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ABSTRACT
Traditionally, ad hoc retrieval aims at satisfying an informa-
tion need with a few highly relevant documents. This high-
precision approach works well for simple and clear queries.
When the information need becomes complex, a few top-
ranked documents may not provide satisfactory answer. As
a result, the user adapts to reformulate the query to ex-
plore more relevant information; the search engine evolves
to diversify results to cover the user’s real information need.
In cases where the user puts emphasis on high recall of the
results, the search process becomes increasingly laborious.

We propose a retrieval system that interacts with the user
to obtain high precision and high recall search results, while
minimizing the user effort. It iteratively explores the collec-
tion by a series of queries to optimize the recall, and refines
an active learning classifier to maintain the precision. We
built a prototype of the system for TREC 2013 Microblog
Track. Depending on the actual query, the system converges
to a stable decision on relevant/non-relevant tweets after
asking for a few hundred labels, which was used to retrieve
and rank 10,000 tweets (maximum allowance of the TREC
API).

1. INTRODUCTION
Traditionally, web searches are grouped into three categories:
informational, navigational and transactional [1]. Users with
informational search queries explore various information cov-
ering a broad topic (e.g., football). Navigational search
aims at the official website or home page of a single en-
tity (e.g., youtube). Transactional search queries are issued
when users plan to perform an action on the web, like or-
dering a book and downloading a software.

The three categories seem to cover user intentions in most
cases. However, there is no emphasis placed on these search
actions where the users wants a high, or even a full cover-
age of relevant documents pertaining to a query, while still
keeping a good precision. We call such task investigational
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search, as opposed to the three existing search classes.

There are cases when users requires more than just top-
ranked documents and investigational search is more desir-
able, among which is the microblog search. Searching tweets
to satisfy one’s information need can be a tricky task. Con-
sider the query “buying clothes online”, where the searcher
might look for online stores, coupons, discussions, sugges-
tions, or even remote try-on technologies that are related
to online apparel shopping. Since each tweet only contains
very brief comment from an individual perspective, a few
top-ranked tweets often deliver incomplete information and
biased opinion. It is almost inevitable for the searcher to re-
formulate the query and search multiple times, sift through
voluminous redundant and less relevant tweets, and finally
put discrete pieces together into a holistic story. The pro-
cess becomes increasingly laborious as the searcher proceeds
to look for yet another tweet with fresh information.

There are other scenarios when information need cannot be
satisfied by only a few top-ranked documents, not limited to
microblog search. The challenges arise for several reasons:

Poor single-document coverage The documents are so
short (or biased) that none of which independently
provides useful information. Shards of texts, such as
microblogs, are typical examples.

Elusive information need As the user realizes new rele-
vant contents in top-ranked documents, he internally
refines the definition of “relevance” and reformulates
the query. In other words, the mature definition of in-
formation need may not exist during the composition
of the initial query, but takes shape in the process of
interacting with the search engine. This is evidenced
by “sessions” in search logs.

Mismatched search goals Ad hoc retrieval assumes em-
phasis on high precision, but the user places emphasis
on high recall. In other words, missing any relevant
document imposes high risk. Such situations include
patent search, legal search/e-discovery, scientific liter-
ature review, medical record search, etc.

Various efforts are made by IR researchers and practitioners
to tackle these challenges. Query suggestion generates multi-
ple candidate queries to help the user clarify the information
need [3]. Diversified search aims to return a ranked list of



documents that complement each other to provide complete
coverage for a query [4]. However, due to the risk-averse
nature of traditional search engines, they tend to conserva-
tively return highly relevant results at the top, rather than
probe (and agitate) the user with border cases of relevant
vs. non-relevant documents. Therefore it is not ideal to
use a search engine to explore the complete set of relevant
information pertaining to a query.

By contrast, active learning is risk-seeking by design. A bi-
nary active learning classifier will proactively ask for clarifi-
cation on uncertain/border cases, learning a decision bound-
ary to separate the dataset into positive and negative classes
[5]. Unfortunately, active learning can be ineffective when
the class distribution is both extremely imbalanced and un-
known a priori, which is common in IR (number of relevant
vs. non-relevant documents for a query). Also, it is not typ-
ical settings for active learning when the dataset is too large
to allow full access, but only allow limited access every time
(e.g. via search).

In response to these challenges, we propose a retrieval sys-
tem that combines ad hoc retrieval and active learning in
a unified process. It interacts with the user to maximize
the opportunity of obtaining as complete as possible set of
documents satisfying an information need, while minimiz-
ing the user’s efforts. The system alternates between induc-
tive and deductive stages, emulating the iterative process of
knowledge development. In the inductive stage, it refines
information need by active learning; in the deductive stage,
it converts current knowledge into a new query and searches
the collection for more relevant documents.

Our user-in-the-loop system is designed for investigational
purpose, where high recall is prioritized. The user is an
“investigator” who would like to invest efforts to obtain cov-
erage of relevant documents as complete as possible. Exam-
ples of such users may include legal professionals performing
e-discovery tasks, patent agents searching for overlapping
inventions, researchers surveying related work, physicians
studying possible outcomes of a treatment, or even fans dig-
ging into every single piece of gossip about a celebrity.

The rest of the paper is organized as follows. Section 2 gives
an overview of the system architecture and each component.
Section 3 describes the implementation of the prototype that
we built for Microblog Track, which is an instantiation of the
system. Section 4 reports the evaluation and discusses about
the results. Finally, we conclude the paper in Section 5.

2. SYSTEM ARCHITECTURE
In this section, we give a high-level overview of the system
architecture and each component.

2.1 Overview
The system architecture is shown in Figure 1. At the very
beginning, the investigator comes up with an initial query.
After initial retrieval, a binary classifier will proactively se-
lect a few documents and ask the oracle (e.g. human inves-
tigator) to label them as “relevant” or “nonrelevant”. The
active learning goes on until the classifier’s prediction per-
formance is reasonably good. The system will then prepare
a new query based on the learned model, the original query,

and other heuristics; if necessary, the investigator can also
intervene and modify the query. The new query will re-
trieve another set of documents, which is merged into the
retrieved document pool. At this point, a second round of
active learning starts to classify the updated pool. The pro-
cess continues until the binary classifier performs reasonably
well without asking for labels.
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Figure 1: System architecture.

2.2 Search
This component performs ad hoc retrieval: given a query,
the retrieval function evaluates documents in the collection
and returns a ranked list of documents ordered by rele-
vance. The retrieval function can take any reasonable im-
plementation, such as Boolean retrieval model, vector space
model (e.g. BM25), language model (e.g. Dirichlet prior)
[2]. Many public search services, such as Google Search
API1 and Yahoo! BOSS API2, impose rate limits on the
number of documents returned by one query. As in TREC
2013 Microblog Track, the ranking function is Dirichlet prior
smoothing language modeling provided by TREC API, with
maximum number of retrieve 10,000.

Each time the retrieved documents will be merged into the
current retrieved document pool, which is the dataset for
active learning.

2.3 Active Learning
The task of this component is to learn a binary classifier to
separate relevant documents from non-relevant ones, in the
currently retrieved document pool. Normally, a search en-
gine can only passively receive explicit or implicit relevance
feedback from clickthrough data and estimate a relevance
model. In contrast, our system uses active feedback: the
active learning component proactively asks the investigator
to evaluate the relevance of documents, which may include
non-relevant/border cases. The promise of active learning
is that by allowing the algorithm to select data to label,
it will perform better with less training. Here it learns a

1https://developers.google.com/custom-search/
json-api/v1/overview
2http://developer.yahoo.com/boss/search/

https://developers.google.com/custom-search/json-api/v1/overview
https://developers.google.com/custom-search/json-api/v1/overview
http://developer.yahoo.com/boss/search/


good model of relevance with less labeling effort from the
investigator.

When newly retrieved documents arrive at the unlabeled
document pool, selecting documents needs special care. In
the starting round, the system has no labeled documents,
yet must select a subset from the unlabeled pool and ask for
labels. Moreover, it is desirable to include both positive and
negative examples in the subset for initial training. This
is known as the cold start problem commonly seen in data
modeling tasks. It is legitimate to assume that top-ranked
documents are likely to be relevant, while low-ranked doc-
uments are more likely to be non-relevant. Therefore, one
possible strategy is to select several top ranked documents
as well as cluster centroids of the the rest documents, and
ask for labeling.

In subsequent retrievals, even though the system has accu-
mulated some labeled examples and trained an inaccurate
classifier, newly retrieved documents are still unseen to the
classifier. If many new and similar documents fall into the
uncertain region of the classifier, active learning tends to
ask labels for all these documents. To accelerate the learn-
ing rate and reduce the labeling efforts, a sensible strategy
is to select random samples or cluster centroids of these un-
certain documents for labeling.

At the end of each inductive stage, we have a binary classifier
that automatically separates the unlabeled documents into
relevant and non-relevant classes.

2.4 Query Reformulation
When the binary classifier is perceived to be performing rea-
sonably well, the investigator may want to proceed and re-
trieve another set of documents for inspection. Undoubt-
edly, he hopes that the newly retrieved documents are both
relevant and different. To achieve this goal, a new query has
to be carefully formulated.

The set of feedback documents and classifier-judged docu-
ments from the previous inductive stage can be exploited
to update the query. Feedback-based query expansion is
known to be effective in improving recall while maintaining
precision. This component may also incorporate other query
expansion strategies, such as knowledge-based query expan-
sion. Furthermore, the investigator himself may intervene
and edit the query directly.

Clearly there is exploration-exploitation trade-off in query
reformulation component. Too much exploration will re-
trieve many non-relevant documents, increasing the burden
of labeling; too much exploitation will limit the system from
getting broad coverage. A good query reformulation strat-
egy should balance these two.

2.5 Stopping Criteria
The system stops whenever any of the following conditions
occurs:

• The retrieval function cannot pick up anymore unseen
relevant document;

• The binary classifier has become robust enough to la-
bel any unseen document;

• Labeling budget is used up.

After the system stops, the relevant document set can be
identified by applying the binary classifier on all the re-
trieved data. It should be noted that even in the first two
cases, it is not guaranteed that the system has identified
the “true complete set” of relevant documents. The cover-
age depends on the initial query, the design of the retrieval
function, selecting strategies of active learning, and query
reformulation strategy.

3. IMPLEMENTATION
In this section, we describe the prototype implementation of
the system for TREC 2013 Microblog Track.

The pseudo code for the prototype is displayed in Algo-
rithm 1. As we can see, this is a very general process. Many
suitable classifier can be used in the active learning process,
or the inner loop. A variety of query expansion techniques
could be integrated into the flow as well. This system is
able to be easily adapted to any other data collection tasks
as long as the API is provided. We will elaborate each step
of the retrieval process in next few subsections.

Algorithm 1 User-in-the-loop process

Input: Initial query q0
Output: A set of relevant tweets
1: loop
2: RetriT ← tweets collected through TREC API using

query qi
3: UnivT ← UnivT + RetriT
4: if i = 0 then
5: Do clustering on RetriT
6: CentT ← tweets closest to clustering centroids
7: UncertainT ← CentT+ top 10 tweets of RetriT
8: end if
9: repeat

10: Request human labels for UncertainT
11: LabeledT ← LabeledT + UncertainT
12: UnlabeledT ← UnivT − LabeledT
13: Classifier predicts labels for UnlabeledT
14: UncertainT is updated by classifier
15: until Classifier performs well
16: qi+1 ← q0+ query expansion based on current model
17: end loop

3.1 Text Preprocessing
Text are preprocessed for later usage. Specifically, tweets
starting with “RT” and non-English tweets are removed.
Near duplicates are also removed to reduce the burden on
humans and algorithms. These duplicates are added back
at last if the tweet they resemble are predicted as relevant.

3.2 Clustering
Clustering is only performed after the very first outer loop.
This is used to solve the cold start problem, where the classi-
fier has no training data to build model and thus do predic-
tion. Sampling tweets randomly for humans to label could



be another easier option. To increase the diversity of tweets
being selected, we do K-means clustering, and pick the clus-
ter centroid tweets. Top tweets retrieved from TREC API
are also included, with the assumption that they are mostly
positive tweets. Including them could reduce the possibil-
ity that initial training data set is dominated by negative
tweets.

3.3 Classification
We choose SVM with linear kernel as our classifier. Krovetz
stemming is performed on the text and stopwords are kept
because we found that many features with stopwords in-
cluded are capable of distinguishing relevant documents from
irrelevant ones. The features we used are unigrams, bigrams,
and trigrams. Only most frequent trigrams are kept to avoid
having a high dimensionality of feature space. After train-
ing, SVM will return a model, specifying the weights of each
feature. We use the linear combination of weights to com-
pute the confidence score of the unlabeled tweets. Among
these tweets, 10 positive and negative tweets with least ab-
solute confidence values are chosen, waiting for human to
label.

3.4 Human Labeling
We build a web interface to facilitate human annotation.
When displaying the tweets, important positive and negative
features extracted by SVM are highlighted using different
colors. Highlighting reduces user’s process time of one tweet.
However, admittedly, this could be misleading and chances
are increased that unhighlighted but important words might
slip away.

In addition to uncertain tweets, a random sample of confi-
dent tweets are also presented in the webpage. This helps
users to monitor the progress of the classifier. When the
classifier is doing well on both uncertain tweets and confi-
dent tweets, it’s usually a good sign to stop the current inner
loop and proceed to the next outer loop, namely, using the
expanded query to retrieve more tweets through TREC API.

Expanded query, updated per each inner loop, is also shown
on the interface. Users are allowed to modify the query,
which is useful for domain experts.

3.5 Query Expansion
We use important positive features as candidates for query
expansion. Since TREC API supports weighting of terms,
each feature’s weight provided by SVM model is directly
used as the weight for query. In the future work, we should
use external knowledge, such as knowledge base as a source
of query expansion.

Note that the initial query is always kept in later queries.
This approach alleviates the problem of semantic drift.

3.6 Reranking Tweets in Submitted Runs
Since we have cast the ranking problem as a task of classifi-
cation, we need to rerank the tweets for submissions. There
are two quick ways to obtain a ranked list of tweets.

1. Rank tweets by the confidence score using the weights
of features given by SVM

2. Rank tweets by Dirichlet model, which is already im-
plemented by the TREC API.

With the two ranking methods at hand, the next thing is to
combine them to form ranking lists. To this end, we divide
the entire set of retrieved tweets into four parts.

• Part (a): Labeled positive tweets

• Part (b): Labeled negative tweets

• Part (c): Unlabeled tweets predicted as positive by
SVM

• Part (d): Unlabeled tweets predicted as negative by
SVM

Tweets from part (b) are discarded for all the submissions.
Note that in the four submissions, the rank of tweets are
calculated separately for part (a), (c), and (d). This is to
ensure that tweets from part (a) are always ranked higher
than tweets from part (c) , which are in turn ranked higher
than part (d).

The ways we form our four ranking lists are listed as follows:

1. FSsvm: Rank tweets in (a), (c), and (d) by SVM
respectively, and concatenate them.

2. Direrank: Labeled positive tweets ranked by Dirich-
let model, concatenated by unlabeled tweets ranked
by Dirichlet model. In particular, we submit to the
TREC API the final query generated by SVM and get
a ranked list of tweets returned by API. If the tweets
retrieved in the process are in the returned list, rank
them according to the returned list. If they are not,
rank them according to (1), and append them to the
returned list.

3. Avgrank: Average rank of SVM and Dirichlet model.
Tweet ranking is decided by rank3 = rank1 + rank2.

4. RvsDir: Tweets that are ranked high by SVM, but
low by Dirichlet model. This is used to guarantee that
hard tweets found by the system could be judged by
TREC raters. For part (a) and (b), rank is decided
by the formula rank4 = rank1 − rank2. For part (c),
the formula is rank4 = rank1 + rank2. Tweets with
smaller rank scores are ranked higher, even though the
score could be negative.

4. EXPERIMENTS AND DISCUSSIONS
Performance evaluation is shown in Table 1. To illustrate
the set relations of NIST qrels, our labeled set, and the 4
submitted runs, Venn diagrams are drawn in Figure 2 - 6.

In total, 32,237 tweets were labeled for 60 topics, half the
number of tweets (qrels) evaluated by TREC assessors. It
means that on average 537 tweets were labeled to train a bi-
nary classifier for each topic, a non-trivial amount of human
efforts. We argue that user-in-the-loop retrieval system tar-
gets at users who are willing to invest substantial time and
efforts in the search task.



In Figure 2, Set G and H are disputes between NIST qrels
and our labels. A second inspection reveals that most NIST-
judged relevant tweets are indeed relevant, while many NIST-
judged non-relevant tweets might also be justified as rel-
evant. It means that our approach missed some relevant
tweets in Set A. Future work will improve the components
for a higher recall. It’s also worth noting that a good pro-
portion of tweets labeled as positive by our system is not
included in the NIST evaluation pool at all. This implies
the inadequacy of the “cut-off-at-K” pooling strategy used
in the TREC evaluation when high-recall is emphasized.

SVM classifiers tend to draw the decision boundary conser-
vatively, especially when positive training examples are few.
Therefore, it maintains good precision at the retrieved set
level (see Figure 5. However, pure SVM scores f(x) = wTx
do not rank high-quality tweets to the top, since tweets
with extremely high score tend to be overfitting cases. Such
tweets merely repeat words with positive weights. Dirich-
let prior smooths the document language model, promot-
ing documents with diverse on-topic words, penalizing those
overfitting tweets. However, the smoothed language model
may also promote non-relevant (false positive) tweets, which
will hurt precision. By averaging the ranks of SVM and
Dirichlet model, we obtain improved precision at the top
(Table 1, Avgrank).

R-prec MAP P@30
FSsvm 0.4882 0.4413 0.6744
Direrank 0.5172 0.4735 0.6967
Avgrank 0.5033 0.4570 0.7061
RvsDir 0.4931 0.4010 0.5822
Auto.: average best 0.5214 0.4820 0.7222
Auto.: average median 0.2721 0.2126 0.4217
All: average best 0.6086 0.5737 0.7989
All: average median 0.2834 0.2212 0.4311

Table 1: Performance evaluation. Auto.: 65 automatic runs;
All: all runs (65 automatic + 6 manual); average best: aver-
age of best performance per topic; average median: average
of median performance per topic
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Figure 2: Venn diagram of NIST qrels and our labeled set.
Numbers are sizes of corresponding sets.
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Figure 3: Venn diagram of NIST qrels, our labeled set, and
FSsvm. Numbers are sizes of corresponding sets.
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Figure 4: Venn diagram of NIST qrels, our labeled set, and
Direrank. Numbers are sizes of corresponding sets.

5. CONCLUSIONS
In this study, we proposed a retrieval system for investiga-
tional purposes, where high recall is prioritized. It is justified
by many use cases, including e-discovery, literature review,
medical record search, etc. The system brings ad hoc re-
trieval and active learning in a unified process, aiming to
reduce the user’s effort in pulling out as many relevant doc-
uments as possible.We built a prototype to demonstrate the
system in TREC 2013 Microblog Track. Various parts of the
system can be improved in future work, so that with less la-
beling effort, the system still maintains or even improves on
both precision and recall.
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Figure 5: Venn diagram of NIST qrels, our labeled set, and
Avgrank. Numbers are sizes of corresponding sets.

4705 

56514 

3743 

18268 

3879 

4302 

427 

1452 

71279 

M 3744 

J 2473 

N 1298 

I 35693 

L 1254 

K 15521 

RvsDir 
60000 

O 14 

P 1 

Q 2 

NIST qrels 

32237 
Labeled set 

Figure 6: Venn diagram of NIST qrels, our labeled set, and
Rvsrank. Numbers are sizes of corresponding sets.

6. REFERENCES
[1] A. Broder. A taxonomy of web search. In ACM SIGIR

forum, volume 36, pages 3–10. ACM, 2002.

[2] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval, volume 1.
Cambridge University Press Cambridge, 2008.

[3] Q. Mei, D. Zhou, and K. Church. Query suggestion
using hitting time. In Proceedings of the 17th ACM
conference on Information and knowledge management,
pages 469–478. ACM, 2008.

[4] K. Raman, P. N. Bennett, and K. Collins-Thompson.
Toward whole-session relevance: Exploring intrinsic
diversity in web search. In Proceedings of the 36th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13,
pages 463–472. ACM, 2013.

[5] B. Settles. Active learning literature survey. University
of Wisconsin, Madison, 2010.


	Introduction
	System Architecture
	Overview
	Search
	Active Learning
	Query Reformulation
	Stopping Criteria

	Implementation
	Text Preprocessing
	Clustering
	Classification
	Human Labeling
	Query Expansion
	Reranking Tweets in Submitted Runs

	Experiments and Discussions
	Conclusions
	References

