
PRIS at TREC 2013 Microblog Track

Siming Zhu, Zhe Gao, Yajing Yuan, Hui Wang, Guang Chen

 School of Information and Communication Engineering

Beijing University of Posts and Telecommunications

Abstract:

 This paper described the real-time search system we built for TREC 2013 microblog

track. We focused on query expansion and ranking algorithm and employed different

strategies. For query expansion, we implied pseudo-relevance feedback using WAF

algorithms and a refined 𝑡𝑓 ∗ 𝑖𝑑𝑓 formula. For re-ranking part, our system makes use of

various tweets’ features, such as expansion terms, URL information, and incorporate them

in a learning–to-rank framework to improve the final ranking results.

1 Introduction

 Relevance and recency are important factors in real-time Twitter search, which aims

at addressing a search task whereby a user's information need is represented by a query

at a specific time. This year’s track consists of only one single task: real-time ad hoc

search. The primary difference this year from the 2011-2012 microblog tracks lies in the

tweet collection and the way that participants will interact with it.

2 Method

2.1 system overview

The system we built for real-time search task is shown in Figure 1. We dealt with

Tweet2013 corpus and topics in parallel. Firstly, we downloaded the corpus remotely via a

search API and did the preprocessing work. A corpus of webpage, whose links are

provided in tweets are fetched by a self-designed crawler. Then we built index of tweet

corpus and webpage corpus respectively, using Lemur IR toolkit. As for the topics, we

used two methods for query expansion. Finally, we used a simple but effective learning to

rank model which combines useful features of tweets, and re-sorted the tweets according

to their relevance scores.

Indri Index

Extracting URL

Crawler

Filter non-English
tweets and Rewteets

Stemming

Topics
Tweet2013
corpus

Pure corpus
External
links

Pre-processing

Webpage
corpus

Query expansion

Pseudo Relevance
Feedback

WAF TFIDF

Retrieval

Re-ranking

Learning to Rank

Relevant tweets

Figure 1 The framework of ad hoc search system

2.2 dataset and preprocessing

For TREC 2013, the collection consists of approximately 240 million tweets over a

two-month period: 1 February, 2013 - 31 March, 2013 (inclusive). We get the official

collection through the search API and downloaded each topic’s top 10,000 tweets as our

original corpus.

Due to the limited length of the tweet text, it fails to provide adequate information. We

downloaded the URL links extracted from tweets to obtain external evidence. The total

number of tweets with one or more URLs was 178,982.

In the preprocessing step, we performed two ways as following:

 Retweets removal .Some tweets with the sign of ‘RT’ are regarded as retweets,

we eliminated the information after RT and kept the non-RT part.

 Non-English tweets removal. Microblogs are multi-lingual, as all topics are

expressed in English, non-English tweets will be judged non-relevant, we use a

Language-Detection to filter non-English tweets.

2.3 Query Expansion

In this stage, we are expected to mine the words that have strong connection with a

given topic so as to improve document retrieval performance with more adequate

information. Two algorithms were applied in this stage: the Word Activation Force

algorithm and 𝑡𝑓 ∗ 𝑖𝑑𝑓 method. Both of the two methods use pseudo-relevance feedback

approach to make the most of local resources.

2.3.1 Word Activation Force Algorithm

The Word Activation Force algorithm (WAF) is based on the assumption that there’s a

special force in documents helping human brains activate associates of a word, such as

‘papers’ activates strongly ‘articles’ or ‘letters’. It believes that there are latent structures of

word network in documents. The WAF proposes an effective approach mapping

syntactical and semantic information into sparse directed networks, comprehensively

highlighting the features of individual word. Based on the directed networks, sensible word

clusters and hierarchies can be efficiently discovered.

We used pseudo-relevance feedback approach, assuming that top-ranked tweets

retrieved by API to be relevant. Thus we regarded the text of top-ranked tweets as the

basic set to do query expansion.

Then words occurrence and co-occurrence were calculated in the basic set. We use

the follow annotations:

• 𝑓𝑖 ,the frequency of word 𝑖 in the basic set;

• 𝑓𝑖𝑗 ,the co-occurrence of word 𝑖 to word 𝑗 in the basic set, which indicates the

frequencies of pairs (𝑖, 𝑗) where 𝑖 precedes 𝑗 by up to 𝐿 words(𝐿 = 4 in our

study);

• 𝑑𝑖𝑗 , the average word distance between word 𝑖 and word 𝑗.

Then the word activation force of word 𝑖 to word 𝑗, or 𝑤𝑎𝑓𝑖𝑗 , can be calculated as

follows:

𝑤𝑎𝑓𝑖𝑗 =

𝑓𝑖𝑗

𝑓𝑖

𝑓𝑖𝑗

𝑓𝑗

𝑑𝑖𝑗
2 (1)

We identify that the statistic is defined in the same form of the universal gravitation.

It is obvious that all the element values in the WAF matrix is between 0 and 1. Zero

means that word 𝑖 is never followed by word 𝑗 within our word window in the basic set,

while one means that word 𝑖 and 𝑗 are always adjacent like a compound(𝑓𝑖𝑗 = 𝑓𝑗 = 𝑓𝑖 ,

𝑑𝑖𝑗 = 1)

 With the WAF Matrix above, we can calculate the closeness of word 𝑖 and 𝑗, namely

affinity, as follows:

𝐴𝑖𝑗
𝑤𝑎𝑓

=
1

 𝐾𝑖𝑗
 𝑂𝑅 𝑤𝑎𝑓𝑘𝑖 ,𝑤𝑎𝑓𝑘𝑗 𝑘∈𝐾𝑖𝑗

∙
1

 𝐿𝑖𝑗
 𝑂𝑅 𝑤𝑎𝑓𝑖𝑙 ,𝑤𝑎𝑓𝑗𝑙 𝑙∈𝐿𝑖𝑗

1
2

 (2)

where 𝐾𝑖𝑗 = {𝑘|𝑤𝑎𝑓𝑘𝑖 > 0 𝑜𝑟 𝑤𝑎𝑓𝑘𝑗 > 0} and 𝐿𝑖𝑗 = {𝑙|𝑤𝑎𝑓𝑖𝑙 > 0 𝑜𝑟 𝑤𝑎𝑓𝑗𝑙 > 0} .

And 𝑂𝑅(𝑥, 𝑦) = 𝑚𝑖𝑛(𝑥,𝑦)/𝑚𝑎𝑥(𝑥,𝑦). The Affinity Matrix enables us to discover the

association between words in the basic set.

 We calculated the Affinity Matrix of basic set, and returned top-scored words that

associate to the topic word, assuming that high relevant words would have larger affinity

value.

2.3.2 𝑇𝑓 ∗ 𝑖𝑑𝑓 method

 Besides WAF algorithm, we implemented an equation that measures each term’s wei

ghting score.

𝑊𝑒𝑖𝑔𝑡 𝑡 = 𝑖𝑑𝑓 𝑇 ∗ 𝑠𝑐𝑜𝑟𝑒 𝑑 ∗ 𝑡𝑓(𝑑,𝑇)𝑑∈𝐷(𝐾) (3)

Where 𝐷(𝐾) is the collection of top-K tweets retrieved by API search. 𝑖𝑑𝑓(𝑇) is the

term’s inverse document frequency in the whole collection. 𝑇𝑓 (𝑑,𝑇) is the term frequency

that occur in the tweet, and 𝑠𝑐𝑜𝑟𝑒(𝑑) is that tweet’s score.

2.4 Scoring and Ranking

Due to the limited length of the tweet text, it fails to provide adequate information. The

previous research shows that whether containing URL is an important feature for a tweet.

Besides, the expand words which are closely associated with the topic may contain some

key information. In our ranking method, we considered both these factors.

2.4.1 Ranking Model

To rank the relevance, we use the learning to rank technique, which was successfully

used in TREC 2011&2012 Microblog Track. We designed a simple linear model to

combine features extracted from tweets. Given a query Q and a tweet D, the relevance

𝑠𝑐𝑜𝑟𝑒(𝑄,𝐷) can be computed as follows:

𝑠 𝑄,𝐷 = 𝜆𝑖𝑓𝑖(𝑄,𝐷)𝑁
𝑖 (4)

where N is the number of the features, and 𝜆𝑖 is the coefficient of each feature.

2.4.2 Feature Extraction

The tweets we downloaded from the search API are in JSON format, which contains

various features to extract. Based on previous study, we carefully analyzed the structure

of microblog, and divided the features into three parts: Text_Feature, Non_text_Feature

and Author_Feature.

Table 1. Features of tweets

Text_Feature Author_Feature Non_text_Feature

Text_score(Q,D) Followers_Count(D) T_diff(Q,D)

Length(D) Retweeted_count(D) Has_hashtag(D)

Oov_pct(D) Statuses_count(D) Has_url(D)

Stopwd_ratio(D) Friends_count(D) URL_score(Q,D)

Expanded_ratio(Q,D) Listed_count(D)

Based on the features’ importance and the original information that tweets can

provide, we chose the Text_score(Q,D), Expanded_ratio(Q,D) and URL_score(Q,D) in the

Microblog Track.

 Text_score(Q,D): Besides the relevance score provided by API, which uses

Lucene's implementation of query likelihood , we also use Lemur IR toolkit Indri

to build index by field. And then we use both the API search relevance scores

and Indri query scores.

 Expanded_ratio(Q,D): It depends on the the number of extension words

appeared in the tweet and the total number of extension words.

 URL_score(Q,D): As the URL in the microblog is an important feature, we

crawled the URL pages which appeared in the tweets and build the index of

webpages’ titles and contents. Then we got the normalized relevance score.

We used the 2011 and 2012 dataset as the train set. To get the maximum value of

P@30,we found that the number of extension words should be about 10.

2.5 Results Submission

In this year’s TREC Microblog Track, we submitted 4 versions of runs:

Table 2. Four runs our team submitted

Run_Id Text_score Expanded_ratio URL_score

PrisRun1 API Yes(WAF) No

PrisRun2 Indri Yes(WAF) No

PrisRun3 API Yes(WAF) Yes

PrisRun4 API Yes(tf*idf) Yes

