
PKUICST at TREC 2013 Microblog Track

Runwei Qiang Yue Fei Yihong Hong Jianwu Yang
∗

{qiangrw, feiyue, hongyihong, yangjw}@pku.edu.cn
Institute of Computer Science and Technology

Peking University,Beijing 100871,China

ABSTRACT
This paper describes PKUICST’s entry into the TREC
2013 Microblog track. In this year of microblog track, we
designed and conducted a series of experiments based on
both our local crawled collection and the official track API.
For runs with local crawled dataset, we exploited different
retrieval models, such as TFIDF, Okapi BM25 and statistic
language model and tuned optimal parameters for all these
models with the dataset in TREC 2012. Furthermore,
we attempted to combine these models to gain a better
performance with the help of learning to rank framework.
For runs with the official track API, we employed language
model with two-stage pseudo feedback query expansion.
In addition, a filtering component was adopted to refine
the results retrieved by the expanded query. Experimental
results demonstrate that our approach obtains convincing
performances.

1. INTRODUCTION
Information retrieval in microblogging environment has

attracted a lot of attention with the growing popularity of
microblog. To explore the search behavior and boost the
retrieval performance in the real-time environment, TREC
first introduced Real-Time Search task in 2011 [8], where
a user’s information need is represented by a query at a
specific point in time. Systems should favor relevant and
highly informative tweets about the query topic, which
makes this task skin to ad-hoc search on Twitter. The
primary difference this year from the 2011-2012 lies in the
tweet collection and the way the participants interact with
it. For TREC 2011-2012, participants are requested to
acquire local copy of a canonical corpus and do all the
experiments on the local corpus, while for TREC 2013
participants can also interact with a tweet collection stored
remotely via a search API. The motivation for this track-
as-a-service design is to increase the size of the collection
while adhering to Twitter’s terms of services. However, this
restricts a highly-customized preprocessing of the corpus but
only allows a small number of operations such as query
modification and re-ranking of results obtained from the
baseline retrieval. Thus we also crawled a local copy of
the tweets2013 collection with the help of provided official
streaming tool 1 and attempted both interactive ways in our
experiments.
For runs with our local corpus, we first retrieved top

∗Corresponding author.
1https://github.com/lintool/twitter-tools

20,000 relevant tweets as candidates with Real-time Tweet
Ranking (RTR) model, and then re-rank the candidate
tweets to gain a better performance with the help of learning
to rank framework. For runs with the official track API, we
employed language model with a two-stage pseudo feedback
query expansion. In addition, a filtering component was
adopted to refine the results retrieved by the expanded
query.

2. SYSTEM OVERVIEW
Our system mainly contains two steps : (1) initial search

using RTR model, which is based on three classical IR
models(e.g. language model), and (2) re-ranking the initial
result sets with Ranking SVM [6]. The architecture of
our system is shown in Figure 1. Note that for our runs
with local copy of the canonical corpus, a preprocessing
component is utilized to gain a better retrieval performance.

We first apply a few preprocessings such as stemming,
stopwords elimination and non-English detection on both
initial corpus and query. The shortened URLs within tweets
are very informative as they are always aimed at tracking
breaking news stories, recommending interesting video clips
and brand marketing [5]. Thus, we extract topic information
from the web pages we crawl through these shortened URLs,
and form a new corpus called TopicInfo Corpus. Another
usage of the topic information is directly replacing the URLs
in the tweet and generating a new DE (i.e. Document
Expansion) Corpus.

In the initial search stage, RTR (i.e. Real-Time Ranking)
models are utilized to return the top 20,000 candidate tweets
for each query. In the re-ranking stage, effective features (i.e.
semantic features and quality features) of these candidate
tweets are generated so that we could employ the learning
to rank framework to re-rank the candidate tweets. Finally,
the re-ranked top 1,000 relevant tweets are selected as the
final results of our system.

2.1 Preprocessing
The official collection of TREC 2013 consists of approxi-

mately 240 million tweets, while our local copy of the canon-
ical corpus contains about 259 million tweets in total, which
is really a huge size compared to TREC 2012 collection
(about 10 million tweets over two weeks). Both of the cor-
pora are collected via the Twitter streaming API over a
two-month period: 1 February, 2013 - 31 March, 2013 (in-
clusive).

The preprocessings we adopted on the corpus and topic
set (i.e. queries) are described as follows:

Tweet2013
Corpus

Preprocessing

Origin
Corpus

DE
Corpus

TopicInfo
Corpus

Candidate
Corpus

Building
Index

Preprocessing

Original
Query

Query

Real-time Tweet Ranking Model

Top 20,000 Candidate Tweets

Ranking SVM

Top 1,000 Final Tweets

Figure 1: System Architecture

• Non-English Filtering: We discarded the non-
English tweets by using a language detector with
infinity-gram, named ldig2.

• Simple Retweet Elimination: We eliminate tweets
that begin with ‘RT’ with the consideration that these
tweets are simple retweets without any additional
information.

• Hashtag Segmentation: Many tweets are marked
with so-called hashtags. A hashtag is a character
string preceded by a ‘#’ sign. Hashtags often signal
aspects of a tweet’s meaning such as its topic or its
intended audience [3]. As no space is allowed in a
hashtag, we segment them into tokens using an English
dictionary generated with the tweets2013 corpus and
the MaxMatch algorithm. The segmented words are
then added to the original tweet.

• TopicInfo based Document Expansion: As
mentioned above, we collected all the external URLs
(i.e. TopicInfo corpus) contained in TREC 2013
corpus and extracted their title information for our
document expansion process. Note that web pages
might be deleted as time elapsed, we have only crawled
a portion of the external URL set. When adding the
topic information to the original corpus, we name the
newly generated corpus DE corpus. This expansion
is optional as we can get more independent features
when computing similarity scores using Origin Corpus
or TopicInfo Corpus respectively.

2https://github.com/shuyo/ldig

2.2 Retrieval Models

2.2.1 Real-Time Tweet Ranking Model
Given a real-time search problem, the ideal system should

consider: (1) build a dynamic dataset for each query
to avoid using the future resources; (2) use expansion
techniques to enrich the representation of both queries and
documents; (3) make a tradeoff between relevance and
recentness. To solve these challenges, Liang et al. [7]
proposed a RTR model, which highlights the following
aspects: (1) describe a two-stage pseudo-relevance feedback
query expansion to estimate a query language model. (2)
propose two ways to expand documents with the shortened
URL’s information to enrich the representation of the
documents and (3) suggest several temporal re-ranking
functions and two representations of temporal profile to
evaluate the temporal aspect of documents.

In our systems, we implemented different RTR models
with three classical IR algorithms for comparison:

• Vector Space Model Vector space model is an
algebraic model for representing text documents as
vectors of identifiers. We express the tweet and query
as vectors.

−→
Ti = (w1i, w2i, w3i, · · ·wni)

−→
Qi = (w1q, w2q, w3q, · · ·wnq)

The TFIDF weighting scheme is adopted as the term
weight and the Cosine Similarity Metric is used to
evaluate the relevance between tweets and query. The
Cosine Similarity Metric is defined as Eq.1.

Sim =

−→
Ti ·

−→
Q

‖
−→
Ti‖ · ‖

−→
Q‖

(1)

• Okapi BM25 Model Okapi BM25 model is a bag-of-
words retrieval function that ranks a set of documents
based on the query terms appearing in each document,
regardless of the inter-relationship between the query
terms within a document (e.g., their relative proxim-
ity). The similarity of a document D to query Q is
defined as Eq.2.

Sim =
∑
qi∈Q

IDF (qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avgdl

)

(2)
Where f(qi, D) is qi’s term frequency in the document
D, |D| is the length of the document D in words,
and avgdl is the average document length in the text
collection from which documents are drawn. k1 and b
are free parameters.

• Language Model A statistical language model
assigns a probability to a sequence of m words
P (w1, . . . , wm) by means of a probability distribu-
tion. With query Q as input, retrieved documents are
ranked based on the probability that the document’s
language model would generate the terms of the query.

Next we describe the language model based RTR model
in detail. For the other two approaches, we use the same
query expansion and document expansion techniques. To
rank tweets for a given topic, RTR model estimates the

probability of generating a query Q given the content D
and timestamp t of the tweet as follows:

P (Q|D, t) =
P (t|Q,D) · P (Q|D)

P (t|D)
(3)

Assume that P (Q|D) ∝ Score(Q,D) which can be
calculated using Kullback-Leibler retrieval model [10], and
that P (t|D) can be assumed as a constant because it is
query-independent, the ranking formula can be rewritten as
follows:

P (Q|D, t) ∝ P (t|Q,D) · P (Q|D)

∝ P (t|Q,D) · Score(Q,D)

= P (t|Q,D) ·
∑
w∈V

P (w|θ̂Q) · logP (w|θ̂D)(4)

With the ranking formula, the retrieval task is reduced
to three subtasks, i.e. the estimation of query model θ̂Q,

the estimation of document model θ̂D and the temporal
re-ranking component P (t|Q,D), respectively. Considering
that this year’s task doesn’t require participants to rank
returned tweets by timestamp, we just implement the
estimation of query model and the estimation of document
model.
For the estimation of query model, RTR model adopts

a two-stage pseudo-relevance feedback query expansion as
follows: (1) In the first stage, a single tweet is picked up
to generate topical words using the maximum likelihood
estimator. (2) In the second stage, a group pseudo-
relevant tweets are used to distill the relevant content by
implementing the model-based feedback approach [11].
It is important to point out that the single tweet (i.e.

issue tweet), which is generated in the first stage query
expansion can be used to calculate another score with both
original tweets and topic information for further semantic
representation. Overall, the estimation of query model can
be represented as:

P (w|θ̂Q′) = (1− α) · P (w|θ̂Q) + α · P (w|θ̂PRF1) (5)

For the estimation of the document model, RTR model
presents two ways to utilize the external resource, i.e.
TopicInfo corpus and we use it as local context [7]. We merge
the original tweet T and topic information I if exists to form
a new document and estimate the document language model
using Dirichlet Smoothing [10] as follows:

P (w|θ̂D) =
c(w,D) + µP (w|C)

|D|+ µ
(6)

2.2.2 Optimizing classical IR models
Microblogs are extremely short compared to traditional

IR documents due to a 140 characters limit, thus it seems
intuitive that standard term weighting approaches may not
be effective for short documents like microblogs.
Paul et al. [4] examined the applicability of term

frequency statistics and document length normalization to
microblog retrieval. They found that document length
normalization always harms performance, and benefit from
incorporating term frequency statistics is minor, where term
frequency statistics denotes parameter k1 and document
length normalization denotes parameter b in Eq.2. Our
experiments also show that the optimal parameters for
BM25 model are quite different from typical parameters(k1

= 1.2, b = 0.75). We get the optimal parameters in
TREC 2012 corpus where k1 = 0.3 and b = 0.05, indicating
that document length normalization and term frequency
statistics have little contributions in short text retrieval. For
the language model approaches, we use the best empirical
parameters reported in [7].

2.2.3 Track as a Service
Since the corpus of TREC 2013 is more than an order

of magnitude larger than the previously used TREC 2012
collection, we are provided an official search API to interact
with the tweet collection. The search API returns us a
ranked list of tweets retrieved by a state-of-the-art IR model
(e.g., language modeling). Besides, participants can also
access the text, API-supplied metadata from retrieved data
and corpus-level statistics.

When applying RTR models with the search API, we
only employ the two-stage pseudo relevance query expansion
component while ignoring highly-customized preprocessing
and document expansion as we are not allowed to access the
official corpus directly. On the other hand, a filtering com-
ponent was adopted to refine the tweet list to compensate
for the different approach in preprocessing. Our filtering
strategies are described as follows:

• Discard non-English tweets with the help of language
detector ldig.

• Remove the simple retweeted tweets beginning with
‘RT’ based on the assumption that such tweets has no
extra information beyond the original ones.

2.3 Learning to Rank Framework
Learning to rank is a data-driven approach which inte-

grates a bag of features in the model effectively [2]. Our sys-
tem adopts the same framework that Duan et al [2] proposed
except that we employ different features for the learning al-
gorithm. The basic learning to rank framework is shown in
Figure 2.

Testing Set

Feature
Selection

Labelers
Learning

Algorithm

Vectors

Ranking
System

Instants
with label

11(,)
MM Nq t

1 1(,)M Qq t

1 2(,)M Qq t

11(,)
M QM Q Nq t

... ...

...

1 1(,)Mq t

1 2(,)Mq t

Feature
Selection

Vectors

1 1(,)MS q t

1 2(,)MS q t

11(,)
MM NS q t

...

1 1(,)M QS q t

1 2(,)M QS q t

11(,)
M QM Q NS q t

...

...

Scores

1 1(,)q t

1 2(,)q t

11(,)Nq t

...

1(,)Mq t

2(,)Mq t

(,)
MM Nq t

...

...

Training Set

Figure 2: Learning to rank framework

In order to train an effective model, adequate training
data and useful feature set are required. The candidate
tweets are produced by the language model based RTR

Table 1: Training Data Relevance Distribution
Category # of Tweets Crawled

Minimally-Relevant 6,286 6,223
Highly-Relevant 2,572 2,549

Non-Relevant 66,787 56,838
Total 73,073 63,061

model described in section 2.2.1. Our training set is
generated from official result set of TREC 2012 Microblog
Track, the relevance distribution in the result set is listed in
Table 1. Our system trains Ranking SVM [6] as learning to
rank model.
Several features have been proved effective in the prior

work [2]. In our experiments, two groups of features are
utilized in our learning to rank approach: semantic features
and quality features.

Semantic features
Semantic features refer to the features that describe the rel-
evance between the query and tweets, such as the Kullback-
Leilbler divergence between query model and document
model. RTR model with different similarity algorithms
can generate different semantic features, such as Kullback-
Leilbler divergence and BM25 similarity. Using different
query or document model can generate different features
that may reflect different aspects of query-document sim-
ilarity. For example, using TopicInfo Corpus, we may get
the relevance between the tweet link and user’s query while
using Origin Corpus, we can get the content relevance be-
tween the query and the tweet text.
In our approaches, we propose four semantic features.

• OriginTweetScore score generated by the RTR
Model with the original query and Origin Corpus

• OriginTitleScore score generated by the RTR Model
with the original query and TopicInfo Corpus

• IssueTweetScore issue tweet is the highest-scored
tweet retrieved in the first stage of RTR Model that
is described in section 2.2.1, IssueTweetScore is gen-
erated by the RTR Model with this issue tweet, as a
new query and Origin Corpus.

• IssueTitleScore like IssueTweetScore, generated by
the RTR Model with the issue tweet and TopicInfo
Corpus.

Quality Features
Many of the microblogs are not informative or have very
little content due to their personal and ephemeral nature.
Providing effective retrieval in a microblog service will
require addressing the challenge of distinguishing the high-
quality, informative documents from the others [1].
Recent work has focused on finding features that indicate

the quality of microblog documents. For example, tweets
containing a URL indicate that more information can be
referred on the linked page. Besides, a tweet usually includes
a group of well-defined symbols which indicate the social
interactive behaviors between different users [9]. Those
symbols are described as follow:

• ‘RT’ symbol denotes re-tweet. A tweet with symbol
RT reflects that more users are interested in the topic
talked about in this tweet.

• ‘@’ symbol followed with a user’s screen name stands
for mentions and replies. A tweet with more ’@’ means
this tweet may attract more persons’ attention.

• ‘#’ symbol (i.e. hashtag) is used for organizing tweets
into a particular topic. A symbol ’#’ marks the tweet
as belonging to a particular topic.

Thus, in our system we use retweet count, mention count
and hashtag count as our quality features.

3. RESULT ANALYSIS
Table 2 shows the retrieval performance of our submitted

four runs. The primary evaluation measures for this year’s
task are still P@30 (Precision at 30), MAP (Mean Average
Precision) and R-Prec(R-Precision). Our training metric in
optimizing the RTR model and learning to rank framework
is P@30.

Table 2: Performance of our submitted runs
Run ID P@30 MAP R-Prec
PKUICST1 0.5478 0.3351 0.3721
PKUICST2 0.5311 0.3268 0.3637
PKUICST3 0.5567 0.3486 0.3827
PKUICST4 0.5017 0.2768 0.3260

PKUICST1 uses learning to rank framework, adopting
RTR scores as semantic features and all the quality features.
PKUICST2 and PKUICST3 are both from the top 1,000
candidate tweets from the RTR model on local DE corpus,
the former employs BM25 model while the latter is based
on language model. PKUICST4 is the only run that relies
strictly on data obtained from the official track API.

From the experimental results, we can first see that
PKUICST4 is slightly worse than local corpus runs, which
points out the significance of preprocessing and docu-
ment expansion. Compared with PKUICST2, PKUICST3
achieves 4.43% and 6.67% further increase in P@30 and
MAP, respectively. RTR model based on language model
still performs better than the one based on BM25 model,
perhaps BM25 model becomes average on short text for the
weakening of parameters.

However, we didn’t gain any improvements with the
learning-to-rank approach, which turned out to be the best
one in training. This might be caused by the different corpus
we used for training and testing, and further investigation
is still needed for this issue.

4. CONCLUSION AND FUTURE WORK
In this paper, we present our system for TREC 2013

Microblog Track. For our local corpus, we adopt Real-time
Tweet Ranking (RTR) model to rank the tweets to the given
topic, and meanwhile the RTR model provides candidate
tweets to learning to rank framework for the further ranking
process. For data obtained from the official search API,
we employed a two-stage pseudo feedback for to query
expansion. Then a filtering component was adopted to refine
the results retrieved by the expanded query. Many studies

remain for the future work. One of the most interesting
directions is to improve learning to rank framework for
better results. Moreover, we are also interested in how to
adapt classical IR models to short text retrieval.

5. ACKNOWLEDGMENTS
We thank Feifan Fan and Chao Lv for technical assistance

in this year’s microblog track. The work reported in
this paper was supported by the National Natural science
Foundation of China Grant 61370116.

6. REFERENCES
[1] Jaeho Choi, W Bruce Croft, and Jin Young Kim.

Quality models for microblog retrieval. In Proceedings
of the 21st ACM international conference on
Information and knowledge management, pages
1834–1838. ACM, 2012.

[2] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and
Heung-Yeung Shum. An empirical study on learning
to rank of tweets. In Chu-Ren Huang and Dan
Jurafsky, editors, COLING, pages 295–303. Tsinghua
University Press, 2010.

[3] Miles Efron. Hashtag retrieval in a microblogging
environment. In Fabio Crestani, Stéphane
Marchand-Maillet, Hsin-Hsi Chen, Efthimis N.
Efthimiadis, and Jacques Savoy, editors, SIGIR, pages
787–788. ACM, 2010.

[4] Paul Ferguson, Neil OHare, James Lanagan, Owen
Phelan, and Kevin McCarthy. An investigation of
term weighting approaches for microblog retrieval. In
Advances in Information Retrieval, pages 552–555.
Springer, 2012.

[5] Bernard J. Jansen, Mimi Zhang, Kate Sobel, and
Abdur Chowdury. Micro-blogging as online word of
mouth branding. In Dan R. Olsen Jr., Richard B.
Arthur, Ken Hinckley, Meredith Ringel Morris,
Scott E. Hudson, and Saul Greenberg, editors, CHI
Extended Abstracts, pages 3859–3864. ACM, 2009.

[6] Thorsten Joachims. Optimizing search engines using
clickthrough data. In KDD, pages 133–142, 2002.

[7] Feng Liang, Runwei Qiang, and Jianwu Yang.
Exploiting real-time information retrieval in the
microblogosphere. In JCDL, pages 267–276, 2012.

[8] Iadh Ounis, Craigand Macdonald, Jimmy Lin, and Ian
Soboroff. Overview of the TREC-2011 Microblog
Track. In Proceedings of TREC 2011, 2012.

[9] Runwei Qiang, Feng Liang, and Jianwu Yang.
Exploiting ranking factorization machines for
microblog retrieval. CIKM ’13, pages 1783–1788.
ACM, 2013.

[10] Chengxiang Zhai and John Lafferty. A study of
smoothing methods for language models applied to
information retrieval. ACM Trans. Inf. Syst.,
22(2):179–214, 2004.

[11] ChengXiang Zhai and John D. Lafferty. Model-based
feedback in the language modeling approach to
information retrieval. In CIKM, pages 403–410. ACM,
2001.

