
University of Florida Knowledge Base Acceleration Notebook

Morteza Shahriari Nia, Christan Grant, Yang Peng, Daisy Zhe Wang∗

{msnia, cgrant, ypeng, daisyw}@cise.ufl.edu

Milenko Petrovic†

mpetrovic@ihmc.us

Abstract

In this paper we will present the system design and algorithm adopted by the GatorDSR team,
University of Florida to efficiently process TREC KBA 2013 — SSF track. Here we will describe the
system as well as the details the algorithms used to extract slot values for the given slot name. Scalability,
efficiency, precision and recall are the major goals of this work, given the overly limited time limitation
and available computational resources.

1 Introduction

An important challenge in maintaining Wikipedia.org (WP), the most popular web-based, collaborative,
multilingual knowledge base on the internet, is making sure its contents are up-to-date. Presently, there is
considerable time lag between the publication date of cited news and the date of an edit to WP creating the
citation. The median time lag for a sample of about 60K web pages cited by WP articles in the living people
category is over a year and the distribution has a long and heavy tail [1]. Also, the majority of WP entities
have updates on their associated article much less frequently than their mention frequency. Such stale entries
are the norm in any large knowledge base (KB) because the number of humans maintaining the KB is far
fewer than the number of entities. Reducing latency keeps KBs such as WP relevant and helpful it users.

Given an entity page, possible citations may come from a variety of sources. The actual citable infor-
mation is a small percentage of the total documents that appear on the web. We develop a system to read
streaming data and filter out articles that are candidates for citations. Given these documents, we extract
the pairs of information in the article that is recommended for citations for each knowledge base page.

Our system contains three main components. First, we pre-process the data and build models representing
the knowledge base entries. Next, we use the models to filter a stream of documents so they only contain
candidate recommendations. Lastly, we processes sentences from candidate extractions and return specific
information to be cited.

In this paper, we describe the system we built to process the data. We built this system as part of a
formal task described in Section A. Our approach to this task is to build a modular system that allows us
to explore the nuances of the training data and queries. Overall, we contribute the following:
• introduce a method to build models of name variations (Section 3.1);
• built a system to filter a large amount of diverse documents (Section 3.2);
• extract entity-slot-value triples of information to be added to KB (Section 3.3);
• filter the final results using deduplication and inference (Section 3.4);
• self-evaluate our results over a 4.5 TB data set (Section 4).

2 System Overview

In this section, we introduce the main components of the system. Our system is built with a pipeline
architecture in mind giving it the advantage to run each section separately to allow stream processing

∗University of Florida, Gainesville, Florida, USA
†Institute for Human and Machine Cognition, Ocala, Florida, USA

	 	

Cumulative Citation Recommendation Streaming Slot Filling

Preprocessing

Chunk	 Files	
Index	

Generator	

StreamItems	
Index	

Generator	

Streaming	
Slot	 Value	
Extraction	

High	
Accuracy	
Filter	

Stream
Corpus	

Streaming	
Slot	 Values	

Manual	 Aliases	
Extraction	

	

Alias	 Extraction	

Name	 Order	 Generator	

Wikipedia	
C++	
Java/Scala	

Scala	

Python	

Figure 1: The GatorDSR team System Architecture. Components are logically groups with dotted boxes.
Color details the programing language implementation of components.

without blocking the data flow of components (Figure 1). The three logical components include sections for
performing preprocessing to prepare the required data, Cumulative Citation Recommendation to annotate
cite-worthy documents, Streaming Slot Filling to generate the actual slot values and PostProcessing to
increase precision/recall. TREC provides a streaming data set and entities from Twitter or WP to query.

Preprocessing. The contest prohibits Wikipedia entities to have any manual aliases being added and
only allows automatic ways. We use Wikipedia API backlink references (redirects to a wiki entity) as aliases
of the entity. We also extract aliases from within the text of a wiki entity, which will be described in
Section 3.1. This whole process is referred to as Alias Extraction. The manual extraction rule is lifted and
participants are allowed to manually add aliases for Twitter entities. This is allowed because the Twitter
website does not provide an example page from the beginning of the document stream. This process of
extracting aliases for Twitter entities is referred to as Manual Alias Extraction.

Once aliases are available we pass them through rules of generating proper name orders which will produce
various forms of writing a name. As a basic example Bill Gates can be written as Gates, Bill. This will allow
the system to capture various notation forms of aliases. We refer to this part as Name Order Generator.

Cumulative Citation Recommendation. The main goal of CCR is to have an aggregate list of
documents that are worthy of being cited in a Wikipedia page. We perform exact string matching and treat
all the documents that mention an entity equally likely to be citable. One of the reasons for this is that in
former TREC KBA reports [1] there were observations of how non-mentioning documents have a low chance
of being citable in Wikipedia. So we take on that and ignore non-citing documents.

Streaming Slot Filling. The purpose of SSF is to extract proper values for relations of interest, which
can be found in Table 6. This is called Stream Slot Filling because data is being generated as time goes
on and for each extraction we should only consider current or past data. In Figure 1 we refer to this as
Streaming Slot Value Extraction. Stream slot filling is done by pattern matching documents with manually
produced patterns for slots of interest. The way we do this is by observing a sentence that has a mention of
the entity or one of its coreferences. An anchor word in the sentence related to the slot name is located and
we match either left or right of the anchor word for potential slot values.

Post Processing Algorithm. The SSF output of many extractions is noisy. The data contains dupli-
cates and incorrect extractions. We can define rules to sanitize the output only using the information present
in the SSF file. The file is processed in time order, in a tuple-at-a-time fashion to minimize the impact on
accuracy. We define two classes of rules deduplication rules and inference rules. In our diagram we refer to
this component as High Accuracy Filter.

	
	
	
	
	
	 	

	

Pattern	
Content	

Lingpipe	 Tag	
OpenNLP	 Tag	
HardCoded	 Text	

Slot	 Value:	

Alias	 or	
Entity	

Coreference	

Entity:	

Right	

In	 1990,	 Boris	 Berezovsky,	 won	 the	 Gold	 Medal	 at	 the	 International	 Tchaikovsky	 Competition	 in	 Moscow.	
	

Figure 2: Pattern Matching with Slot Value on the Right Side of Entity.

3 Implementation

We extract aliases for entities from Wikipedia automatically both using API and using the actual page
content, then apply pattern matching rules for slot value extraction. Our contribution is that we perform
pattern matching that conforms to each slot value along with post-processings to eliminate noisy outputs.

3.1 Alias Generation

We use Wikipedia API to get some aliases automatically. This is done by retrieving backlink references
(redirects of a wiki entity). Unfortunately this is not good enough and to enhance recall we need more
aliases. To have better use of a wiki page we parse HTML DOM of the page, then use regular expressions
to extract the bold phrases of the first paragraph as alias of the actual entity. Based on our observation this
is a very accurate heuristic and provides us with lots of famous aliases of the entities. To consider other
typical cases we consider some generic first name last name order swapping conventions such as Bill Gates
→ Gates, Bill. Meanwhile, William Henry Gates is an alias for Bill Gates in WP as a backlink reference.
These kinds of aliases are also included in matching entities.

3.2 Cumulative Citation Recommendation

Our pipeline of processing the corpus consists of a two layer indexing system referred to as Chunk Files
Index Generator and StreamItems Index Generator. Chunk Files Index Generator will generate indexes of
the chunk files that contain a mention of any of the desired entities. StreamItems Index Generator on the
other hand will index StreamItems that contain a mention of a given entity respectively. This two level
indexing will eliminate the need to process each and every ChunkFile/StreamItem for every entity. The
reason for splitting this task into two steps is that not all chunk files contain any mention of the entities
and we want to get rid of them as soon as possible. Chunk Files Index Generator which is written in C++
discards non-mentioning chunk files and will stop further processing a chunk file as soon as it finds a mention
there. Each chunk file can contain up to thousands of SIs which can be so time consuming if we were to
process them in our Java base code. Processing StreamItems on the other hand is done in Java with ideas
in mind for later on extensibility by adding other Java libraries.

3.3 Streaming Slot Value Extraction

In the data set, we are given 4 months of data (October 2011 - February 2012) as training data. Instead of
building a classifier we use pattern matching methods to find corresponding slot values for entities. Pattern
matching is simple to manipulate results and implement. Additionally, a classifier approach is more difficult
to evaluate and explain results.

With the Streamitem indexes generated by the CCR, we first fetch the sentences containing entites by
using alias names and coreference information provided by Lingpipe tags. Then use these senteces to match
patterns and when patterns matched, generate SSF results.

Algorithm 1 Streaming Slot Value Extraction Pseudocode

List of entities E = {e0, . . . , e170}
List of patterns P = {p0, . . . , p|P |}
List of streamitems containing entities S = {s0, . . . , s|S|}

for si ∈ S do
for sentence ∈ si do
for entity ∈ E do
if Contains(sentence, entity) then
for pattern ∈ P suitable for entity do
if Satisfies(sentence, pattern) then

Emit(sentence, pattern)
end if

end for
end if

end for
end for

end for

3.3.1 Format of patterns

A pattern is defined as a record representing knowledge going to be added to a knowledge base. A pattern
P is represented as a five-tuple P = 〈p1, p2, p3, p4, p5〉.

The first value, p1 represents the type of entity. These entity types are in the set {FAC, ORG, PER} where
FAC represents a type of facility, ORG represents an organization and PER represents a person. FAC, ORG and
PER are Lingpipe entity types. The p2 represents a slot name. A list of slot names is present in Table 6. The
third element p3 is the pattern content. This is a string found in the sentence. The extractor looks for this
exact string or pattern in a sentence. The pattern evaluator uses a direction (left or right) found in p4 to
explore sentence. The final element p5 represent the slot value of a pattern. Thois The type of slot value
may be the entity type tagged by Lingpipe, a noun phrase (NP) tagged by OpenNLP or a hard-coded phrase.
For these three kinds of patterns, we implement them in different ways accordingly. Next, we explain the
patterns with more details, an example can be found in Figure 2.

3.3.2 Types of patterns

There are three types of patterns distinguished by different types of slot values in the patterns. The matching
methods using these three types of patterns are implememented according to the different information and
structures of slot values.

Type I. This pattern type is driven by the slot value type, a pattern tagged by Lingpipe. For example,
pattern 〈PER, FounderOf, founder, right, ORG〉. PER means that the entity we are finding slot values
for a PER entity; FounderOf means this is a pattern for FounderOf slot. founder is the anchor word we are
match in a sentence; right means that we are going to the right part of the sentence to match the pattern
and find the slot value; ORG means the slot value should be a ORG entity.

Type II. This pattern type is unique because it only looks for a slot value tagged as noun phrase (NP) by
OpenNLP. For example, pattern 〈PER, AwardsWon, awarded, right, NP〉. This pattern can be interpreted
as that we are looking for a noun phrase after the awarded since that noun phrase may represent an award.
Titles and awards are usually not the Lingpipe entities, hence the use of the OpenNLP noun phrase chunker
to fetch the noun phrases.

Type III. Some relations are best discovered by hard coding the slot values. Examples of these include
time phrases: 〈PER, DateOfDeath, died, right, last night 〉. In this pattern, last night means we are
looking for exactly the phrase last night to the right of died. This pattern is inspired by the intuition that in
news articles, people often mention that somebody died last night instead of mentioning the accurate date
information and Lingpipe tends not to tag phrases like last night as a DATE entity.

3.3.3 A short discussion

We sampled documents from the training data period to generate an initial set of patterns. We then use
these patterns to generate SSF results. By manully looking at these results, we prune some patterns with
poorperformance and add more patterns that we identified from these results. We use several iterations to
find the best patterns. We found that it is time consuming to identity quality pattern.

We found three major classes of accuracy errors: incorrect entities selected, incorrect tags by Lingpipe
and incorrect pattern extractions. The first issue is ameliorated by generating better aliases (Section 3.1).
And we use post-processing to reduce the second and third types of errors (Section 3.4). We didn’t use more
advanced NLP packages such as Stanford NLP because of the large size of the data set. The post-processing
step to improve the results is discussed in the next section.

3.4 High Accuracy Filter

The SSF output of streaming slot value extraction is noisy. The data contains duplicates and incorrect
extractions. We can define rules to sanitize the output only using the information present in the SSF file.
The file is processed in time order, in a tuple-at-a-time fashion to minimize the impact on accuracy. We
define two classes of rules: deduplication and inference rules.

The output contains many duplicate entries. As we read the list of extracted slots we create rules to
define “duplicate”. Duplicates can be present in a window of rows; we use a window size of 2 meaning we
only be adjacent rows. Two rows are duplicates if they have the same exact extraction, or if the rows have
the same slot name and a similar slot value or if the extracted sentence for a particular slot types come from
the same sentence.

New slots can be deduced from existing slots by defining inference rules. For example, two slots for
the task are “FounderOf” and “FoundedBy”. A safe assumption is these slot names are biconditional
logical connectives with the entities and slot values. Therefore, we can express a rule “X FounderOf Y”
equals “Y FoundedBy X” where X and Y are single unique entities. Additionally, we found that the slot
names “Contact Meet PlaceTime” could be inferred as “Contact Meet Entity” if the Entity was a FAC and
the extracted sentence contained an additional ORG/FAC tag. We also remove erronious slots that have
extractions that are several pages in length or tool small. Errors of extracting long sentences can typically
be attributed to poor sentence parsing of web documents. We have some valid “small” extractions. For
example a comma may separate a name and a title (e.g. “John, Professor at MIT”). But such extraction
rules can be particularly noisy, so we check to see if the extracted values have good entity values.

4 Results

Our system was developed on a 32-core server described in Table 2. The corpus is a snapshot of the web
in English. Each document is annotated using lingpipe and is called StreamItem, a bundle of StreamItems
are put together and serialized as Apache Thrift objects, then compressed using xz compression with Lem-
pelZivMarkov chain algorithm (LZMA2) and finally encrypted using GNU Privacy Guard (GPG) with RSA
asymmetric keys. The total size of the data after XZ compression and GPG encryption is 4.5TB and just
over 500M StreamItems [2]. Data is stored in directories the naming of which is date-hour combination:
from 2011-10-05-00 (5th of October 2011, 12am) until 2013-02-13-23 (13th of Feburary 2013, 11pm), which
consists of 11952 date-hour combinations. This corpora consists of various media types the distribution of
which can be found in Table 1. To have a sense of the scale of objects and compression as an example a
6mb gpg.xz files would become 45 mb thrift objects which can contain a couple of thousand StreamItems
depending on their size. Some of the documents have null values for their annotation fields. The first portion
of the data which ranges from October 2011 to February 2012 is considered as training data. The source
code of our system is stored as an open source project where enthusiasts can also contribute to [3], also the
relevant discussion mailing list is accessible here [4].

We have 135 extraction patterns coverin each slot-name/entity-type combinations. Our final submission
was named submission infer. Our results are as follows: Document extraction using query entity matching
with aliases, sentence extraction using alias matching and co-reference. Slot extraction using patterns, NER

Table 1: Document Chunks Distribution
of Documents Document Type

10988 arxiv (full text, abstracts in StreamItem.other content)
34887 CLASSIFIED (spinn3r)
77674 FORUM (spinn3r)
12947 linking (reprocessed from kba-stream-corpus-2012, same stream id)
141936 MAINSTREAM NEWS (spinn3r)
4137 MEMETRACKER (spinn3r)

280629 news (reprocessed from kba-stream-corpus-2012, same stream id)
6347 REVIEW (spinn3r)

688848 social (reprocessed from kba-stream-corpus-2012 plus extension, same stream id)
740987 WEBLOG (spinn3r)

Table 2: Benchmark Server Specifications
Spec Details
Model Dell xxx 32 cores

OS CentOS release 6.4 Final
Software Stack GCC version 4.4.7, Java 1.7.0 25, Scala 2.9.2, SBT 0.12.3

RAM 64GB
Drives 2x2.7TB disks, 6Gbps, 7200RPM

tags and NP tags. 158,052 documents with query entities, 17885 unique extracted slot values for 8 slots and
139 entities, 4 slots and 31 entities missing.

On the performance of our initial submission run we performed random sampling via two processes, the
results of which are according to Table 3. You can view that we have had an accuracy of around 55%, and
about 15% wrong entity identified and 30% incorrect value extracted across all entities and slot types. Most
of our issues for this submission were regarding poor slot value extraction patterns and incomplete aliases
whih were tried to be mtigated later on. For our final submission, we provide a more detailed statistics, which
has been elaborated in Table 5 and Table 4. Table 5 shows the extent of search outreach for each slot name.
You can see that Affiliate has been the slot name with highest hits and CauseOfDeath our lowest hit with
0 instances found matching our patterns, after that AwardsWon has been the next with 38 instances found.
Affiliate is a very generic term and extracting real affiliates can be quite challenging using the extraction
patterns provided. This can lead to noisy results. On the other hand for more precise terms our accuracy
increases but we have less recall. Table 4 addresses the relative accuracy measure per slot value. There you
can view that we have had the highest accuracy of 63.6% for AssociateOf and the lowest of 1% - 5% for
Affiliate, Contact Meet PlaceTime and EmployeeOf.

5 Discussion & Future Works

Table 5 show a varied distribution of extracted slot names. Some slots naturally have more results than other
slots. For example, AssociateOf and Affiliate have more slot values than DateOfDeath and CauseOfDeath,
since there are only so few entities that are deceased. Also, some patterns are more general causing more
extractions. For example, for Affiliate, we use and, with as anchor words. These words are more common
than dead or died or founded in other patterns.

Table 3: SSF Performance Measure on initial submission
Correct Incorrect Entity name Incorrect Value

Sampling #1 55% 17% 27%
Sampling #2 54% 15% 31%

Table 4: SSF Accuracy Measure on submission infer : Accuracy of AffiliateOf was the best and Affiliate
applied poorly due to ambiguity of being an affiliate of somebody/something

Slot Name Correct Incorrect Entity name Incorrect Value
Affiliate 1% 95% 5%
AssociateOf 63.6% 9.1% 27.3%
AwardsWon 10% 10% 80%
CauseOfDeath 0% 0% 0%
Contact Meet Entity 21% 42% 37%
Contact Meet PlaceTime 5% 20% 85%
DateOfDeath 29.6% 71% 25%
EmployeeOf 5% 30% 65%
FoundedBy 62% 17% 21%
FounderOf 50% 0% 50%
Titles 55% 0% 45%
TopMembers 33% 17% 50%

Table 5: Recall Measure on submission infer : Generic slot names like affiliate had the most recall, compared
to less popular slot names e.g. DateOfDeath

Slot Name Total instances of
slot value found

of entities covered
by slot value

Affiliate 108598 80
AssociateOf 25278 106
AwardsWon 38 14
CauseOfDeath 0 0
Contact Meet Entity 191 8
Contact Meet PlaceTime 5974 109
DateOfDeath 87 14
EmployeeOf 75 16
FoundedBy 326 30
FounderOf 302 29
Titles 26823 118
TopMembers 314 26

When we evaluate the results of slot extraction, we find three kinds of problems for accuracy: 1) wrong
entities found; 2) wrong tags by the Lingpipe; 3) wrong results matched by the patterns. We also have recall
problems: 1) not enough good alias names to find all the entities. 2) not enough and powerful patterns to
capture all the slot values.

We will use entity resolution methods and other advanced methods to improve the accuracy and recall
of entity extraction part.

For slot extraction, to improve the performance, we need: 1) Using multi-class classifiers instead of pattern
matching method to extract slot values in order to increase both recall and accuracy for slots “Affiliate”,
“AssociateOf”, “FounderOf”, “EmployeeOf”, “FoundedBy”, “TopMembers”, “Contact Meet Entity” and so
on. 2) For special slots, like “Titles”, “DateOfDeath”, “CauseOfDeath”, “AwardsWon”, using different kind
of advanced methods, e.g. classifiers, matching methods. 3) Using other NLP tools or using classifiers to
overcome the drawbacks of the LingPipes inaccurate tags. The first and second tasks are the most important
tasks we need to do.

About 50% of twitter entities are not found by the system. One reason is those entities are not popular.
For example, a ‘Brenda Weiler’ Google search result has 860,000 documents over the whole web. For our
small portion of the web it might make sense. The histogram of the entities shows that more than half of
the entities have appeared in less than 10 StreamItems. A good portion have appeared only once.

6 Conclusions

We experimented through different tools and approaches to best process the massive amounts of data on the
platform that we had available to us. We generate aliases for wikipedia entities using Wiki API and extract
some aliases from wikipedia pages text itself. On twitter entities we extract aliases manually as it is part of
the rule of the KBA track. We process documents that mention entities for slot value extraction. Slot values
are determined using pattern matching over coreferences of entities in sentences. Finally post processing will
filter, cleanup and infers some new slot values to enhance recall and accuracy.

We noticed that some tools that claim to be performant for using the hardware capabilities at hand
sometimes don’t really work as claimed and you should not always rely on one without a thorough A/B
testing of performance which we ended up in generating our in-house system for processing the corpus and
generating the index. Furthermore, on extracting slot values, pattern matching might not be the best options
but definitely can produce some good results at hand. We have plans on generating classifiers for slot value
extraction purposes. Entity resolution on the other hand was a topic we spent sometime on but could not
get to stable grounds for it. Entity resolution will distinguish between entities of the same name but different
contexts. Further improvements on this component of the system are required.

Acknowledgements

Christan Grant is funded by a National Science Foundation Graduate Research Fellowship under Grant
No. DGE-0802270. This work has also been supported in part by DARPA under FA8750-12-2-0348-2
(DEFT/CUBISM).

References

[1] John R Frank, Max Kleiman-Weiner, Daniel A Roberts, Feng Niu, Ce Zhang, Christopher Ré, and Ian
Soboroff. Building an entity-centric stream filtering test collection for trec 2012. In 21th Text REtrieval
Conference (TREC’12). National Institute of Standards and Technology, 2013.

[2] Trec kba stream corpora. http://aws-publicdatasets.s3.amazonaws.com/trec/kba/index.html.

[3] Gatordsr opensource project. https://github.com/cegme/gatordsr.

[4] Gatordsr mailing list. https://groups.google.com/forum/#!forum/gatordsr.

[5] Apache spark. http://spark.incubator.apache.org/.

[6] Tac kbp slots. http://www.nist.gov/tac/2012/KBP/task guidelines/TAC KBP Slots V2.4.pdf.

[7] Ace (automatic content extraction) english annotation guidelines for events.
http://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines v5.4.3.pdf.

[8] Heng Ji and Ralph Grishman. Knowledge base population: Successful approaches and challenges. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, pages 1148–1158, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics.

A KBA Task Background

The National Institute of Standards (NIST) hosted the Text REtrieval Conference (TREC) — Knowledge
Base Acceleration challenge in 2013. The task contains two main sections designed for this track, Cumulative
Citation Recommendation and Streaming Slot Filling. Due to the importance of knowledge bases, both of
these tracks aim to accelerating populating them, hence the title Knowledge Base Acceleration (KBA). Below
we describe each of these tracks and their purposes.

A.1 Cumulative Citation Recommendation (CCR)

For this track, assessors were instructed to “use the Wikipedia article to identify (disambiguate) the entity,
and then imagine forgetting all info in the WP article and asking whether the text provides any information
about the entity” [1]. Documents are divided according if an entity is mentioned and a relevance level to the
entity.

More specifically, a document may have a mention or be without a mention.

• Mention: Document explicitly mentions target entity, such as full name, partial name, nickname,
pseudonym, title, stage name.

• Zero-mention: Document does not directly mention target. Could still be relevant, e.g. metonymic
references like “this administration” → “Obama”. See also synecdoche. A document could also be
relevant to target entity through relation to entities mentioned in document – apply this test question:
can I learn something from this document about target entity using whatever other information I have
about entity?

The relevance of a document to a query is split into the four classifications.

• Garbage: not relevant, e.g. spam.
• Neutral: Not relevant, i.e. no info could be deduced about entity, e.g., entity name used in product

name, or only pertains to community of target such that no information could be learned about entity,
although you can see how an automatic algorithm might have thought it was relevant.

• Relevant: Relates indirectly, e.g., tangential with substantive implications, or topics or events of likely
impact on entity.

• Central: Relates directly to target such that you would cite it in the WP article for this entity, e.g.
entity is a central figure in topics/events.

A.2 Streaming Slot Filling (SSF)

The task is that given certain WP or Twitter entities (wiki/twitter URLs) and certain relations of interest
(given in Table 6), extract as many triple relations as possible (hence, slot filling). This can be used to
automatically populate knowledgebases such as free-base or DBPedia or even fill-in the information boxes
at Wikipedia. Below, you can view some examples of what it means to fill in a slot value; in each example
there is a sentence of interest that we wish to extract slot values from, an entity that the slot value is related
to, and a slot name which can be thought of as the topic of the slot value:
Example 1: “Matthew DeLorenzo and Josiah Vega, both 14 years old and students at Elysian Charter
School, were honored Friday morning by C-SPAN and received $1,500 as well as an iPod Touch after winning
a nationwide video contest.”

Entity: http://en.wikipedia.org/wiki/Elysian Charter School
Slot name: Affiliate
Possible slot values: “Matthew DeLorenzo”, “Josiah Vega”
Incorrect slot values: “C-SPAN”, “iPod Touch”

Example 2: “Veteran songwriters and performers Ben Mason, Jeff Severson and Jeff Smith will perform
on Saturday, April 14 at 7:30 pm at Creative Cauldron at ArtSpace, 410 S. Maple Avenue.”

Entity: http://en.wikipedia.org/wiki/Jeff Severson
Slot name: Affiliate
Possible slot values: “Ben Mason”, “Jeff Severson”, “Jeff Smith”
Incorrect slot values: “Creative Caldron”, “Art Space”

Example 3: “Lt. Gov. Drew Wrigley and Robert Wefald, a retired North Dakota district judge and former
state attorney general, unveiled the crest Friday during a ceremony at the North Dakota Capitol.”

Entity: http://en.wikipedia.org/wiki/Hjemkomst Center
Slot name: Contact Meet PlaceTime
Slot value: “Friday during a ceremony at the North Dakota Capitol”

In streaming slot filling, we are only interested in new slot values that were not substantiated earlier in the
stream corpus. In Table 6 you can view some slot values and their types, the comprehensive description of
which can be found at [6] and [7]. The details of the metric for SSF will favor systems that most closely
match the changes in the ground truth time line of slot values. This is done by searching for other documents
that mentioned an entity and exactly matched the slot fill strings selected by the assessors.

For similar approaches regarding last year’s track you can refer to [8].

Table 6: Ontology of Slot Name Categories
PER FAC ORG

Affiliate
AssociateOf
Contact Meet PlaceTime
AwardsWon
DateOfDeath
CauseOfDeath
Titles
FounderOf
EmployeeOf

Affiliate
Contact Meet Entity

Affiliate
TopMembers
FoundedBy

