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ABSTRACT
This paper provides an overview of the work done at the Cen-
trum Wiskunde & Informatica (CWI) and Delft University of Tech-
nology (TU Delft) for different tracks of TREC 2013. We par-
ticipated in the Contextual Suggestion Track, the Federated Web
Search Track, the Knowledge Base Acceleration (KBA) Track, and
the Web Ad-hoc Track. In the Contextual Suggestion track, we fo-
cused on filtering the entire ClueWeb12 collection to generate rec-
ommendations according to the provided user profiles and contexts.
For the Federated Web Search track, we exploited both categories
from ODP and document relevance to merge result lists. In the
KBA track, we focused on the Cumulative Citation Recommenda-
tion task where we exploited different features to two classifica-
tion algorithms. For the Web track, we extended an ad-hoc base-
line with a proximity model that promotes documents in which the
query terms are positioned closer together.

1. INTRODUCTION
We have participated in four tracks this year. The Contextual

Suggestion track is introduced in Section 2, where our person-
alised approach on top of the ClueWeb12 collection is presented.
Section 3 shows our results on the Federated Web Search track,
where we participated in the two available tasks: resource ranking
and results merging. Our participation in the Knowledge Base Ac-
celeration is described in Section 4, extending our participation of
last year with further experiments and new approaches. Finally, a
proximity model applied to the Ad-hoc Web track is presented in
Section 5.

2. CONTEXTUAL SUGGESTION
In this section we describe our work in the contextual suggestion

track, which represents our first participation in this track.

2.1 Track Description
The Contextual Suggestion Track investigates search techniques

for complex information needs that depend on context and user in-
terests. Input to the task are a set of profiles (users), a set of ex-
ample suggestions (attractions), and a set of contexts (locations).
Each attraction includes a title, a description, and an associated
URL. Each profile corresponds to a single user, and indicates the
user’s preference with respect to each attraction using two ratings:
one for the attraction’s title and description and another for the at-
traction’s website. Finally, each context corresponds to a particu-

lar geographical location (a city and its corresponding state in the
United States).

For each pair of context and profile, a ranked list of up to 50
ranked suggestions (attractions) should be generated. Each sugges-
tion should be appropriate to both the user profile and the context.
The description and title of the suggestion may be tailored to reflect
the preferences of that user.

The source from where the suggestions are selected may be ei-
ther the ClueWeb12 collection or the open web. Our submission
was based on the former, in order to ensure reproducibility and fur-
ther comparison of our results.

2.2 Initial Ideas
At the beginning we aimed to use approaches based on Collab-

orative Filtering [27]. However, after taking a closer look into the
problem, we realised that the items (documents) for which we have
some information – i.e., the rated attractions – correspond to a con-
text different to any of the target contexts. That is, whereas the
ratings were given in the context of Philadelphia, PA, the contexts
for which suggestions have to be generated are other metropolitan
areas different to that one. Therefore, they cannot be used directly
– since the potential candidates naturally depend on the context –
which limits the scope of these techniques since they are based on
the word of mouth effect. For this reason, we decided to explore
content-based techniques [21], which represent users and items in
the same space, and generate recommendations based on some dis-
tance measure. We discuss our approach in Section 2.3.

We considered additional methods to exploit the ratings, but we
were not able to generate a valid submission based on them. For
instance, we also applied neighbour-based methods [11] to find
suggestions based on the documents similar (not the documents
liked or rated, as in standard collaborative filtering) to the user’s
neighbours; these neighbours may be found by exploiting textual
or rating-based similarity between user profiles. Besides, a sep-
arate learning for the positive and negative aspects of each user
profile was also considered, and will be explained in Section 2.3.6.

2.3 Methodology
Our approach is to compare text of user’s attractions with doc-

uments that mention a context. The first step we did in this task
was to find all documents from the ClueWeb12 collection that men-
tion each context. In parallel, we generated user profiles based on
the descriptions of the attractions rated by them. Finally, we used
the cosine similarity between the context documents and the user
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Figure 1: Contextual Suggestion Track. Workflow followed to
generate contextual suggestions.

profiles, as represented in the |V |-dimensional vector space, where
each element in the vector is a pair of term id and the frequency of
that term in the document, |V | is the size of the vocabulary [28].
Based on these similarity values, we ranked the documents tailored
to each user. Figure 1 shows the complete procedure that we fol-
lowed to generate a ranked list of documents for the (context, user)
pairs. In the following sections we discuss our approach in detail.

2.3.1 Document Filtering (Finding Contexts)
The first step in the pipeline presented in Figure 1 consists of

finding the most appropriate documents related to a context. For
this task, we are interested in maximising the precision of this fil-
tering, instead of the recall – that is, we want to be confident enough
that the filtered documents mention the specific target context, al-
though in this process we may lose some (potentially relevant) doc-
uments due to typographical or parsing errors. With this goal in
mind, we focused on extracting the relevant documents for each
context from the ClueWeb12 collection and created smaller sub-
collections. Thanks to this filtering, the next steps – i.e., the rank-
ing generation – can be executed using a smaller set of documents
(see Table 1) which in fact allows for more efficient processing.

Sub-collections were made as follows. A MapReduce job read
the document content from the entire collection and kept only those
documents that mention exactly the context as provided by the or-
ganisers, ignoring those documents where the target city appeared
more than once, but with different states. We decided not to keep
such documents as they could (potentially) consist of lists of city
names, which we believe would provide zero interest to any user.
To do this, we used a regular expression to check the mention of
contexts in the document – that is, the pair (city, state) mentioned
above –, along with another regular expression checking if the city
was mentioned near another state different from the target state.
For example, for the context Springfield, IL, we would include in its
corresponding sub-collection all the documents where Springfield
and IL are mentioned and only spaces or commas are in between,
however, a document would not be valid if, besides Springfield,
IL, it also contains Springfield, FL. Algorithm 1 shows the pseudo-
code of this step.

After filtering, we found 13, 548, 982 documents that mention at
least one of the contexts among the total number of 733, 019, 372
documents from the ClueWeb12 collection. Table 1 shows the
number of documents found for each context, along with the inter-

Input: ClueWeb12 WARC files, contexts: <contextId, (city,
state)>

Output: <(contextId, docId), doc Raw Content> pairs
begin

extract document id: docId
content← HTML content of the map input value
for context ∈ contexts do

if context ∈ content then
if (city, ??) /∈ content then

?? stands for other state
different than the target one
outKey← (contextId, docID)
outVal← content
emit(outKey , outVal)

end
end

end
end

Algorithm 1: Contextual Suggestion Track. Pseudo-code for
finding contexts

section of these documents with those provided by the organisers
as track sub-collection1.

2.3.2 Modelling Documents
In this section, we describe how we transformed the candidate

documents in each sub-collection into its representation in the Vec-
tor Space Model (VSM). First, we generated a dictionary that has
a mapping between terms and their integer ids. To decrease the
size of the dictionary and remove useless terms, we filtered out the
HTML tags from the content of the documents, then we removed
stop-words and non-alphanumeric terms. Algorithm 2 shows the
pseudo-code for generating the collection’s dictionary. After that,
we used this dictionary to transform documents into vectors of
weighted terms, where the weight of each dimension (term) is the
standard term frequency tf. We implemented this process as a Map-
Reduce job that reads the ClueWeb12 WARC files and transforms
them into vectors of pairs, where each pair is the term id and its
corresponding frequency. Algorithm 3 gives specific details on this
job. Since now we deal with a representation based on integer in-
stead of string vectors for each sub-collection of documents, the
size of the sub-collections will decrease and a faster processing will
be possible. Table 2 shows the effect on the collection size after
cleaning, transforming, and optimising the vector-based document
representation.

2.3.3 Modelling Users
We generate each user’s profile according to the user’s prefer-

ence for the given attractions and the descriptions of those attrac-
tions. The initial idea was to use the content of the attractions in-
stead, by extracting the HTML content of the attractions websites.
However, we found a coverage problem between the ClueWeb12
collection and this set of attractions: first, only 7 pages were found
with a one-one URL mapping, which ended up to 35 by match-
ing hostname and considering URL variations such as adding or
removing www and http(s); second, we found that the user ratings
for attraction’s descriptions and websites were very similar in most
of the cases. Third, to participate as a ClueWeb12 submission we
could not crawl the attractions from the Open Web or use any other
external information. Figure 2 shows a histogram of the difference
1https://sites.google.com/site/treccontext/
trec-2013/subcollection
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Table 1: Contextual Suggestion Track. Number of documents
per context in our sub-collections, in the provided one by the or-
ganisers (given), and the intersection (and ratio) between them.

Context Number of docs given intersect Ratio

Springfield, IL 138996 775 206 26.58
Cheyenne, WY 105864 599 190 31.72
Fargo, ND 160525 665 193 29.02
Kennewick, WA 51675 414 106 25.60
La Crosse, WI 74479 539 122 22.63
Valdosta, GA 61196 423 125 29.55
Houma, LA 40146 246 62 25.20
Greenville, NC 81836 956 82 8.58
Hickory, NC 67752 796 107 13.44
Cincinnati, OH 586429 880 306 34.77
St. Louis, MO 633701 992 339 34.17
Asheville, NC 313093 817 395 48.35
Beckley, WV 45116 390 114 29.23
Myrtle Beach, SC 201153 696 329 47.27
Orlando, FL 912922 1125 377 33.51
Washington, D. C., DC 4165769 1456 571 39.22
Anniston, AL 42111 377 90 23.87
Crestview, FL 13728 499 78 15.63
Youngstown, OH 84688 436 107 24.54
Macon, GA 140537 565 174 30.80
Monroe, LA 72972 633 88 13.90
Tampa, FL 637727 1097 355 32.36
Albany, NY 349842 1122 307 27.36
Sumter, SC 32670 548 72 13.14
Wenatchee, WA 57243 419 106 25.30
Lakeland, FL 106887 472 161 34.11
Appleton, WI 102026 525 185 35.24
Lewiston, ID 30373 499 96 19.24
Lima, OH 50061 585 107 18.29
Rochester, NY 429068 1044 323 30.94
Gulfport, MS 55055 400 150 37.50
Johnson City, TN 64378 826 129 15.62
Lynchburg, VA 101923 472 126 26.69
Atlanta, GA 1587486 1161 550 47.37
Williamsport, PA 74581 467 128 27.41
Corpus Christi, TX 172425 821 191 23.26
Dothan, AL 67954 372 106 28.49
Parkersburg, WV 46826 531 135 25.42
Wichita, KS 264770 687 242 35.23
Greenville, SC 230483 793 200 25.22
Yakima, WA 85636 530 159 30.00
Cedar Rapids, IA 138705 581 193 33.22
Kahului, HI 26491 667 83 12.44
Harrisburg, PA 243803 743 298 40.11
Bismarck, ND 106302 494 158 31.98
Saint George, UT 15686 671 45 6.71
Montgomery, AL 185157 693 185 26.70
Palm Bay, FL 33922 1064 69 6.48
Rockford, IL 160996 435 197 45.29
Manhattan, KS 95818 698 152 21.78

13548982 33696 9369

between the ratings for descriptions and websites – i.e., a negative
value denotes that the rating for the website is higher than for the
description. We can observe that most of the values are concen-
trated around 0, which means that no difference is observed be-
tween the two ratings. We have to note, however, that this pattern
may change depending on the actual attraction analysed, as in Fig-
ure 3 where a larger shift is observed for the attractions with id 52
(Eastern State Penitentiary) and 57 (Chinatown).

Table 2: Contextual Suggestion Track. Effect of optimisation
of the vector representation on the size of the collection.

Dataset Size (GB)

Subcollection 918
Vector representation 40

Data: ClueWeb12 WARC files, stop_words (from distributed
cache)

Input: <(contextId,docId), WARC record>
Output: <term, termId>
begin mapper

content← HTML content of the map input value;
cleaned_content← jsoup.clean(content);
tokens← tokenize(cleaned_content);
for each tok ∈ tokens do

docTerms←Map<String,Long> ;
if tok /∈ stop_words then

if tok /∈ docTerms then
docTerms.add(term,1);

end
end

end
for each term ∈ docTerms do

emit(term,1);
end

end
begin reducer

termIdMap←Map<String,Integer>;
if term /∈ termIdMap then

termIdMap.add(term,id);
end
for each term ∈ termIdMap do

emit (term, id);
end

end
Algorithm 2: Contextual Suggestion Track. Pseudo-code for
generating collection dictionary
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Figure 2: Contextual Suggestion Track. Histogram for rating
differences considering all the contexts (description rating -
website rating).
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Figure 3: Contextual Suggestion Track. Histogram for rating differences for two attractions.

Data: ClueWeb12 WARC files, termIdMap<term,id>
(dictionary from distributed cache)

Input: <(contextId,docId), WARC record>
Output: <(contextId, docId), vector(terms,tf)>
begin

content← HTML content of the map input value;
cleaned_content← jsoup.clean(content);
tokens← tokenize(cleaned_content);
Map<Integer,Integer> : docTermsFreqMap<termId,tf>;
for each token ∈ tokens do

termId← termIdMap.get(token);
if termId /∈ docTermsFreqMap then

docTermsFreqMap.put(termId,1) ;
else

docTermsFreqMap.get(termId)++ ;
end

end
end

Algorithm 3: Contextual Suggestion Track. Pseudo-code for
transforming documents into vectors

Inspired by the best approaches of last year [18, 35], we used
three different methods to represent the users profiles:

• generate user profiles based only on the attraction descrip-
tions, without taking into account the ratings

• generate positive user profiles based on the attraction de-
scriptions that have positive ratings from each user

• generate negative user profiles based on the attraction de-
scriptions that have negative ratings from each user

Since the ratings are on 5-point scale, each rating represents a
user’s level of interest in visiting the corresponding attraction, the
levels ranging from “0” for strongly uninterested to “4” for strongly
interested. In this context, we consider the “2.5” as threshold be-
tween negative and positive ratings.

Moreover, we need the same representation between the user
profiles and the candidate documents. Because of this, we trans-
formed these profiles into weighted vectors following the same
methodology we used to transform the documents (see Section 2.3.2).

2.3.4 Personalising Ranking
To generate the final ranking (given a pair of context and user

information), we computed the similarity in the vector space rep-
resentation between the document and user profile representations,

as presented before in Sections 2.3.2 and 2.3.3. With this goal in
mind, we tested the Jaccard and cosine functions as similarities,
which are defined like:

sim(u, d) =
|u ∩ d|
|u ∪ d| =

∑
i δ(ui == di! = 0)∑
i δ(ui! = 0||di! = 0)

(1)

sim(u, d) = cos(u, d) =

∑
i ui · di√

‖u‖2
√
‖d‖2

(2)

where δ is the function that outputs 1 if its argument is true. Note
that since Jaccard does not take into account the actual value en-
coded in the vector (in our case, frequencies), we binarise the vec-
tors prior computing the Jaccard similarity.

We implemented a MapReduce job to compute these similarities,
in part because they involve a large dimensional vocabulary space,
mainly produced by the document representation. This MapReduce
job only involves map tasks, where the user vectors are added to
the distributed cache, and then, when the similarity is computed, it
outputs the tuple (context, document, user) as key and the actual
similarity as value.

2.3.5 Generating Description and Titles
As mentioned before, besides producing a document ranking for

each user and context, we also have to generate a description and
title for each suggestion, and if possible, tailored to the users, that
is, considering their preferences as means to explain why such doc-
ument is presented.

We decided to only provide personalised descriptions, since we
consider the title as a global property of the document, inherent to
its content and, thus, should not be different for each user. In this
situation, we generated the titles by extracting the title or heading
tags from the HTML content of the document. On the other hand,
we observed the task of generating descriptions similar to snippet
generation where the query is the combination of context and user
preferences [22]. Because of that, we aimed at obtaining the most
relevant sentences for the user within the document in a particu-
lar context. To do this, we first split the document into sentences
by using the Java BreakIterator class2 which can detect sentence
boundaries in a text. We then followed similar steps to those of the
document ranking but at a sentence level, i.e., filter out those sen-
tences not mentioning the context and ranking the remaining sen-
tences according to their similarity with the user profile. Finally,
we assumed that larger descriptions were preferred, and hence, we
concatenated sentences – in decreasing order of similarity – until

2http://docs.oracle.com/javase/6/docs/api/
java/text/BreakIterator.html
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the maximum number of bytes 512 was reached, controlling to not
combine two very similar sentences to decrease the redundancy.

2.3.6 Sub-Collection Post-Filtering
In this section, we present a post-filtering method we ran on each

sub-collection. Due to temporal and technical issues, we were not
able to submit the results after applying this filtering; we analyse in
more detail its potential effect in Section 2.4.

The main motivation to perform this post-filtering was the fact
that a webpage mentioning a context does not provide enough ev-
idence that such webpage is about an attraction worth to visit, and
thus, whether it should be recommendable at all. To address this
problem we built a classifier based on the content of selected web-
sites from ClueWeb12. These selected websites aimed to capture
well-known travel and tourism related pages, in particular we con-
sidered: yelp, tripadvisor, wikitravel, zagat, xpedia, orbitz, and
yahoo-travel. We used a decision tree classifier as implemented
by Weka3, where the positive labels correspond to every page un-
der the domains aforementioned (we found 171, 188 documents),
whereas the negative labels were assigned based on a random num-
ber of pages not contained in the previous positive sub-collection.
This is a typical unbalanced classification problem (or imbalanced
dataset) [34], where one class (the negative one, in our case, not at-
traction) has a much larger number of examples than the other one,
which is, in fact, the class of interest. To allow a fair learning by the
classifier, we decided to not account for this bias and selected the
same number of negative documents as positive, something known
as subsampling in Machine Learning; we have to note, however,
that other strategies exist in the literature [3].

Once the classifier was built, we labelled each document in our
context-dependent sub-collections as either positive (similar to web-
pages of the selected travel and tourism related sites) or negative,
and perform the same ranking approach presented in Section 2.3.4
but only with the positive documents.

2.4 Analysis
Now we analyse the approach we submitted and how it compares

to other approaches that we wanted to try but were unable to submit
on time (see Section 2.2). We first discuss the effect of the sub-
collection creation may have in our results, and then we experiment
with other similarity and formulations for the ranking step.

2.4.1 Effect of the Sub-Collection
As mentioned in Section 2.3.1, the organisers provided a sub-

collection from ClueWeb12 specifically tailored for this task4. The
first analysis we present is a comparison between the submitted
ranking (based on filtering the entire ClueWeb12 collection) and
the same algorithm (Section 2.3.4) using the given sub-collection.
In this way, we can discriminate which part has a larger effect in
the final result, the filtering method to create sub-collections or the
actual ranking function.

The results are presented in Table 3. We present the MRR met-
ric as computed by the evaluation script provided by the organis-
ers. However, since we are also evaluating unsubmitted runs, we
should not use the judgements for the descriptions, since eventu-
ally the descriptions could be different for every method, and thus
their relevance may differ (in contrast with the document relevance,
which we assume to be more consistent and stable). Hence, MRRd

and P@5d represent the performance of these methods when the
3http://www.cs.waikato.ac.nz/ml/weka/
4As described by the organisers: “this sub-collection was created
by issuing a variety of queries targeted to the Contextual Sugges-
tion track on a commercial search engine.”

description judgements are ignored (d here stands for document).
Additionally, P@5dḡ shows the value obtained when the geograph-
ical assessments are not considered.

Table 3: Contextual Suggestion Track. Performance of our
method when the entire ClueWeb12 collection or the given sub-
collection are used.

Method MRR MRRd P@5d P@5dḡ

IBCosTop1 0.0559 0.0745 0.0587 0.2202
IBCosTop1 (given) 0.0528 0.0955 0.0484 0.0780
With classifier 0.0090 0.0179 0.0045 0.0260
With classifier (given) 0.0256 0.0540 0.0136 0.0159

We observe in this table that the documents originally retrieved
were relevant for the user but not geographically appropriate, since
the value of P@5dḡ improves significantly. This is in contrast with
what happens when using the given sub-collection for this method,
mostly because the documents were tailored to be appropriate for
each context. Additionally, the performance in terms of MRR is
higher when using the given sub-collection than our filtered sub-
collections from the entire ClueWeb12 collection. This is a clear
evidence that the filtering step should be refined.

As already presented in Table 1, and now in more detail in Ta-
ble 4, the intersection between our sub-collections and the given
one is very low. This is very clear when we use the classifier pre-
sented before as a post-processing step, since we were not able to
submit this run, and thus, most of the documents recommended
by this approach (since its intersection with our other method is
very low) remain unjudged. This, in turn, decreases the final per-
formance of the method based on the classifier and the complete
collection. In fact, the performance improves again when the given
sub-collection is used, although now the values are lower than be-
fore. This may also be due to a low coverage of the relevance as-
sessments and further analysis is needed in this regard.

Table 4: Contextual Suggestion Track. Intersection measures
between submitted and unsubmitted approaches. x \ y repre-
sents the set difference or relative complement, i.e., those ele-
ments in x that are not y. Jacc stands for Jaccard similarity.

Method a Method b |a \ b|/|a| |b \ a|/|b| Jacc(a, b)

IBCosTop1 IBCosTop1 (given) 0.99 0.98 0.01
IBCosTop1 Classifier 0.95 0.86 0.04
Classifier Classifier (given) 0.99 0.80 0.01

2.4.2 Effect of the Similarity Function
As we mentioned at the beginning in Section 2.2, one of our first

ideas was to exploit collaborative filtering techniques for this task.
However, as already discussed, this is not possible with the data
available. Nonetheless, inspired by the nearest-neighbour tech-
niques from the recommender systems literature [11], we devel-
oped some approaches able to capture the concept of collaborative
recommendation. Basically, we start with a generated set of rank-
ings {Rui}i respectively assigned to user ui. Then, for every user
u we find a set of users (neighbours) Vu based on which we will
generate the final recommendations. To aggregate the rankings Rv

http://www.cs.waikato.ac.nz/ml/weka/


for v ∈ Vu we used Borda aggregation, a standard technique from
rank aggregation literature [12]. In this setting, there are two pa-
rameters we have tested: the amount of neighbours (size of |Vu|)
and how the neighbours are selected (user similarity metric).

In Table 5 we show the best results we found using these meth-
ods. We observe that we never outperform the results of the sub-
mitted run, this may be due, like before, to a low coverage of the
relevance assessments, since these approaches were not evaluated.
Regarding the best parameters, 5 neighbours obtains the best results
(we also tested with 10 and 50 neighbours), and the best similar-
ity metric depends on the actual method used: when IBCosTop1 is
used, the Pearson’s correlation similarity based on the ratings given
by the users to the example attractions achieves the best results; on
the hand, when the input uses the post-filtering based on the clas-
sifier, best results are obtained with the Jaccard similarity between
the textual representation of the users.

Table 5: Contextual Suggestion Track. Performance of varia-
tions of our method. NN stands for Nearest Neighbour.

Method MRR MRRd P@5d P@5dḡ

IBCosTop1 0.0559 0.0745 0.0587 0.2202
IBCosTop1 + 5NN text cos 0.0455 0.0562 0.0330 0.1486
IBCosTop1 + 5NN text Jacc 0.0433 0.0521 0.0330 0.1294
IBCosTop1 + 5NN rating cos 0.0429 0.0553 0.0349 0.1477
IBCosTop1 + 5NN rating Pearson 0.0450 0.0580 0.0358 0.1560
Classifier + 5NN text cos 0.0045 0.0112 0.0036 0.0251
Classifier + 5NN text Jacc 0.0045 0.0121 0.0045 0.0260
Classifier + 5NN rating cos 0.0045 0.0090 0.0027 0.0242
Classifier + 5NN rating Pearson 0.0045 0.0067 0.0018 0.0233
Positive profile 0.0396 0.0588 0.0359 0.1498
Negative profile 0.0045 0.0045 0.0009 0.0152
Positive + 5NN text cos 0.0426 0.0572 0.0341 0.1399

Additionally, we also tested profiles based only on the attrac-
tions with positive ratings [18, 35]. As a sanity check, we found
that the recommendations based on the negative profile obtain very
low performance. Interestingly, recommendations based only on
the positive profile are competitive, although not as good as the
submitted approach. In any case, we confirm that the collaborative
nearest-neighbour approach also reduces the performance for this
method in most of the situations.

2.5 Discussion
In this first attempt of the track we have faced several challenges:

dealing with a very large dataset like the ClueWeb12 collection, fil-
tering it to make it more manageable, personalising the ranking in
different ways, and post-filtering the results to produce more touris-
tic results. Based on our performance, there is enough room to im-
prove in most of these steps. The filtering step, however, seems to
be a determining factor in the subsequent chain of events.

While doing the aforementioned analysis, we identified a subset
of documents that were submitted as part of the ClueWeb12 collec-
tion whose corresponding URLs were also submitted (by other par-
ticipants) as Open Web documents. We noticed that the subjective
assessments (document judgements) are not consistent, especially
in the number of 3’s, 4’s, and −2’s received by the same document
in each dataset. This fact may indicate a bias towards higher per-
formance for the methods using documents from the Open Web.

3. FEDERATED WEB SEARCH
In this section we describe our work in the federated web track.

3.1 Track Description
The Federated Web Search track investigates techniques for the

selection and combination of search results from a large number of
real on-line web search services. The goal of this track is to evalu-
ate approaches to federated search at very large scale in a realistic
setting, by combining the search results of existing web search en-
gines. This year, two tasks were available: resource selection (se-
lecting the search engines that should be queried) and results merg-
ing (combining the results into a single ranked list). We participated
in both tasks and present our contribution in the next sections.

3.2 Resource Selection Task
The input for this task is a collection provided by the organisers

(FedWeb 2013 collection) consisting of sampled search results from
157 search engines. Then, for every query the system should return
a ranking such that the most appropriate search engines are ranked
highest without using the actual results for the given query (which
were, in fact, provided after the submission deadline of this task).

We used two different strategies to produce the resource ranking,
then a third submission was generated based on their combination.

ODP based run. The Open Directory Project (ODP)5 is a human-
edited directory of the Web, constructed and maintained by volun-
teers. In this directory, each URL has a category assigned, which
can contain sub-categories. Besides, it has a service where it returns
a list of categories in response to a query. We used this service6 to
get the categories associated to each resource and to every query.
We then computed similarities between the two lists of categories
using cosine and Jaccard similarities (see Section 2.3.4), consider-
ing and ignoring the ranking information from each category. For
the queries, we also experimented with using the actual query text
in the computation of the similarity. We did not observe any signif-
icant difference between these variations, so we will only report the
results for the simplest alternatives (i.e., no order, no query text).

Retrieval model based run. This strategy concatenates all the
snippets from each resource and indexes them as a single docu-
ment, so that when a query is issued, the aggregated documents (re-
sources) are ranked according to their relevance with respect to the
query. We built a different Lucene7 index for each retrieval model
we tested: a simple TF-IDF method, BM25 (with varying param-
eters k1 and b), two language model approaches (Jelinek-Mercer
with parameter λ and Dirichlet with µ). Besides, since each snip-
pet has both a title and a description, we tested considering only
the title field to match the query, only the description field (desc),
or both.

Hybrid run. This run takes two rankings as input for each query.
Then it aggregates the information using a Borda voting mecha-
nism [12], where each document gives a number of votes inversely
proportional to its ranking (the higher the position, the lower the
number and the larger the number of votes). Finally, documents
are sorted according to the number of votes (the higher, the better).

3.3 Results Merging Task
For the result merging task, the input consists of the ranked list of

documents retrieved using the 157 different search engines. Then,
for each query an aggregated ranked list of these documents should
be returned. Documents are ranked in descending order of their
relevance to the query.

5http://www.dmoz.org
6http://www.dmoz.org/search?q=QUERY&type=
more
7http://lucene.apache.org

http://www.dmoz.org
http://www.dmoz.org/search?q=QUERY&type=more
http://www.dmoz.org/search?q=QUERY&type=more
http://lucene.apache.org


We employed four different strategies to aggregate the ranked
lists, with different motivations.
Relevance based run (CWI13IndriQL). This run only considers
the relevance of a document to a query. We rank the documents
with the simple query likelihood model. For a document d and
query q, the query likelihood of p(q|d) is computed as

p(d|q) ∝
∏
w∈q

p(w|d), (3)

where p(w|d) is computed based on the title and snippets of the
document. Dirichlet smoothing with µ = 2500, i.e., default setting
implemented with Indri is used.
Cluster based run (CWI13clTODPJ). We take a two-step process
to rank the documents. First, the resources are ranked based on one
of the strategies described above (specifically, the submitted run
is based on a hybrid method between ODP with Jaccard and the
TF-IDF retrieval model). Then, documents within a resource are
ranked by the query likelihood model.

With this run, we are interested in whether some resources are
better than others in satisfying a particular information need. That
is, whether the majority of documents provided by a good resource
would be relevant to the query. This run was not submitted.
Diversity based run (CWI13iaTODPJ). This run is based on a
different assumption. That is, by diversifying documents from dif-
ferent resources, it is more likely that at least one type of documents
(resource) will satisfy the information need.

We take an approach similar to the cluster-based diversification [16,
17] methods, where each resource can be seen as a “cluster”, as de-
scribed in our cluster based run. An initial ranked list is retrieved
with the query likelihood model. It is then re-ranked with an IA-
select [1] based diversification algorithm.

The key elements used in the algorithm can be reduced to the
following quantities: i) V (d|q; z), the probability that d is relevant
to q when the associated resource (cluster) is z; and ii) p(z|q), the
probability resource z is related to q. We compute p(z|q) by nor-
malizing the resource ranking scores discussed above (i.e., ODP +
Jaccard) over all resources. To compute V (·), intuitively, we can
set V (d|q; z) = 1 if d ∈ z; otherwise 0. However, this results in a
product of 0 in many cases given the IA-select framework. To ad-
dress this issue we applied a minor smoothing over the V (·) scores
which assigns a probability mass of 0.01 to cases where d /∈ z.
Boost documents based on resource (CWI13bstTODPJ). For
this run, we intend to boost the documents coming from a reliable
resource. Specifically, we rank documents in descending order of

p(d|q, z) ∝ p(d|q)p(q|z), (4)

assuming d is independent of z given q. We then compute p(d|q) as
in the query likelihood run, and p(q|z) as in the resource ranking,
based on ODP and Jaccard similarity.

3.4 Results
In addition to the officially submitted runs, we also evaluated all

the variants of the methods presented above. The 2012 data set is
described in [25] and although the content is similar, we have to
note that the search results correspond to the year 2012 (FedWeb
2012) and the search engines included are not exactly the same as
in the FedWeb 2013 collection.

3.4.1 Resource Selection
For the resource selection task we tested different variations of

the strategies presented above. Table 6 shows the results obtained
for some of these methods with the FedWeb 2012 collection. These

values were computed generating relevance judgements for each
resource according to the relevance judgements (based on docu-
ments) included in the collection for a subset of 50 TREC queries.
We aimed to emulate the procedure described in the track page,
where the organisers note that the relevance of a search engine for
a given query is determined by calculating the graded precision on
the top 10 results, using weights according to the relevance levels
of the documents: Nav and Key levels are assigned a weight of 1,
Hrel a value of 0.5, and Rel, 0.25.

Table 6: Federated Web Track. Performance of some varia-
tions of our approaches for the resource selection task using
the FedWeb 2012 collection (ordered by MAP).

Method MAP nDCG MRR

TF-IDF+ODP Jacc 0.338 0.516 0.564
TF-IDF 0.285 0.412 0.610
ODP Jaccard 0.283 0.471 0.439
BM25 (1.2, 0.2) 0.283 0.400 0.545
LM (λ = 0.1) 0.280 0.407 0.590
ODP Cosine 0.278 0.462 0.400
BM25 (1.2, 0.8) 0.272 0.397 0.557
LM (λ = 0.5) 0.263 0.394 0.571
LM (λ = 0.9) 0.252 0.387 0.566
LM (λ = 0.1) desc 0.241 0.386 0.602
LM (µ = 200) 0.240 0.378 0.551
LM (µ = 2000) 0.240 0.378 0.551
BM25 (1.2, 0.8) desc 0.239 0.383 0.608
TF-IDF title 0.215 0.321 0.495

We found that the best methods (in FedWeb 2012) were the TF-
IDF retrieval method (where the query is issued on the description
and title fields), the Jaccard similarity over ODP categories, and a
combination of these approaches. Moreover, methods where the
query is applied only to one the fields had a much lower perfor-
mance. We present in the table only the best values for each of
them (Jelinek LM for the description field and TF-IDF for the ti-
tle) and an additional method (BM25 desc) which will serve us as
reference later.

Table 7: Federated Web Track. Performance of the variations
of our approaches in the resource selection task (ordered by
nDCG@20).

Method Run nDCG@20 ERR@20

BM25 (1.2, 0.8) desc - 0.1588 0.0204
LM (λ = 0.1) desc - 0.1476 0.0204
BM25 (1.2, 0.2) - 0.1346 0.0068
LM (λ = 0.1) - 0.1322 0.0068
TF-IDF CWI13SniTI 0.1235 0.0067
BM25 (1.2, 0.8) - 0.1223 0.0102
LM (λ = 0.5) - 0.1218 0.0051
LM (λ = 0.9) - 0.1153 0.0041
LM (µ = 2000) - 0.1033 0.0051
LM (µ = 200) - 0.1017 0.0051
TF-IDF title - 0.1016 0.0017
TF-IDF+ODP Jacc CWI13ODPTI 0.0961 0.0034
LM (λ = 0.9) - 0.0934 0.0017
ODP Jaccard CWI13ODPJac 0.0497 0.0000



The results obtained, however, with the FedWeb 2013 collection
are completely different (see Table 7). The three runs we submitted
performed not consistently with respect to what we observed in the
training collection, where, for instance, the hybrid approach was
the best one. Furthermore, some of the other methods evaluated
had a much higher performance values, in particular the use of the
description as the only field to issue the queries turned out to be the
most effective approach for the FedWeb 2013 collection, and one
of the worst methods in the FedWeb 2012 dataset.

3.4.2 Results Merging
As presented before, we experimented with one run based on

document relevance and with three other runs depending on the
output of the previous task, that is, a ranking of resources. We used
the hybrid method (submitted run CWI13ODPTI) because it was
the best performing method in the FedWeb 2012 collection, as we
analysed before, and thus we expected it to perform equally well in
the FedWeb 2013 collection, in particular now, to aggregate search
results.

Table 8: Federated Web Track. Performance of our ap-
proaches ordered by P@10. ∗ indicates an unsubmitted run.

Method P@10 nDCG@20 nDCG@50 nDCG

2013 data

CWI13bstBM25desc∗ 0.3408 0.1224 0.2024 0.5366
CWI13IndriQL 0.3220 0.1622 0.2371 0.5438
CWI13iaTODPJ 0.2840 0.1509 0.1915 0.5253
CWI13bstTODPJ 0.2500 0.1466 0.1839 0.4973
CWI13clTODPJ∗ 0.1940 0.0551 0.0892 0.4610

2012 data

CWI12bstTODPJ∗ 0.4960 0.1246 0.1989 0.6081
CWI12IndriQL∗ 0.4900 0.1464 0.2627 0.6525
CWI12clTODPJ∗ 0.2200 0.0666 0.1106 0.5462
CWI12iaTODPJ∗ 0.1940 0.0532 0.1015 0.5407

We observe in Table 8 that, again, the order of the approaches for
result merging in FedWeb 2012 do not agree with the one in Fed-
Web 2013. In terms of P@10 the best methods are different (boost
vs relevance based, among the submitted ones). In terms of nDCG,
the relevance based run is in both cases the best method, but the
performance of the diversity approach is much lower than that of
the boost one, and similar to the cluster run in FedWeb 2012; how-
ever, in FedWeb 2013 the diversity run outperforms the boost and
cluster runs. This suggests that, when the resource ranking is not
good (the performance of the hybrid method in resource selection
is far from optimal), the diversification approach seems to help a
little bit. On the other hand, the boosting method is highly depen-
dent on the ranking of the resources, as we observe when a better
resource selection method is used (BM25 desc in FedWeb 2013 or
the hybrid run in FedWeb 2012).

3.5 Discussion
After participating in the Federated Search track, we have dis-

covered that training techniques in an older dataset, even if its char-
acteristics are very similar to the current one, does not guarantee
a reproduction of the results obtained, making it very difficult to
have reliable judgements about which techniques will perform bet-
ter. We argue that this may be due to the content of the search
engines changing from one collection to the other, but also because
the queries, and in particular, its specificity (e.g., can it be answered

by a general search engine or is it tailored to more focused, spe-
cialised engines?) may drastically change.

4. KNOWLEDGE BASE ACCELERATION

4.1 Track Description
In this section we describe our work in TREC Knowledge Base

Acceleration (KBA) Cumulative Citation Recommendation (CCR),
a task that aims at filtering a stream for documents that are citation-
worthy for Wikipedia or Twitter entities of interest.

4.2 Motivation
Our participation in KBA 2013 was inspired by a desire to com-

bine the best performing aspects of several approaches. In TREC-
KBA 2012, we experimented with several approaches including
string-matching and string-learning [2]. With string-matching, we
represented the entities with rich features from a resource called
Google Cross Lingual Dictionary (GCLD) which is a mapping (with
probability distributions) from strings to concepts and vice versa.
The string-learning approach learns the context (characters) around
the mention of an entity in the provided relevance judgements and
builds a profile of the entity from the characters.

The string-matching approach achieved good performance in gen-
eral, but it was very good at recall in particular. The string-learning
approach was very good at precision indicating that context around
entity mentions is important for determining relevance of a docu-
ment to an entity. We noted also high-performing approaches from
TREC 2012 included an approach that used entity and related entity
mentions [2, 20]. Finally, we came across studies that use multi-
step approaches and a huge feature set for CCR [4, 5] that also
achieve good performance.

One of the studies is called multi-step classification approach
which compares two approaches: 2-step and 3-step. Both of them
start with an initial step which filters the stream for potentially rel-
evant documents. The 3-step approach next trains a classifier to
separate garbage and neutral from relevant and central, and finally
trains another classifier to separate relevant from central. The 2-
step approach achieves a better performance than that of the 3-step
approach.

The second of the studies is related to [5], but trains a Learning
to Rank algorithm (LTR) instead of classification [4]. The classi-
fication and LTR approaches of [4, 5] shared the same set of 68
distinct features.

4.3 Method
We combine all the strengths in all the above approaches in an

attempt to benefit from the strengths of each. Thus, we gathered
features from the different approaches and added some new ones
making a huge initial feature set. We reduced the feature set us-
ing different methods until we have few powerful subset which we
ranked according to information gain. We applied the approach
to the 2012 task and our performance was encouraging (both F-
measure and SU being above 4.0). Encouraged by our performance
on 2012 task, we applied the approach to the 2013 CCR task.

4.3.1 Features
The multi-step classification and LTR approaches used a set of

68 (5 document, 1 entity, 24 document-entity and 38 temporal)
features (all numeric) [4, 5]. Document and entity features are
computed from processing the documents and entities respectively.
Document-entity features are computed by aggregating scores of
strings for which a match has been found in a document. For exam-
ple, if we consider the Personalised Page Rank (PPR) feature, for



each entity, there are 100 related entities each with its PPR score.
When processing a document entity pair, if a document matches
strings from the entity’s pre-constructed PPR, we add up the scores
and the sum becomes the PPR score for that document-entity pair.
We take the 68 features as provided by the authors8 and add others
from [2, 20], described below and some of them modified to suit
our approach.

4.3.2 Google’s Cross Lingual Dictionary (GCLD)
This is a mapping of strings to Wikipedia concepts and vice

versa [32]. The GCLD corpus computes two probabilities: (1) the
probability with which a string is used as anchor text to a Wikipedia
entity and (2) the probability that indicates the strength of co-reference
of an anchor with respect to other anchors to a given Wikipedia en-
tity. We use the product of both for each string.

4.3.3 PPR
For each entity, we computed a PPR score from a Wikipedia

snapshot and we kept the top 100 entities along with the corre-
sponding scores.

4.3.4 Surface Form (sForm)
For each Wikipedia entity, we gathered DBpedia name variants.

These are redirects, labels and names.

4.3.5 Context (contxL, contxR)
From the WikiLink corpus [30], we collected all left and right

contexts (2 sentences left and 2 sentences right) and generated n-
grams between uni-grams and quadro-grams for each left and right
context. Finally, we select the 5 most frequent n-grams for each
context.

4.4 Classification
The 2-step approach that we use, following [5] and [4], consists

of filtering followed by classification or learning. The first step
filters the stream for documents that are potentially relevant using
DBpedia name variants of the Wikipedia entities. The second step
trains classification or learning to rank (LTR) algorithm. In both
cases, we treat central as positive, and garbage and neutral as neg-
ative examples. However, relevant is excluded from the training
stage, as these may introduce confusing examples for the classi-
fiers.

We train J48 (CL-J48) and Random forest Model (CL-RF) de-
cision tree classifiers, as implemented in Weka. Thus, we take the
same settings as described in [5].

4.5 Result and Analysis

4.5.1 Feature analysis
Our Feature Analysis and selection was done using the 2012

datasets and relevance judgements. We compared our results with
the state of the art studies on TREC-KBA CCR of 2012.

Figure 4 shows the performances (F) of the three algorithms
against feature addition on the 2012 CCR task. The features are
sorted from left to right, in descending order, in terms of informa-
tion gain. The plot of Classification CL-RF is based on the average
performance for 10 different random initialisations. The plus sign
on a feature indicates that we incrementally add the feature into the
feature set to the left of it.

From Figure 4, we see that the performances of the three algo-
rithms increase with the addition of features to the initial feature
8http://krisztianbalog.com/files/resources/
oair2013-kba/runs.zip

Table 9: KBA Track. Performances comparison of our ap-
proach (lower half) with baselines (upper half). Best scores are
highlighted.

Method F SU

MC-RF 0.360 0.263
LTR-RF 0.390 0.369

CL-RF 0.402 0.396
LTR-RF 0.394 0.411
CL-J48 0.388 0.306

set, reach maxima and then decrease. The increase and decrease are
not uniform. However, we can see that the three algorithms reach
their respective maxima within the first 13 features. This indicates
that adding more features does not always improve performance. In
fact, performance deteriorates with more features. We have taken
the best F scores from the three plots and they are shown along
with three baselines in Table 9. We have included two of the highly
performing methods on 2012 CCR task as baselines. From classi-
fication, the 2-step approach’s Random Forest is used as a baseline
(MC-RF). The second is LTR’s Random Forest (LTR-RF).

The scores in Table 9 show that our reduced feature set performs
better than the baselines on both performance measures. The most
informative features, as measured by information gain and contri-
bution to performance, are: name variants (GCLD), similarity fea-
tures (cos, jac, kl), related entities (PPR), context, position of entity
mention in the document, and length of body text. These features
can serve as baseline features for CCR task.

4.5.2 Results on TREC-KBA 2013’s CCR
Encouraged by the results on TREC-KBA 2012’s CCR task, we

applied our reduced feature set and two classification algorithms
(J48 and Random Forest) to the 2013 CCR task. We used three sets
of features: all 26 features, features up-to FirstPosNorm (FPN) and
Features up-to MentionsBody (MB). We also used three training
datasets: 2012, 2013, and 2012-2013 combined relevance judge-
ments. We generated 3 J48 runs using all features and the training
sets and 9 RF runs using 3 feature sets and 3 training sets.

Results for the groups for which performance was above the me-
dian are shown in Table 10. System name format is algorithm_feature
set_training dataset_13. For example RF_all_13_13 stands for Ran-
dom Forest using all features, trained on 2013 and applied on 20139.

Table 10 shows our best performance according to micro aver-
age F and SU. The scores are obtained from the classification con-
fidence scores and the classification label. We map the scores of
irrelevant document-entity pair to (0, 500] and the scores of rele-
vant to (500, 1000]. For vital classification, the highest score is on
the Turing group. On all entities, micro-average-F is 0.247, and
on Wikipedia entities, it is 0.290. On vital+useful, we have done
well, achieving performance of 0.603 on all entities and 0.649 on
Wikipedia only.

Our approach was very weak in Twitter entities achieving F-
measure of 0.0. The low performance on Twitter entities is, of
course, expected since almost all of the strong features we used did
not apply to Twitter entities. For example, all the similarity (cos,
kl, jac), GCLd, PPR, sform and context features were assigned 0

9On our run submissions we used RM to mean RF. Please replace
every RM with RF

http://krisztianbalog.com/files/resources/oair2013-kba/runs.zip
http://krisztianbalog.com/files/resources/oair2013-kba/runs.zip


Figure 4: KBA Track. Performance (F) of classification and LTR algorithms against feature addition.

Table 10: KBA Track. System Performances on vital (upper
half) and vital+useful (lower half).

system_id F SU Group

RF _all_13_13 0.575 0.571 turing
RF _MB_13_13 0.388 0.404 fargo
RF _all_1213_13 0.353 0.370 hep
RF _FPN_1213_13 0.338 0.333 ocala
RF _FPN_12_13 0.298 0.395 bronfman
RF _MB_13_13 0.290 0.333 wikipedia
RF _FPN_13_13 0.279 0.422 danville
RF _MB_13_13 0.247 0.333 all-entities
RF _MB_13_13 0.241 0.341 hoboken
J48_13_13 0.232 0.333 screenwriters

RF _all_13_13 0.649 0.647 wikipedia
RF _MB_1213_13 0.603 0.602 all-entities

score. We also performed very poorly on the groups of startups,
french, mining and comedians.

From algorithms, RF performs better in almost all cases. Re-
garding training dataset, we see that 2013 relevance judgements
help train a better model. In many cases, training on 2012 data
achieved 0.0 or very low performance. This is probably due to the
fact that the CCR task has been changed from its 2012 definition.

Our performance on 2012 CCR task did not translate well to the
2013 CCR task. We suspect that this has to do with the change of
the CCR task. We will need to do further analysis. However, we

have achieved good results for some groups. We want to do further
analysis of why we achieve better results for some groups and bad
results for others.

5. AD-HOC WEB
The goal of our Web Track participation is to evaluate the im-

provement of our proximity model over its baseline. Our model has
no specific mechanism for diversity or risk sensitivity, and there-
fore we do not consider our participation to be competitive to that
of other participants, on the metrics that are used for the evaluation.
We therefore only participated in the Web Track ad-hoc task. This
section describes our participation.

5.1 Track description
The TREC Web Track ad-hoc task investigates the performance

of systems that search a static set of documents using previously-
unseen topics. The goal of the task is to return a ranking of the
documents in the collection in order of decreasing probability of
relevance.

5.2 Term Proximity
Ranking functions typically consider query terms as being inde-

pendent, which simplifies the ranking problem. However, the user
is often interested in the joint co-occurrence of query terms, form-
ing a noun phrase or being otherwise related in the text. One feature
that can be used to express the relatedness of co-occurring terms
is their proximity in text. Intuitively, researchers have suspected
that query terms that appear closer together in documents represent
stronger evidence for relevance [8, 23, 24, 33, 37], however past
research has shown this is not an easy feature to exploit.



5.3 Related Work
In the past, there has been much interest into automating query

reformulation with respect to term dependency [6–10, 13–15, 19,
23, 24, 26, 29, 31, 33, 37]. Various ways have been proposed to
promote documents in which query terms appear at closer prox-
imity. Some approaches assign a score to each span of text that
appears in a document containing multiple query terms [6, 8, 14,
24, 37], while others restrict their proximity model to using only
term-pairs [26, 33]. The scope of proximity that is considered is
often limited to a fixed word distance, for instance 5 terms by Ra-
solofo and Savoy [26] and 50 terms by Song et al. [31]. The score
of the term-combinations found in a document is often added to a
baseline that considers the terms to be independent [6, 24, 33, 37],
while other models modify the relevance contribution of appearing
terms [14, 31].

5.4 Baseline
Zhai and Lafferty [36] presented a function to rank documents

according to the (negative) Kullback-Leibler (KL) divergence be-
tween a language model of query Q and a Dirichlet-smoothed lan-
guage model of documentD. Each documentD obtains a score for
query Q using Equation 5, where t is a term in Q, P (t |C) is the
likelihood of term t appearing in the corpus, c (t ,D) is the term
frequency of term t in document D, P (D) is a term independent
document prior (Equation 6), |Q| is the number of terms in Q, and
µ is the Dirichlet smoothing parameter. We refer to this function as
KLD in this paper.

KLD (Q,D) = P (D) +
∑
t∈Q

log

(
1 +

c (t ,D)
µ · P (t |C)

)
(5)

P (D) = |Q| · log µ

µ+ |D| (6)

In this study, we used the KLD function as the base function
for ranking, expanding it with a proximity model to promote docu-
ments based on the distance between co-occurring query terms.

5.5 Proximity Model
Existing work indicates that documents that contain query terms

at closer proximity are more likely to be relevant than documents
that contain the same terms over longer distance. Of many at-
tempts, only a few appear successful in exploiting this feature in
a ranking function [24, 33]. Both methods emphasise near co-
occurrences; Metzler and Croft [24] used only co-occurrences with-
in a very small window and Tao and Zhai [33] used only the small-
est distance between any two different query terms in a document.
The use of these near occurrences alone is shown to give significant
improvement over a non-proximity baseline. However, the need
to exclude co-occurrences over longer distance reveals the need to
properly balance the relevance estimation of term co-occurrences
with respect to their distance in text.

We hypothesise that proximity between co-occurring query terms
can still be useful over longer distance, for instance to decide which
document is most likely to be relevant between two documents that
are the same in other respects. A model that uses all available
proximity information can outperform a model that uses less infor-
mation, if the estimation of relevance for co-occurring terms over
distance is sufficiently accurate. For this, we analysed the likeli-
hood that term co-occurrences appear in a relevant document, by
counting all term co-occurrences in the TREC 1-8 ad-hoc queries
that according the qrels either appear in relevant or irrelevant docu-
ments. Using these statistics we estimate the likelihood that a term
co-occurrence given a certain distance appears in a relevant docu-
ment. This likelihood is inversely proportional to the distance of

the terms in text. We also observed that adjacently appearing terms
are close to twice as likely to appear in relevant documents than
terms that most likely appear independently based on their span.
Given that in the baseline function (Equation 5) each occurring in-
dependent term is scored as a count of 1, we designed a function
that estimates the relevance of a term co-occurrence to be 1 for ad-
jacent terms, decaying with 1 over distance and approaching 0 at
infinity. In Equation 7, S is a set consisting of two or more query
terms, O is an occurrence of S in a document D, and span (O) is
the number of word positions of a text in D that starts with a term
from S, ends with a term from S, and contains all terms from S.

R (O,S) = |S| − 1

span (O)− 1
(7)

Metzler and Croft [24] argued that terms that appear adjacent in the
query are more important candidates than terms that are separated.
However, in our pre-study we found that distinguishing between the
weights of adjacent and non-adjacent query terms hardly improved
results over simply using all possible term combinations using the
same weight.

Our ranking function in Equation 8 combines the KLD baseline
with the additional score for the term proximities. For balancing
the respective weight of the baseline and the proximity models, we
have to compensate for the fact that the number of term combina-
tions grow at a rate of 2|Q| − |Q| − 1 possible term combinations.
In practice, the growth ratio of the weight of proximity model with
respect to the size of the query does not grow exponentially, but
increases with a ratio of |Q|, which we determined empirically.
This less than exponential growth we observed can partly be ex-
plained by combinations of many terms being very rare. Term co-
occurrences are scored as separate evidence over the unigrams they
contain.

In Equation 9, the proximity model PM uses all combinations
of two or more query terms, defined as an element of the powerset
overQ with a cardinality greater than 1. Each term combination S
is scored as the sum of the KLD function over all terms contained,
replacing the original count of the unigram in the document with
the estimated relevance of the term co-occurrence (Equation 10). In
Equation 10, we estimate the relevance of each term combination
S by adding up the relevance estimation of each occurrence O of
that combination in document D using Equation 7.

score (Q,D) = 1

|Q| · PM (Q,D) +KLD (Q,D) (8)

PM (Q,D) =
∑

S∈P≥1(Q)

∑
t∈S

log

(
1 +

R (S,D)
µ · P (t |C)

)
(9)

R (S,D) =
∑
O

R (O,S) (10)

5.6 Stop words
In general, retrieval performance improves when stop words are

removed from the query. The rationale for this is that stop words
rarely occur more often in relevant documents, not even if they
convey part of the information need by being part of a noun phrase,
phrase of speech, describing a relation or complementing another
term. Meaningful stop words may however occur closer to other
query terms in relevant documents, making them potentially useful
in proximity models.

The proximity model (Equation 9) uses the power set P≥1 (Q),
where Q is the query from which stop words are removed. For
this variant, we can use the same proximity model by replacing this
power set with a set that contains combinations with stop words.



To avoid irrelevant combinations with stop words from being used,
we use a simple heuristic: a combination of query terms is only
valid when all stop words used are used in combination with all
words that connect them in the query to non stop words or the query
boundary. For example, “The Beatles on a zebra crossing” would
generate besides “Beatles zebra”, “zebra crossing”, “Beatles cross-
ing” and “Beatles zebra crossing”, the following combinations con-
taining stop words: “The Beatles”, “The Beatles on a zebra”, “The
Beatles zebra”, “The Beatles zebra crossing”, “The Beatles cross-
ing”, “Beatles on a zebra”, “Beatles on a zebra crossing”, and “The
Beatles on a zebra crossing”.

To test this hypothesis, we will run a model that contains all stop
words as a variant of the proximity model.

5.7 Results
For this study, we indexed ClueWeb12 using a Porter-2 stem-

mer, lowercasing terms and storing term-document positions in the
posting lists. Stop words were included in the index, but removed
from the queries for the KLD baseline and the proximity model
CPE , but used for the proximity model with stop words CPS as
described.

Table 11: Ad-hoc Web Track. Comparison of three runs and
the median of all Web Track runs using ERR. Results marked
with † are significant over KLD and results marked with ‡ are
significant over CPE , tested using 1-tailed paired Student’s T-
test, α = 0.05.

runid ERR-IA@5 ERR-IA@10 ERR-IA@20

cwiwt13kld 0.3032 0.3272 0.3363
cwiwt13cpe 0.3912 † 0.4081 † 0.4177 †
cwiwt13cps 0.4555 †‡ 0.4726 †‡ 0.4803 †‡
median 0.4739

Table 12: Ad-hoc Web Track. Comparison of three runs and
the median of all Web Track runs using α-nDCG. Results
marked with † are significant over KLD and results marked
with ‡ are significant over CPE , tested using 1-tailed paired
Student’s T-test, α = 0.05.

runid α-nDCG@5 α-nDCG@10 α-nDCG@20

cwiwt13kld 0.3456 0.3970 0.4284
cwiwt13cpe 0.4342 † 0.4713 † 0.5033 †
cwiwt13cps 0.4920 † 0.5309 †‡ 0.5572 †‡
median 0.5745

Table 11 and 12 compare the results over the metrics that empha-
sise diversification. These results show both proximity models to
consistently improve over the KLD baseline. The proximity model
that uses stop words performs significantly better than the proxim-
ity model without stop words. CPS scores close to the median of
all TREC participants, but should not be considered a real competi-
tor having no mechanism to handle diversity.

Table 13 compares the results over ERR@20 and nDCG@20,
and Table 14 and Table 15 show the relative improvement in per-
centage of the proximity models over KLD and the track median.
On these non-diversified metrics the proximity models outperform
both baselines.

Table 13: Ad-hoc Web Track. Comparison of three runs
and the median of all Web Track runs using nDCG@20 and
ERR@20. Results marked with † are significant over KLD and
results marked with ‡ are significant over CPE , tested using 1-
tailed paired Student’s T-test, α = 0.05.

runid nDCG@20 ERR@20

cwiwt13kld 0.1648 0.0850
cwiwt13cpe 0.1910 0.1090
cwiwt13cps 0.2181 † 0.1285 †‡
median 0.1739 0.0980

Table 14: Ad-hoc Web Track. Relative improvement of CPE
and CPS over KLD and the track median, based on the
nDCG@20results.

runid nDCG@20 ERR@20

cwiwt13cpe +15.9% +9.8%
cwiwt13cps +32.4% +25.5%

Table 15: Ad-hoc Web Track. Relative improvement of CPE
and CPS over KLD and the track median, based on the
ERR@20results.

runid cwiwt13kld median

cwiwt13cpe +28.2% +11.1%
cwiwt13cps +51.1% +31.0%

5.8 Discussion
We participated in the Web Track ad-hoc task to evaluate a prox-

imity model that uses the maximum available information. Our first
hypothesis is that using the distance between query terms in a doc-
ument is useful over longer distance if a sufficiently accurate rele-
vance estimation is used. Although the results by the CPE model
are encouraging, we will need additional experiments to show that
using occurrences over longer distance is indeed beneficial. Our
second hypothesis is that retrieval performance can be improved
by including term combinations with stop words in the proximity
model. The results show that the proximity model that uses stop
words significantly improved results over the KLD baseline and
also consistently outperformed the model that uses no stop words.
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