
Boosting Venue Page Rankings for Contextual Retrieval - 
Georgetown at TREC 2013 Contextual Suggestion Track 

Jiyun Luo and Hui Yang 
Department of Computer Science, Georgetown University 

37th and O Street,NW, Washington DC, USA, 20057 
jl1749@georgetown.edu,huiyang@cs.georgetown.edu 

 
Abstract 

We participate in the closed collection sub-track of the TREC 2013 Contextual Suggestion. The dataset 
that we use is an integrated collection of ClueWeb12 Category B, Wikitravel, and the city-specific 
sub-collection; all are from ClueWeb12. Since the Open Web is not used in our submissions, the task is 
essentially a retrieval task instead of a result merging task. Our system takes users’ ratings of venues in 
a training city as inputs, and generates titles, document identification numbers, and descriptions for 
venues that fit users’ interests in a new city. Ideal relevant documents for this task should be a list of 
Web pages each of which is a venue’s homepage, which we call a “venue page”. However, 
off-the-shelf search tools, such as Lemur, fail to retrieve such venue homepages from the collection. 
They either retrieve non-relevant documents or “yellow-page”-like pages that link to a long list of 
venue pages where the links are often broken and the destination pages are out of the collection. 
Therefore, large portions of the retrieved documents are not suitable as answers for contextual 
suggestion. To address this challenge, we experiment two different approaches, a precision-oriented 
approach and a recall-oriented approach, to boost the relevant venue pages’ ranking. 

1. Introduction 
TREC 2013 Contextual Suggestion Track aims to provide travel suggestions in new cities for visitors 
based on their personal interests and ratings for venues in a city they have been to. The personal 
interests are provided by a survey of about 500 users’ personal judgments towards fifty tourism 
suggestions in Philadelphia, PA. Users’ judgments are scaled from 0 to 4, corresponding to “Strongly 
disinterested”, “Disinterested”, “Neutral”, “Interested” and “Strongly interested”.  
  Last year our submissions used the Open Web to find out the venues in the new cities. It was 
essentially a result merging task that utilizes a personalized learning to rank framework to merge top 
returned results from existing commercial search engines such as Google Place and Yelp. This year, we 
decide not to use the Open Web; instead, we concentrate on the core retrieval challenge posed in 
finding good documents in a closed collection, in this case, the ClueWeb12 collection.  
  The ideal relevant documents for this task should be a list of Web pages each of which is a venue’s 
homepage. However, off-the-shelf search tools, such as Lemur, fail to retrieve such venue homepages 
from the collection. The following problems frequently occur: too many non-relevant documents, too 
many “yellow-page”-like pages that link to a long list of venue pages, the links are often broken, and 
the destination pages are out of the collection. These various forms of non-relevant documents and list 
pages are overwhelming. As a result, large portions of documents retrieved by off-the-shelf search 
tools are not suitable to be returned as answers for contextual suggestion. To address the above 
challenge, we experiment two different approaches, a precision-oriented approach and a recall-oriented 
approach, to boost the relevant venue pages’ ranking. 
  The precision-oriented approach employs information extraction techniques to acquire venue names 
from Wikitravel then formulates structured queries to perform retrieval in the collection. We extract the 
names of venues, such as famous restaurants and shopping centers, from a given city’s Wikitravel page. 
The venues are automatically extracted in sections named “See”, “Do”, “Eat”, “Drink”, and “Buy”. 
After retrieval, we calculate the similarity between venue name and anchor texts in both incoming and 
current pages to locate the most relevant document within the closed collection for the venue. The 
description of a page is automatically extracted by a linguistic-based method. The recall-oriented 
approach divides all training venues into a two-level venue classification system, including landmark, 
amusement park, and Italian restaurant, then creates a representative language model for each category. 
The category-specific language models are used to perform retrieval for each individual category 
mentioned in a user’s profile. Both approaches alleviate the problem of overwhelming non-relevant 
documents and list pages. 
   The remainder of this paper is organized as follows. Section 2 describes the dataset, data 
preparation and indexing. Section 3 presents the precision-oriented approach and Section 4 presents the 
recall-oriented approach. Section 5 shows how we reorganize the retrieval results based on user 
interests. Section 6 briefs description generation. Section 7 describes our submitted runs and result 
analysis.  



2. Data Preparation and Indexing 
The dataset that we use is an integrated collection of ClueWeb12 CatB, Wikitravel, and the 
city-specific sub-collection; all are from ClueWeb12. The integrated dataset is from following sources:  

• ClueWeb12 CatB 
The full ClueWeb12 dataset contains about eight hundred million Web pages. Pages are crawling from 
English-speaking countries’ websites, twitter1 and Wikitravel2. The ClueWeb12 CatB is used in our 
submission.  
• City-Annotated Sub-Collection 
This collection contains about thirty thousand documents. It is a sub-collection of ClueWeb12 which is 
distributed by the TREC organizers. Every document in this corpus has been marked with which city 
this website is about. All documents in this collection are tourism-related Web pages. We consider 
them as high-quality data. The weakness about this sub-collection is that it doesn’t contain enough 
venues for each category, such as bar, restaurant or sightseeing.  
• Wikitravel 
Wikitravel is included in the ClueWeb12 collection. It is crawled from the English part of Wikitravel. 
A city’s Wikitravel homepage is usually about that city’s history, demographics, and what to do, to eat, 
to see, to drink in the city.  
 

The dataset integration and data preparation is done in two steps. First, we merge the city-annotated 
sub-collection into ClueWeb12 CatB. We iterate each document in ClueWeb12 CatB. If a document’s 
location information is provided in the city-annotated sub-collection, we add a “treccity” tag in that 
document and record which cities this document is about. For instance, document 
“clueweb12-1908wb-68-23037” is about Albany NY and Washington DC, we add the tag 
“<treccity>albany ny,washingtondc dc</treccity>” for it. Later on, during the retrieval phase, we 
conduct structured retrieval by utilizing this <treccity> field. The location information helps us to 
retrieve webpages in the city-annotated sub-collection in a higher priority than other ClueWeb12 
documents. Second, we extract Wikitravel dataset out of ClueWeb12 and form a separate corpus. We 
extract famous entities of each city upon the Wikitravel dataset. By splitting Wikitravel to a separate 
corpus, we reduce the difficulty of retrieving famous venues from this corpus. 

We adopt the Lemur Search Engine3 to build index for the integrated ClueWeb12 CatB collection 
with stopword removal and Krovetz stemming [1]. To allow structured retrieval, we index the 
following fields: document number (docno), title, treccity and url. We use similar configuration to 
index the Wikitravel dataset. 

3 Precision-Oriented Approach 
3.1 Locating Wikitravel homepage for each city 

For each city, we try to locate its Wikitravel page and extract venue names from this page. To do that, 
we issue a Boolean Lemur query formed by the city name and the full name of its state and perform 
retrieval against the Wikitravel index. This gives us a ranked list of Wikitravel pages for each city.  
For instance, for the city of Youngstown, OH, we issue a Boolean query “#band(Youngstown Ohio)”.  
City Youngstown, OH’s retrieval list is presented in Table 1. 

Table	
  1	
  Retrieval	
  List	
  for	
  Youngstown, OH	
  
1. Northeast Ohio travel guide - Wikitravel 
2. Youngstown travel guide - Wikitravel 
3. Pages that link to Youngstown - Wikitravel 
4. User:Cjensen/project/hotelmaker/Ohio – Wikitravel 
5. Youngstown - Wikitravel 
6. Talk:Northeast Ohio – Wikitravel … 

Note that not all the top returned documents are relevant documents for our query. Moreover, we 
cannot rely on the first returned result to be relevant. Therefore, in order to locate one city’s Wikitravel 
page, first we filter out Wiki User pages 4 , Wiki Talk pages 5 , Wiki Link pages 6  and Wiki 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
1	
   https://twitter.com/	
  
2	
   http://Wikitravel.org/en/Main_Page	
  
3	
   http://www.lemurproject.org/	
  
4	
   http://en.wikipedia.org/wiki/Wikipedia:User_pages	
  
5	
   http://en.wikipedia.org/wiki/Help:Using_talk_pages	
  
6	
   http://en.wikipedia.org/wiki/Help:Link	
  



Disambiguation pages7 by filtering any page whose title are started with “user”, “talk” or “page” or 
whose title contains word “disambiguation”. Taking Table 1 as an example, the third, fourth and sixth 
retrieval results are filtered out first.  

	
  

Figure	
  1	
   	
   Examples	
  of	
  Wikitravel’s	
  Link,	
  User,	
  Talk	
  and	
  Disambiguation	
  Pages	
  

Next, we extract the city name and the state full name which are used in the Boolean query, and 
append a suffix “travel guide” to form a pattern p. E.g. for City Youngstown, OH, we get phrase 
“Youngstown Ohio travel guide”. Finally we calculate the cosine similarity score [2] between the 
extracted phrase (p) and each retrieval document’s title (tj), and keep the document with the highest 
score as the Wikitravel page for that city. For City Youngstown, OH, its Wikitravel page is “2. 
Youngstown travel guide - Wikitravel”. 

Wikitravel Page = the ith document, where ( )cos , max(cos( , ))i jj
p t p t=  

3.2 Exacting venue names from Wikitravel  
Table 2  The "See" section of document "Houma travel guide - Wikitravel" 

<li> Bayou Terrebonne Waterlife Museum	
  [1]	
  7910 West Park Avenue, Tel 580-7200. Small museum focuses 

on local relationship to the wetlands habitat. Admission $3.</li> 

<li> Chauvin	
  Sculpture	
  Garden,	
  Location 5337	
  Bayouside	
  Drive,	
  Chauvin,	
  LA,	
  …	
  The	
  NSU	
  Folk	
  Art	
  Studio	
  is	
  

open	
  from	
  1pm-­‐3pm	
  every	
  Monday,	
  Wednesday	
  and	
  Friday	
  and	
  by	
  appointment.	
  Free.	
  </li>… 

<li>	
  Southdown	
  Plantation	
  House	
  [3]	
  1208	
  Museum	
  Drive	
  (just	
  off	
  Little	
  Bayou	
  Black	
  Drive	
  in	
  the	
  South	
  west	
  

part	
  of	
  town)	
  Tel	
  851-­‐0154.	
  Historic	
  plantation	
  house	
  is	
  now	
  home	
  to	
  the	
  Terrebonne	
  Museum	
  of	
  History	
  and	
  

Culture.	
  Tues-­‐Sat	
  10a-­‐4p,	
  $6 

</li>… 
After retrieving one city’s Wikitravel homepage, we examine the “See”, “Do”, “Eat”, “Drink” and 

“Buy” sections in that page, and extract famous venues from these sections. For each section, first we 
extract all bold phrases. Usually these bold phrases are venue names. Second, we extract content within 
HTML lists, i.e., contents are tagged with <li> labels. If the content contains bold phrases, it means we 
already dealt this information once; hence we skip this content. Otherwise we split the content with 
comma, and keep the first part as a new venue. Finally we filter out venue names that contain only one 
term or more than 10 terms since they are more likely to be noise. 

Table 2 shows that “Bayou Terrebonne Waterlife Museum”, “Chauvin Sculpture Garden” and 
“Southdown Plantation House” are extracted as venue names, whereas “Location” is ignored. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
7	
   http://en.wikipedia.org/wiki/Wikipedia:Disambiguation	
  



3.3 Retrieving ClueWeb12 documents for Wikitravel venues 
After finding famous tour spots’ names, we still need to find their most relevant document in 

ClueWeb12. The document must be within this closed collection. We generate a structured query in the 
following pattern and use it to search upon ClueWeb12 CatB: 
 #weight(w1 #combine[title](venue name) w2 #combine(venue name) w3 #band(abbreviated 

location) w3 #band(full location)) 
where ‘abbreviated location’ uses the state abbreviation name, ‘full location’ uses the state full name. 
This is a weighted structured query. Keywords that occur in the title get w1 weights, and keywords that 
occur in the document get w2 weight. A document containing the correct location keywords, either in 
the abbreviation form or the full spelling, get w3 weight. We conduct several experiments to tune the 
weights, and empirically we set {w1,w2,w3 } as {0.5, 1.0, 0.2 }. Taking “Southdown Plantation House” 
as an example, the formulated query is: 
 #weight(0.5 #combine[title]( Southdown Plantation House) 1.0 #combine(Southdown Plantation 

House) 0.2 #band(houma la) 0.2 #band(houma louisiana)) 
This query expects that documents with “Southdown Plantation House” in the title and the body text 
and with “houma la” or “houma louisiana” in the content get the highest score.  

After retrieval, we need to select one document that is most relevant to return as the answer for 
contextual suggestion. One approach is treating the document with the highest score as the Web page 
that best represents the query venue spot. Another more accurate approach makes use of anchor text. 
First, we issue the same query that we show in Section 3.3. Then, we extract all anchor texts and their 
outgoing urls for those anchor texts from the top five returned documents. Next, we compare the cosine 
similarity between the anchor text and the venue’s name. Finally, we use the outgoing url of the anchor 
text which has the highest cosine similarity score to represent that venue. For instance, for “Southdown 
Plantation House”, its highest scored anchor text and url pair is “southdown plantation house” and 
http://www.southdownmuseum.org/. We then need to map this url back to the ClueWeb12 collection to 
return the document id as the result. 

4.  Recall-Oriented Approach 
In this approach, we perform contextual retrieval for a wide range of venues based on user interests 

and the city. We assume that users’ information needs for traveling suggestions can be classified into 
23 categories8. We search the fifty example suggestions in Yelp and use Yelp’s category labels to 
determine the example suggestions’ categories. 

We adopt a two-level classification system to assign category labels to example suggestions. We use 
“top-level” to restaurants, whereas we assign more specific categories to example suggestions than 
“second-level” such as “Italian Restaurant” and “Turkish Restaurant” instead of labeling them all as 
“Restaurant”. For other type of venues, we adopt “second-level” strategy to them, where category 
labels are more general. 

We automatically generate a unigram language model for each category. We first generate some 
representative documents by querying the index using the category name, and then we take the words 
from the snippets in the retuned results, and retrieve any Wikipedia articles within them. From the 
snippets and Wikipedia articles we obtain top one hundred most frequent words, weighted by their 
counts. Table 3 lists a few example categories and their corresponding representative language model.  

Table 3 Examples of categories and their representations 
Category Bag of Words 

cafe tea coffee cafe caffeine boiling Arabica chocolate cappuccino 

landmark landmarks historic buildings sites house monument structures 

preservation old ruin ancient architectural 

performing art arts performing plays theatre artists actors theater 

We construct a Lemur structured query in the following format: 
 #weight(w1 #combine( bag of words for one category) w2 #band(abbreviated location) w2 

#band(full location)) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
8	
   Italian	
  restaurant,	
  Turkish	
  restaurant,	
  Burmese	
  restaurant,	
  Greek	
  Mediterranean	
  restaurant,	
  sandwiches	
  
restaurant,	
  tour	
  restaurant,	
  restaurant,	
  cafe,	
  shopping,	
  park,	
  bar,	
  brewery,	
  landmark,	
  amusement	
  park,	
  culture	
  
tour,	
  zoo,	
  performing	
  art,	
  spa,	
  party	
  event	
  planning,	
  game,	
  tour,	
  sport,	
  museum	
  



We set the parameters {w1, w2} as {1.0, 0.2} empirically. For instance, for City Houma, LA and 
Category “park”, the query is: 
 #weight(1.0 #combine(park landscape nature) 0.2 #band(houma la) 0.2 #band(houma louisiana)) 

Although we increase weights of a document if it contains the correct city name, the increment is 
lightweight. This is because that a great deal of list pages will contain many location terms in their 
pages, and will be ranked high. However, they are not our search targets. We eliminate the effects by 
assigning a light weight to city names and state names. However, all returned documents should be 
geographically relevant. Therefore, after a document list is retrieved, we post-process the returned 
document list and make sure that every document contains the correct location terms in it. The 
unmatched ones are removed. 

5. Reorganizing the Retrieval Results 
The retrieved results need to be merged according to each user’s personal profile. We import all user 

ratings for the training city. It gives us a matrix that describes users’ personal interests towards twenty 
three categories (Table 5). A mapping between user’s degree of fondness and a numeric user interest 
weight is listed in Table 4. 

Table 4 Degree of Fondness and User Interest Weight Mapping Table 
fondness strongly disinterested disinterested neutral interested strongly interested 
weight -0.75 -0.25 0 0.25 0.75 
The mean fondness for a user and for a category are calculated as: 

( , )
( )

| |
j

i j
cat Categories

i

weight user cat
Mean user

Categories
∈

=
∑

,	
  

( , )
( )

| |
i

i j
user Users

j

weight user cat
Mean cat

Users
∈=
∑

	
  

If a user’s fondness towards one category is bigger than the mean fondness of this user for all 
categories and also is bigger than the mean fondness received by this category from all users, we treat 
this category as this user’s major interest. Besides major interests, other categories are considered as 
minor interests. For example, Profile 36’s major interests include café and landmark, minor interests 
include bar. 

Table	
  5	
  User-­‐Interests	
  Matrix	
  
 cafe bar landmark … Mean of this user 

Profile 35 0 -0.75 -0.75 - -0.43 
Profile 36 1.75 -0.5 4 - 0.89 

… - - - - - 
Mean of this category 1.34 0.93 1.25 - - 
The result merging goes through several iterations. We assume that useri has major interests cat1 to 

catn with weight w1 to wn and has minor interests catm to cat23 with weight wm to w23.	
  𝑊!"" = 𝑤!!"
!!! , 

  W!"#$% = 𝑤!  !
!!!  , |Major interests| = n, |Minor interests|=23-n. In an iteration, we generate 

contextual suggestions for categories ranked in descending order of category weight. In the first 
iteration, we only consider major interests and we output at least five suggestions. For cati, we output 

max  (5, n)  × !!
!!"#$%

 pieces of cati type suggestions. For other iterations, we consider both major and 

minor interests. We output 23  × !!
!!""

 pieces of contextual suggestions for cati. We stop the merging 

when we have 50 contextual suggestions. 

6. Generating Descriptions 
To generate the description for a suggestion, we examine a webpage’s metadata for its description 

field. If a description is provided in the metadata, we use this description as our description; otherwise 
we extract the first five hundred and twelve characters from the body text and use them as our 
description. All HTML tags are removed. 
 
 



7. Submissions and Results 
We submit two runs to TREC 2013 Contextual Suggestion Track, namely BOW_V17 and 

BOW_V18. They are similar runs. The only difference is that they use different description generation 
methods. Our runs give the best performance among all approaches using the closed collection. 

	
  
Figure	
  2	
  Lemur	
  (left)	
  vs.	
  Our	
  System	
  (right)	
  

Figure 2 shows a side-by-side comparison between the results retrieved by the default Lemur search 
engine and our system. The top documents retrieved by Lemur are either off-topic or list webpages. In 
our system, off-topic webpages rarely appear, and precision is much higher. Moreover, our retrieval 
results are well-balanced among various user interests in a personal profile. 

	
  
Figure	
  3	
  the	
  perfomances	
  of	
  BOW_V17	
  and	
  BOW_V18	
  

Figure 3 shows the TBG@5 scores for our runs, the median and the best TREC runs. The median 
and the best runs are from the Open Web subtrack. Our runs’ performance is roughly equal to the 
median Open Web run when we consider average score over different profiles. Our runs perform better 
on small cities (unpopular contexts) and worse on big cities (popular contexts) than the Open Web runs 
perform. This is because that an Open Web run can access many popular online search engines about 
venue suggestions; however, these search engines contain less useful information for unpopular 
venues. 

Nonetheless, our approach investigates retrieval techniques that purely developed upon a closed 
collection and shows great potential for contextual retrieval.  

8. References 
1. R. Krovetz. Viewing morphology as an inference process. SIGIR 1993. 
2. S. K. M. Wong, Wojciech Ziarko, and Patrick C. N. Wong. 1985. Generalized vector spaces model 

in information retrieval. SIGIR 1985. 


