et al. [3]:

s∗(d) = s(d) +

|~fq|∑
j=1

minc[fj ].

To keep our notation lean, we continue using s instead of s∗

for the score function, keeping in mind that it is now positive
defined. For a document set i, the expected score Ei[s] and
the score variance vari[s] can be derived from the definition
of the score function in (2)

Ei[s] =

|~fq|∑
j=1

Ei[fj ] +

|~fq|∑
j=1

minc[fj ] (7)

vari[s] =

|~fq|∑
j=1

vari[fj ] (8)

where ~fq is the feature vector of the query terms in (2), and fj
is the jth feature in this vector. Equation 8 uses the simplifying
assumption that the sum of covariances is zero. Note that
we verified the validity of this assumption by repeating our
experiment taking covariances into account, which did not
result in a significant increase in effectiveness.

According to Kanoulas et al. [7], the distribution of lan-
guage model scores is gamma distributed. The parameters
of the distribution in document set i can be derived from
the expected score and the variance by using the method of
moments:

ki =
Ei[s]

2

vari[s]
(9)

θi =
vari[s]
Ei[s]

(10)

where we used the definition of these parameters. Having the
parameters ki and θi for a document set i, we can define
its cumulative score distribution function, which yields the
probability of documents having a score greater than a score
s′ in a document set i:7

cdfi(s
′) = Pi(s > s′) = 1− 1

Γ(ki)
γ

(
ki,

s′

θi

)
(11)

where Γ is the Gamma function, γ is the incomplete Gamma
function, and ki and θi are the distribution parameters defined
above. For the case of the whole collection and the example
introduced previously, the values of the cumulative distribution
function can be visualized as the percentage of documents with
a higher score than −14.6 in Figure 1c.

E. The Number of Documents With All Query Terms

To make the probabilities from the cumulative density func-
tions comparable, Taily uses the number of documents with
all query terms in this set. To reduce the strength of assuming
independence between the occurrence of query terms [4], we
estimate the number of documents that contain at least one, or
any query term Anyi in document set i. Because we cannot
access all documents of search engine’s resource, we assume
that the sample of search engine i, Di,s is the complete set of
documents.

Anyi = |Di,s|

1−
|~q|∏
j=1

(
1− c(tj ,Di,s)

|Di,s|

)
where the term

∏|~q|
j=1 (1− c(t,Di,s)

|Di,s| ) estimates the number of
documents in sample from document set i that have none of
the query terms. Among the Anyi documents that contain at
least one query term, we estimate the number of documents
that contain all query terms All i by assuming independence
of the term occurrences:

All i = Anyi

|~q|∏
j=1

c(tj ,Di,s)

Anyi
. (12)

Our experiments show that this estimate produces strong and
stable results. Important to note here is that we want an
efficient and lightweight algorithm, also during the prepro-
cessing stage. Therefore, even for two-term queries, instead of
counting the mutual term occurrences, which requires storage
quadratic in the vocabulary size, we estimate these based
on the single-term occurrences. Furthermore, assuming that
Di,s = Di is a strong assumption. In particular, this estimate
will not reflect the different sizes of resources behind each
search engine.

F. Search Engine Ranking and Selection Criterion

Given the cumulative score distribution cdfi and estimated
number of documents that contain all query terms All i for
both the whole collection and each search engine separately,

7Note that cumulative distributions are usually defined in terms of the
probability in the left tail. We differ from this practice because it simplifies
the mathematical formalism used to describe Taily.
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Fig. 2: Unofficial experiments FedWeb Track

we define Taily’s search engine selection criteria. Based on
our intuition in Figure 1, we first estimate the cut-off score
of a fixed number of top-ranked documents in the collection
that at least should be in the ranking of the selected search
engine. This number nc is a parameter of Taily. The probability
of a document in the collection to be among the top-ranked
documents can be calculated as:

pc =
nc
Allc

(13)

where Allc is the estimated number of documents in the
collection with all query terms. The cut-off score sc of the
top-ncdocuments can be estimated using the inverse of the
cumulative density function: sc = cdf−1c (pc) where pc is the
probability defined above.

Using the score distribution in a search engine i, we can
calculate the probability that a document in this search engine
has a score higher than the cut-off score sc: pi = cdfi(sc).
The number of documents in search engine i that have a
score above sc, written ni, can then be readily estimated8 by
ni = All i pi. The number of documents in search engine i
with all query terms is a mere estimation (see 12), and the
sum of estimates All i for all search engines not necessarily
equals the overall estimate Allc. Experimentally, this appeared
to introduce inaccuracies in the results. As the improvement of
score distribution estimates is an ongoing research topic [2],
we limit ourselves here to a simple solution. We assume that
the estimation of the expected number of documents in the
collection, Allc, is accurate, such that 13 holds. A suitably
normalized estimate of ni is hence

ni = All i pi
nc

sumN
j=1pj Allj

. (14)

We are now able to define Taily’s search engine selection
criterion sel(q) for a query q that selects search engines with

8In fact, we estimate the number of documents that have a score above sc
and contain all query terms. This means that we have silently assumed that
for the search engine to be selected, most documents above cut-off contain all
query terms. Experimentally, this appears to hold if the cut-off is reasonably
high, see e.g. Figure 1b.

an estimated number of documents in the top-m above a
threshold:

sel(q) =
{
i
∣∣∣i ∈ 1...N, ni > v

}
(15)

where i is a shard index, and v is the selection threshold. Note
that it can be beneficial for v to be higher than 0 because of
the computational costs for including a shard with only very
few estimated documents in the top ranks.

G. Results

We present the results obtained based on the evaluation data.
Table V shows the official overall evaluation scores of the
runs utTailyM400, which uses Gamma distributions, and
utTailyNormM400, which uses Normal distributions. Both
runs used the parameter setting nc = 400. (We refer to the
parameter nc as M in run names for legacy reasons).

Run ndcg@20 err@20
Median Performance 0.141 0.008
utTailyM400 0.216 0.010
utTailyNormM400 0.214 0.010
Maximum Performance 0.299 0.020

TABLE V: Official FedWeb Result. Median and maximum
performance shown for comparison.

We also performed additional analysis of our method.
Figure 2 shows the results. In Figure 2a we investigate the per
query performance of utTailyM400 in terms of ndcg@20.
The run shows low performance for a number of queries
and significantly stronger performance for roughly the other
half of the queries. Figure 2b shows the results of varying
the parameter nc. We see that both Taily variants achieve
stable performance close to the best achieved performance
performance.

H. Conclusions

We presented an adaption of the Taily shard selection
algorithm to resource selection in the Federated Web search



scenario. As the expected feature value and the feature vari-
ance over the whole collection, which were used for shard
selection, can be approximated by the expectation and the
variance from a random sample the mathematical formalism
was very similar to the original shard selection approach.
There are the following areas of future work: 1) we used
the number of sampled documents from each search engine
as its size, which is clearly an over simplified estimate. In
future work we propose to replace this estimate by existing
estimates for the size of a database based on a sample. 2) The
number of sample documents in Federated Web Search are
small compared to the actual size of the search engines, which
clearly affects the accuracy of the estimates. We expect that
the case where no documents with a query term were sampled
can lead to particularly large mistakes. We propose to make
estimates more robust by smoothing techniques, which have
improved performance performance in retrieval models.
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