
UCAS at TREC-2013 Microblog Track

Dongxing Li, Ben He, Xin Zhang, and Tiejian Luo

School of Computer and Control Engineering
University of Chinese Academy of Sciences

{lidongxing12, zhangxin510}@mails.ucas.ac.cn, {benhe, tjluo}@ucas.ac.cn

Abstract. The participation of University of Chinese Academy of Sci-
ences (UCAS) in the real-time adhoc task in Microblog track aims to
evaluate the effectiveness of the query-biased learning to rank model,
which was proposed in our previous work. To further improve the re-
trieval effectiveness of learning to rank, we construct the query-biased
learning to rank framework by taking the difference between queries into
consideration. In particular, a query-biased ranking model is learned by
a cluster classification learning algorithm in order to better capture the
characteristics of the given queries. This query-biased ranking mode is
combined with the general ranking model (BM25 etc.) to produce the
final ranked list of tweets in response to the given target query. We were
also planning to incorporate a machine learning approach for selecting
high-quality training data for improving the effectiveness of learning to
rank. However, due to interruption caused by lab move, we only managed
to experiment with the query-biased approach using partial features.

1 Introduction

This year is the third year of the Microblog track, whereby a user’s information
need is represented by a query at a specific time. Similar to last year’s track, in
the real-time adhoc task the systems are requested to produce a list of recent
and relevant tweets starting from the query was issued. As in this year, it is not
possible to acquire the whole collection, our experiments are based on the tweets
obtained using the TREC 2013 Official API.

Recently, quite a few research has attempted to apply learning to rank to
Twitter search [2]. By using learning to rank, multiple intrinsic features of Twit-
ter, such as user authority, mentions, retweets, hashtags and recency can be
combined to learn a ranking model [1].

In our experiments about Tweets2011 dataset, we adopt a query-biased learn-
ing to rank approach by integrating a general ranking model with the query-
biased model that takes the query differences into account [8]. In the combined
framework, the general ranking model is learned from the 2011 and 2012 mi-
croblog queries by the conventional learning to rank approach. Finally, the
query-biased model is combined with the general model to produce the final
tweet ranking for the target queries.

The rest of the paper is organized as follows. Section 2 introduces the data
pre-processing, indexing strategy and the language filter. Sections 3 givens a



detail introduction of the query-biased learning to rank framework. Section 4
presents the experimental results and analysis. Finally, Section 5 concludes our
experiments and suggests future research directions.

2 Pre-processing and Indexing

The corpora used in our experiments is in the format of HTML. We experiment
on the Tweets13 data collection, which spans over a period of two months from
1th February 2013 to 31th March 2013. We successfully collected 259,057,269
tweets (statuses) via the Twitter streaming API using the feeds distributed by
the track organizers in 2013. All fields are marked as Store.Yes in the index,
allowing users to access data from retrieved documents. Some fields are present
in all statuses, while others only contain a value if the source JSON object con-
tained a non-null entry in that slot . The details are id, screen name, epoch, text,
retweeted count, followers count, statuses count, lang, in reply to status id, in reply to user id,
retweeted status id, retweeted user id. Before using it, we first convert the cor-
pora to the TREC format. In particular, in TREC-formatted files, documents
are delimited by<DOC></DOC> tags, as in the following example:

<DOC>

<DOCNO> 298244286468726788 <DOCNO>

<AUTHOR> TimInThe419 </AUTHOR>

<TIME> Sun February 3 02:08:32 +0000 2013 </TIME>

<AT> </AT>

<BODY> The water has caused a shortage </BODY>

<RTAT> </RTAT>

<RT> </RT>

</DOC>

In the above example, DOCNO is the tweet id; AUTHOR is the author of
the tweet; TIME is the posted time of the tweet; AT contains all the mentioned
users in the tweet, except those occurring in RT tweet; RT is the reposted tweet;
RTAT indicates the author from which the tweet is retweeted; BODY means the
remaining tweet content after removing AT, RTAT, RT.

In our experiments, we build an individual index for each query using an
in-house version of Terrier [5]. Both direct index and inverted index are built to
support retrieval and query expansion. Standard stopword removal and Porter’s
stemmer are applied.

For the language filter, the LC4j package is used to detect whether a tweet
is in English or not. It is a language categorization library designed for the Java
programming language. It has been designed to be a compact, fast and scalable
Java library that implements the algorithms to identify languages using n-grams
[16]. In our runs, the detected non-English tweets are removed.



3 Query-biased Learning to Rank

In this section, we will give a detail introduction to the query-biased learning to
rank approach [8] that utilizes both the common features of Twitter messages
and the query-specific aspects that differentiate between queries. More specially,
the general ranking model is learned from the 2013 microblog queries and the
query-biased model is learned from the query-specific features. Then the two
models with a learning rate are linear combined to produce a final tweet list for
each given topic.

Scorefinal(d,Q) = ScoreLTR(d,Q) + β · ScoreQLTR(d,Q) (1)

where Scorefinal(d,Q) is the final score of tweet d for the given query Q;
ScoreLTR(d,Q) is the score given by the general ranking model; ScoreQLTR(d,Q)
is the score given by the query-biased model. The setting of the parameter β is
obtained by training on the official queries of 2011 and 2012 Microblog track.

3.1 General Ranking Model

The common features used to represent the tweets and the learning to rank
algorithm will be described in this section.

It is of great importance to select the feature set to generate a good rank-
ing function in the learning to rank systems. In our experiments, the features
are organized around the basic entities for each query-tweet pair to distinguish
between the relevant and irrelevant messages. More specially, five types of fea-
tures are exploited, namely content-based relevance, content richness, authority,
recency and Twitter specific features, which were used in our previous work [6].

Many learning to rank approaches have been proposed in the literature, which
can be applied for learning the general ranking model. In the experiments, we
adopt the pair-wise learning to rank algorithm RankSVM [11,12], which applies
the traditional formulation of the SVM optimization problem by taking the
document pairs and their preferences as the learning instances.

In the learning process, after the positive and negative examples are appended
to the labeled set by making use of the relevance assessments information, we
empirically assign preference values according to the temporal distance between
the timestamps of the tweet and the query. The larger the preference value is, the
higher the tweet is relevant to the given query. This labeling strategy is mainly
due to the fact that recency is a crucial factor of relevance in real-time Twitter
search. The fresh tweets are favored over those outdated.

The target values of RankSVM define the order of the examples of each query.
We reassign the target values of the relevant tweets with an interval of 0.5 which
is obtained by training on the official queries of 2011 and 2012 Microblog track ,
according to the temporal distance in days between the timestamps of the tweet
and the query.



Input
D: initial retrieved tweets returned by a content-based
retrieval model for a batch of query topics
N: the maximum number of terms to be selected
to represent a document

Output
W: the selected term set

Method
Do the following for each query:

(1) Get R, the top-k ranked tweets from D
(2) Compute the KL divergence weight for each
unique term in R
(3) Extract the N terms with the highest weights as
the term features
(4) Represent each tweet retrieved for the given query
with the selected terms and their KL divergence
weights

Fig. 1. The tweet representation algorithm.

3.2 Query-biased Ranking Model

Query-specific Tweet Representation Since the purpose of the query-biased
modeling is to utilize the query-specific characteristics to boost the retrieval
performance, it is a challenging issue to select the appropriate features that
are unique to the given queries to represent the tweets. We choose to represent
the tweets by the most informative terms in the pseudo relevance set, namely
the top-ranked tweets in the initial retrieval. As queries are different to each
other in their topical concepts, it is a natural choice to represent the query-
specific aspects by the most weighted terms in the pseudo relevance set, which
are usually assumed to be highly related to the query topics.

Figure 1 provides the algorithm used for extracting the term features for the
query-specific tweet representation. In particular, all the unique terms in the
top-30 tweets are taken as candidate terms, and the 10 terms with highest KL
divergence weights are chosen as the query-specific features. Thus, the selected
words and their corresponding KL divergence weights are used as attributes and
values to represent the given tweets. Our arbitrary choice of selecting the top-10
terms from the top-30 tweets is mainly due to the fact that this setting was found
to provide the best query expansion effectiveness in the TREC 2011 Microblog
track, as reported in [10]. The KL divergence weight of a candidate term t in the
top-k ranked tweets in the initial retrieval is computed as follows:

w(t, Rk) = P (t|Rk) log2
P (t|Rk)

P (t|C)
(2)

where P (t|Rk) is the probability of generating the candidate term t from the set
of top-k ranked tweets Rk, and P (t|C) is the probability of generating t from
the entire collection C.

The algorithm for document representation is shown in Figure 1.



4 Experimental Results

We submitted two official runs as follows:

– UCASqe: A run using the general learning to rank approach, namely RankSVM
[11].

– UCASgem: A run using the query-biased learning to rank approach [8].

In our submitted runs, we issue a retrieval score for each returned tweet
to represent the probability of relevance to the query. We examine to which
extent the query-biased learning to rank approach is able to improve the retrieval
effectiveness by taking query differences into consideration in Table 1. It turns
out that the query-biased learning to rank outperforms the general learning to
rank approach when evaluating under Top 30, while there is only minor difference
between the MAPs obtained by the two runs.

Table 1. Comparison of UCASqe with UCASgem.

Metrics. UCASqe UCASgem

MAP 0.1276 0.1285, +0.71%
P@30 0.2217 0.2844, +28.28%

5 Conclusions and Future Work

We adopt a query-biased learning learning to rank approach that utilizes both
the general and query-specific evidence of relevance for the real-time Twitter
search. Such a query-biased ranking model is combined with a general ranking
model given by the conventional learning to rank approach to produce the fi-
nal ranking of the Twitter messages, namely the tweets, in response to the user
information need. Our preliminary experiments on Tweets13 show that the our
proposed combined learning to rank approach is able to outperform the conven-
tional application of learning to rank algorithm.

We were also planning to incorporate a machine learning approach for select-
ing high-quality training data for improving the effectiveness of learning to rank.
However, due to unforeseen interruption caused by the lab relocation, we were
only able to experiment with the query-biased approach using partial features.
We plan to continue with this line of research in the future.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of
China (61103131/F020511), the President Fund of UCAS (Y15101FY00/Y25102HN00),
and the National Key Technology R&D Program of China (2012BAH23B03).



References

1. M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user influence
in twitter: The million follower fallacy. In ICWSM, 2010.

2. I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of the TREC 2011
microblog track. In TREC, 2011

3. D. Metzler and C. Cai. Usc/isi at trec 2011: Microblog track. In TREC, 2011.
4. T. Miyanishi, N. Okamura, X. Liu, K. Seki, and K. Uehara. Trec 2011 microblog

track experiments at kobe university. In TREC, 2011.
5. I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier:

A high performance and scalable information retrieval platform. In SIGIR OSIR,
2006.

6. X. Zhang, B. He, and T. Luo. Transductive learning for real-time Twitter search.
In ICWSM, 2012.

7. K. Duh and K. Kirchhoff. Learning to rank with partially-labeled data. In SIGIR,
pages 251–258, 2008.

8. X. Zhang, B. He, T. Luo, and B. Li. Query-biased learning to rank for real-time
twitter search. In CIKM, pages 1915–1919. ACM, 2012.

9. C. Zhai and J. D. Lafferty. Model-based feedback in the language modeling approach
to information retrieval. In CIKM, pages 403–410, 2001.

10. G. Amati, G. Amodeo, M. Bianchi, A. Celi, C. D. Nicola, M. Flammini, C. Gaibisso,
G. Gambosi, and G. Marcone. Fub, iasi-cnr, UNIVAQ at TREC 2011. In TREC,
2011.

11. T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages
133–142. ACM, 2002.

12. W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. Journal
of Artificial Intelligence Research, 10:243–270, 1998.

13. V. N. Vapnik. An overview of statistical learning theory. In IEEE Transactions
on Neural Networks, pages 988–999. 1999.

14. J. Rocchio. Relevance feedback in information retrieval. In Prentice-Hall Englewood
Cliffs, 1971.

15. R. El-yaniv and D. Pechyony. Stable transductive learning. In COLT, pages 35–49,
2006.

16. http://olivo.net/software/lc4j/


