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1. INTRODUCTION
This year represents the third iteration of the TREC Mi-

croblog track, which began in 2011. There was no substan-
tive change in the task definition, which remains nominally
real-time search, best summarized as “At time T , give me
the most relevant tweets about topic X.” However, we intro-
duced a radically different evaluation methodology, dubbed
“evaluation as a service”, which attempted to address defi-
ciencies in how the document collection was distributed in
previous years. This is the first time such an approach has
been deployed at TREC. Overall, we believe that the eval-
uation methodology was successful, drawing participation
from twenty groups around the world.

2. EVALUATION AS A SERVICE
Understanding the rationale behind this year’s new evalu-

ation methodology requires comparisons to the approach in
previous years. Here, we provide a quick recap, but refer the
reader to previous track overview papers for more details [1,
2]. In TREC 2011 and 2012, the Microblog track used the
Tweets2011 collection, specifically created for those evalua-
tions. Since Twitter’s terms of service prohibit redistribu-
tion of tweets, it was necessary to develop an mechanism for
researchers to obtain the collection. The track organizers
devised a system whereby NIST distributed the ids of the
tweets, rather than the tweets themselves. Given these ids
and a downloader developed by the track organizers, a par-
ticipant could “recreate” the corpus. Since the downloading
program accessed the twitter.com site, the tweets were de-
livered in accordance with Twitter’s terms of service.
The “download-tweets-yourself” approach adequately ad-

dressed the no-redistribution issue: in 2011, there were 59 of-
ficial participants, which meant that at least 59 teams were
able to successfully acquire the collection. However, the
approach has scalability limits: the speed of the download-
ing program, which had built-in rate limiting for “robotic
politeness”, set a practical upper bound on the size of the
collection. The Tweets2011 collection originally contained
only 16 million tweets, which is small by modern standards.
For 2013, we hoped to increase the collection size by at least
an order of magnitude, which required rethinking data gath-
ering and data access procedures.
Our solution, implemented in TREC 2013, was the “eval-

uation as a service” model. In summary: we gathered a
collection of tweets centrally, but instead of distributing the
tweets themselves, we provided a service API through which
participants could access the tweets to complete the task.
Below, we describe this approach in more detail.

2.1 Collection Construction
To build the official collection, we developed a custom

crawler using the twitter4j Java library1 that gathers tweets
from Twitter’s streaming API.2 We crawled all tweets from
the public sample stream between February 1 and March
31, 2013, UTC (inclusive). This level of access is available
to anyone with a Twitter account and does not require spe-
cial authorization. The collection was gathered from two
separate virtual machine instances on Amazon’s EC2 ser-
vice, one on the east coast of the US, and the other on the
west coast of the US. The redundant setup guarded against
network outages and other operational issues during the col-
lection period. Fortunately, no downtime was experienced
during the data collection period, so one of the copies was
simply designated as the official collection.
Messages are delivered in JSON from Twitter’s stream-

ing API: these messages contain posted tweets as well as
notifications of tweets that have been deleted. The crawler
packages all messages in one-hour compressed chunks. Thus,
the collection is comprised of 1416 gzipped files. In total,
we gathered 259 million tweets, although at the time of the
evaluation the collection was reduced to 243 million tweets
after the removal of deleted tweets.
We made a decision early in the track planning phase

that all software infrastructure associated with the evalu-
ation would be open source and hosted on GitHub.3 The
code for the crawler was developed during January 2013,
with input and discussion on a mailing list for developers.
By mid-January, we had an operational crawler ready for
testing by a few volunteers, and on January 23, 2013, the
crawler was released to all participants.
The official collection period was publicized on the track

mailing list well in advance of the actual start date, which
gave participants the opportunity to run the crawler them-
selves to gather contemporaneous tweets. Although these
crawls may not have the same content as the official collec-
tion, they are nevertheless useful for computing term statis-
tics, background models, etc. Based on an informal survey
conducted over the track mailing list in November 2013, at
least half a dozen groups from around the world gathered
their own local private collections.

2.2 API Specification
The idea behind the “evaluation as a service” model is

to provide an API that participants can use to complete the
1http://twitter4j.org/en/index.html
2https://dev.twitter.com/docs/streaming-apis
3http://twittertools.cc/



struct TQuery {
1: string group,
2: string token,
3: string text,
4: i64 max_id,
5: i32 num_results

}

struct TResult {
1: i64 id,
2: double rsv,
3: string screen_name,
4: i64 epoch,
5: string text,
6: i32 followers_count,
7: i32 statuses_count,
8: string lang,
9: i64 in_reply_to_status_id,

10: i64 in_reply_to_user_id,
11: i64 retweeted_status_id,
12: i64 retweeted_user_id,
13: i32 retweeted_count

}

Figure 1: Thrift definition of a search query and a
retrieval result.

service TrecSearch {
list<TResult> search(1: TQuery query)

throws (1: TrecSearchException error)
}

exception TrecSearchException {
1: string message

}

Figure 2: Thrift definition of the search API. The
service accepts a query and returns a list of results
(as defined in Figure 1).

evaluation task without needing access to the raw collection.
To this end, we provided a search API built using Thrift.4
Thrift is a software framework for developing scalable ser-

vices. It was originally developed at Facebook, but is now
an open-source Apache project. The framework has gained
popularity over the last several years and is currently an
integral part of production software stacks at many inter-
net companies, including Facebook and Twitter. Thrift pro-
vides an Interface Definition Language (IDL) for describing
services and data types. From these definitions, the Thrift
compiler automatically generates RPC clients and servers as
well as code for serializing, deserializing, and manipulating
the defined data types. Thrift handles generation of boiler-
plate code for communications protocols, object transport,
method invocation, and other functionalities necessary to
build distributed services. The framework provides support
for Java, C++, Python, Ruby, as well as many other lan-
guages, which allows the development of language-neutral
services. For example, a Python Thrift client can commu-
nicate easily with a Thrift server written in Java because
the communication protocols and data types are defined in
a language-independent manner.
The Thrift definitions of the two main data types in the

TREC Microblog search API are shown in Figure 1. The
Interface Definition Language is similar to a C struct, and

4http://thrift.apache.org/

contains an enumeration of numbered fields, each with a
type and a name. Most of the types are self-evident; i32
represents a 32-bit integer (int in Java), while i64 repre-
sents a 64-bit integer (long in Java). The TQuery object
represents a query, which contains the query text, a max_id
(i.e., requests the service to return only results smaller than
the id), and the number of results requested. For simplicity,
the service is stateless; access control is granted through a
group and token, which must be passed in the query each
time. The TResult object defines the retrieved result (more
details later). The service definition is shown in Figure 2.
The single method search, receives a TQuery object and
returns a list of TResult objects.
The service for the evaluation was written in Java using

the open-source Lucene search engine (version 4.3.1 at the
time of the evaluation).5 We provided a sample client in
Java to illustrate the features of the API. In addition, we
received the contribution of a Python client from the com-
munity, which was later integrated into the code base.
Search ranking was provided using Lucene’s implemen-

tation of query-likelihood (LMDirichletSimilarity). Re-
sults were filtered such that tweets with ids greater than
max_id (as specified in the TQuery object) were discarded.
Each search result was populated with the fields described
in Table 1 (corresponding to the Thrift definition in Fig-
ure 1). For each field, the table also provides its corre-
sponding element in the original JSON messages from the
Twitter streaming API, whether the element is optional (for
example, only retweets have certain fields), the correspond-
ing Java data type, and a short description.
The service endpoint was developed during Spring 2013

and was released to all registered TREC participants start-
ing in June. We released two distinct services: one on the
Tweets2011 collection created for the Microblog tracks in
TREC 2011 and TREC 2012, and another on the new col-
lection gathered in 2013. Both services behaved exactly the
same, except on different document collections. Since eval-
uation data were available for the Tweets2011 collection,
that service allowed participants to train their systems on
old topics.

3. RESULT OVERVIEW
In this year’s evaluation, we received 71 runs from twenty

groups. Relevance judgments were created using the stan-
dard pooling methodology by NIST assessors. Runs were
pooled to depth 90, according to the retrieval scores in-
dicated in each run. Simple retweets were removed from
the pools (as they were deemed to be non-relevant). The
tweets were clustered so that textually similar tweets could
be judged consistently. Relevance judgments were made
on a 3-point scale (“not relevant”, “relevant”, “highly rel-
evant”), but the following results consider both “relevant”
and “highly relevant” tweets to be relevant.
To provide a reference baseline, we constructed a post hoc

run that processed the raw API output in three minor ways:

• All retweets were discarded.

• Duplicate tweets were removed (a small number of
tweets were delivered multiple times via the stream-
ing API due to transient network glitches).

5http://lucene.apache.org/



Table 1: Detailed Description of a Search Result.

Thrift field JSON element Optional? Type Description
id status.id no long unique tweet id assigned by Twitter
rsv no double retrieval status value, i.e., document score
screen_name status.user.screen_name no String user who posted the tweet
epoch status.created_at (derived) no long UNIX epoch second when the tweet was posted
text status.text no String text of the tweet
followers_count status.user.followers_count no int the number of followers the user has
statuses_count status.user.statuses_count no int the number of tweets the user has posted
lang status.lang yes String the two-character language of the tweet as de-

scribed by the Twitter language id system
in_reply_to_status_id status.in_reply_to_status_id yes long the id of the tweet that this tweet replies to
in_reply_to_user_id status.in_reply_to_user_id yes long the id of the user who posted the tweet that this

tweet replies to
retweeted_status_id status.retweeted_status.id yes long the id of the tweet that this tweet is a retweet of
retweeted_user_id status.retweeted_status.user.id yes long the id of the user who posted the tweet that this

tweet is a retweet of
retweeted_count status.retweet_count yes int number of times this tweet has been retweeted

Table 2: Summary of Effectiveness Metrics. Median
and Mean are calculated from all submitted runs.

MAP P30 R-prec
Baseline 0.2524 0.4500 0.3008
Median 0.2217 0.4311 0.2796
Mean 0.2271 0.4111 0.2758

Table 3: Number and Fraction of Runs above the
Baseline.

Year Number Fraction
2011 20 out of 184 0.109
2012 79 out of 122 0.648
2013 30 out of 71 0.423

• Score ties were broken by recency (i.e., more recent
tweet were ranked higher).

The effectiveness of all submitted runs is shown in Ta-
ble 4, with the baseline inserted for comparison purposes.
The final column (“Type”) denotes whether the run received
human intervention (Manual) or was completely automatic
(Auto). Summary statistics are shown in Table 2. We see
that the median submitted run appears to be worse than
the baseline.
How do these results compare to previous years? In Fig-

ures 3 and 4 we sort all submitted runs from TREC 2011–
2013 by either MAP or P30. The red line corresponds to
the median run and the blue line corresponds to the base-
line. In TREC 2011 and TREC 2013, the median lies below
the baseline, but in TREC 2012, the median system outper-
forms the baseline. The number and fraction of runs that
beat the baseline are shown in Table 3.
An important question for the community to consider is

the effect of the evaluation-as-a-service model with respect
to experimental innovation. It may be possible that forcing

teams to interact with the collection via an API leads to less
diversity in techniques than we would see if participants had
direct access to the collection. The diversity of techniques
contributes to the diversity of the document pools, which
affects the reusability of the evaluation resources. We are
currently conducting analyses that hopefully will shed some
light on this question.
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Figure 3: Runs from TREC 2011–2013 ranked by mean average precision.
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Figure 4: Runs from TREC 2011–2013 ranked by P30.



Table 4: Overview of Retrieval Effectiveness. All 71 runs submitted to the evaluation are ranked in decreasing
order of mean average precision. The entry marked baseline was not part of the original evaluation, and is
included only for reference purposes.

Run MAP P30 R-prec Type
Direrank 0.4735 0.6967 0.5172 Manual
Avgrank 0.4570 0.7061 0.5033 Manual
FSsvm 0.4413 0.6744 0.4882 Manual
RvsDir 0.4010 0.5822 0.4931 Manual
PrisRun4 0.3524 0.5528 0.3861 Auto
PrisRun3 0.3506 0.5544 0.3850 Manual
QCRI4 0.3494 0.5372 0.3905 Auto
PKUICST3 0.3486 0.5567 0.3827 Auto
PrisRun2 0.3459 0.5511 0.3844 Auto
PKUICST1 0.3351 0.5478 0.3721 Auto
PKUICST2 0.3268 0.5311 0.3637 Auto
QCRI3 0.3068 0.4817 0.3472 Auto
ILPSub 0.3008 0.5322 0.3456 Auto
QCRI2 0.3001 0.4733 0.3441 Auto
QCRI1 0.2993 0.4678 0.3476 Auto
PrisRun1 0.2988 0.5078 0.3429 Auto
ILPSl2rE 0.2834 0.4894 0.3281 Auto
UDInfoMB 0.2811 0.5022 0.3285 Auto
PKUICST4 0.2768 0.5017 0.3260 Auto
QUTemporal 0.2748 0.4739 0.3245 Auto
NOVAsearch00 0.2726 0.4711 0.3171 Auto
QUQueryExp 0.2710 0.4433 0.3128 Auto
ICTNETBO1EXP 0.2663 0.4644 0.3117 Auto
kobeTSFRM 0.2640 0.4861 0.3146 Manual
QUBaseline 0.2555 0.4294 0.2936 Auto
Baseline 0.2524 0.4500 0.3008 Auto
ICTNETCOCCUR 0.2510 0.4594 0.2923 Auto
UDInfoMTB1 0.2484 0.4778 0.2873 Auto
GSAA 0.2412 0.4061 0.2996 Auto
stan2kl 0.2376 0.4411 0.2787 Auto
kobeTSFRMU 0.2365 0.4733 0.2867 Auto
GSAS 0.2351 0.4044 0.2920 Auto
GSAT 0.2351 0.4044 0.2920 Auto
QUDocExp 0.2311 0.4478 0.2809 Auto
NOVAsearch02 0.2239 0.4450 0.2738 Auto
CIRGIRDISCO4 0.2220 0.4078 0.2871 Auto

Run MAP P30 R-prec Type
kobeU 0.2217 0.4211 0.2696 Auto
BAUENGPGRNK 0.2212 0.3933 0.2866 Auto
QEClustIDF 0.2196 0.5094 0.2640 Auto
QEDiscIDF25Good 0.2188 0.5122 0.2626 Auto
BAUENPRKST 0.2187 0.3906 0.2818 Auto
CIRGIRDISCO2 0.2160 0.3817 0.2796 Auto
CIRGIRDISCO3 0.2152 0.3828 0.2788 Auto
BAUENGFLT 0.2129 0.3956 0.2789 Auto
kobeRMU 0.2125 0.4311 0.2538 Auto
UDInfoMINT 0.2108 0.3978 0.2654 Auto
BAUENGSTAT 0.2092 0.3844 0.2750 Auto
NOVAsearch01 0.2082 0.4367 0.2530 Auto
ModelSEL922 0.2076 0.4739 0.2514 Auto
UDInfoMTB2 0.2069 0.4061 0.2614 Auto
DFRBase 0.2040 0.4650 0.2494 Auto
scunce4 0.1955 0.3933 0.2590 Auto
BNTSrK 0.1952 0.3672 0.2628 Auto
scunce1 0.1794 0.3744 0.2457 Auto
scunce2 0.1786 0.3667 0.2494 Auto
scunce3 0.1626 0.3517 0.2335 Auto
ICTNETBASE 0.1613 0.3378 0.2136 Auto
NOVAsearch03 0.1612 0.3550 0.2092 Auto
ILPSdf 0.1527 0.4089 0.2020 Auto
UCASgem 0.1285 0.2844 0.2034 Auto
UCASqe 0.1276 0.2217 0.1880 Auto
stan4col 0.1097 0.2278 0.1426 Auto
BJUTFreq 0.1088 0.2328 0.1610 Auto
BNTSrKSO 0.1031 0.2061 0.1379 Auto
WISSySeCo 0.0976 0.3328 0.1430 Auto
iritfdUrlRoc 0.0757 0.1461 0.1339 Auto
BJUTEntr 0.0731 0.1639 0.1174 Auto
BJUTCnor 0.0729 0.1822 0.1137 Auto
iritfdUrl 0.0648 0.1394 0.1146 Auto
stan1kl 0.0325 0.0383 0.0425 Auto
stan3kl 0.0315 0.0300 0.0401 Auto
ILPSl2rB 0.0131 0.0639 0.0370 Auto


