
Filtering Entity Centric Documents using
Numerics and Temporals features within RF Classifier

Vincent Bouvier
Kware / Aix-Marseille Université

CNRS, LSIS UMR 7296
Domaine universitaire de Saint Jérôme
Avenue Escadrille Normandie Niemen

13397 MARSEILLE Cedex 20
vincent.bouvier@kware.fr

Patrice Bellot
Aix-Marseille Université
CNRS, LSIS UMR 7296

Domaine universitaire de Saint Jérôme
Avenue Escadrille Normandie Niemen

13397 MARSEILLE Cedex 20
patrice.bellot@lsis.org

1 Introduction
This article introduces the system designed to work
for the Knowledge Base Acceleration (KBA) track at
Text REtrieval Conference (TREC). This is the sec-
ond time this track is run with yet this year there is
even more challenge.

KBA is focused on keeping up to date knowledge
bases (KB) such as Wikipedia1 (WP) where each
KB node is considered as an entity (WP page for
wikipedia example). It has been shown in (Frank et
al., 2012) that the time lag between the publication
date of cited news articles and the date of an edit to
wikipedia article creating the citation can be really
big (median 356 days) for non-popular entities.

KBA is to give a chance to non-popular entities
information to be updated as soon as a useful in-
formation is published on the internet. The KBA
organizers have built up a stream-corpus which is
a huge corpus of timestamped web documents that
can be processed chronologically. Hence it is pos-
sible to simulate a real time system. The docu-
ments come from newswires, blogs, forums, review,
memetracker... . In addition, a set of target entities,
coming from wikipedia or from twitter, has been se-
lected for their ambiguity or unpopularity. And last
but not least, more than 60,000 documents have been
annotated so that systems can train on it. The train
period starts on documents published from october
2011 until february 2012, and the test period starts
from february 2012 to february 2013.

The KBA track is divided in two tasks: CCR
(Cumulative Citation Recommendation) and SSF
(Streaming Slot Filling). CCR task is to filter out
documents worth citing in a profile of an entity (e.g.,
wikipedia or freebase article). SSF task is to detect
changes on given slots for each of the target entities.
This article is focused only on CCR task.

In CCR task, the system is to filter out documents
relative to target entities out from the stream-corpus.
The system must also be able to give the usefulness

1wikipedia: http://wikipedia.org

of a document ranked using one of those 4 relevance
classes:

garbage : no information about target entity;

neutral : informative but not citable;

useful : bio, primary or secondary source useful
when creating a profile from scratch;

vital : timely info about the entity’s current state,
actions, or situation.

The remaining of this article is organized as fol-
lows. The next section give details on how we de-
signed our system. Then the different runs we sent
are analyzed to eventually conclude and give a brief
outline on perspectives.

2 KBA System
Before starting designing our system, we first had
to think about how to deal with the corpus. For the
KBA track, a 6.5 terabytes (compressed) corpus of
documents is given to participants where each doc-
uments are organized so it can be read chronolog-
ically. It is really important to read documents af-
ter documents in chronological order to make sure
that the system is not considering future informa-
tion when processing a document. Therefore it is
not possible to build a big index on the whole cor-
pus since the retrieval process would be influenced
by all the documents. It is yet possible to build an
incremental index however, this can be really a time
consuming task.

Our last year system we indexed each hour of
stream to make sure we were not messing up with
the ”look ahead” behavior. This year we have modi-
fied our system since the corpus is way much bigger,
it would have been too much time consuming to in-
dex every hour of stream. In order not to have to
process all the corpus each time we want to test our
system we first rebuild a new corpus with only doc-
uments containing a mention of an entity in a pre-
processing phase. Then we can perform the ranking

phase which consists in giving a class to each docu-
ment having a mention of its target entity.

3 Preprocessing Data

To extract documents, we first pre-process the tar-
get entities. For the CCR task, the entities come
either from wikipedia; so the url page is used as
a “target id”; or from twitter; so only the user
starting with a ‘@’ is given. For twitter entities, we
also were allowed to get real name from the twitter
profile.

The remaining of this section explains first how
we build entities profiles we use for both extracting
documents from the corpus and for document’s clas-
sification.

3.1 Building Entity Profile

From now on, we are going to use the word “Pro-
file” to define the structure that holds different data
that must define as much as possible the entity. We
identified three types of data :

- variant collection : the variant collection con-
tains different ways to refer to an entity;

- relation collection: relation collection contains
the different entities that have a relation with
the target entity;

- language model : is to contain a textual repre-
sentation of the entity as a bag of n-grams. This
model is used to evaluate how similar/divergent
a document is from it.

We describe in the remaining of this sub-section
how we gathered those data.

3.1.1 Variant and Relation Collections
An entity may be cited in a document using differ-
ent manners. For instance, the homonymic entities
Boris Berezovsky (Pianist and Business man), has
different middle names (cf., table 1, 2) that can be
helpful to identify which one is referred within a
document. In a recall oriented system, the variant
collection is mandatory.

target id Boris Berezovsky the Pianist
variants Boris Vadimovitch Berezovsky

Table 1: Variants for Boris Berezovsky the pianist

Variant collections can be filled either supervised
or unsupervised manner. We use in our system only
the unsupervised way. We build a system that goes

target id Boris Berezovsky Businessman
variants Boris Abramovich Berezovsky

Table 2: Variants for Boris Berezovsky businessman

through a wikipedia dump2 and fills variant collec-
tions using (Cucerzan, 2007) methods:

- bold words in the first paragraph of the target
entity’s WP page;

- legend of anchors in any pages that points to the
target entity’s WP page.

While searching for variants we also look for the
different kind of relations the target entity may have
with other entities and remember each one as : out-
going relation (an anchor in the target entity WP
page that points to another WP page), incoming re-
lation (an anchor in any WP page that points to the
target entity WP page) or mutual relation (anchors
are found in both a WP page and the target entity
WP page).

This year we also have Twitter entities. For those
entity we simply use the name displayed on the pro-
file of the entity using the Twitter API (cf. figure
1).

Figure 1: Variant’s name for Twitter entity
@urben00: Brent Faulkner

3.1.2 The language model
In the profile, we also save as a Bag Of Word (BOW
with n-gram) we call the reference BOW. It contains
a representation of the WP Page of the target en-
tity when it is a WP entity. For Twitter entities it
is empty otherwise. The last point is quite important
since some profiles have a lack of information. In
addition, the entities may evolve as the time goes by.
So we added to the profil another BOW that we call
the dynamic BOW. This dynamic BOW is filled with

2from before the 1rst of January 2012

documents discovered on the stream when they ful-
fill the prerequisites: mention the entity, document
is ranked as vital (V UPDT), document is scored
as useful (VU UPDT). The two last conditions are
tested seperately in two different runs.

In addition, we add another parameter to fill the
dynamic BOW. When having a document ranked
even vital for an entity, it may not be relevant to con-
sider the whole document since it may not only con-
tain information about the target entity. So we tested
both approaches : add whole document (DOC); add
snippet (SNPT). To build the snippet we simply use
every paragraph that contains a mention of the target
entity.

The process of updating the dynamic BOW is
performed during the ranking phase of our sys-
tem since it does require the rank our system as-
signs to the document. To summarize, our sys-
tem is giving 5 different outputs: NO UPDT,
V UPDT DOC, V UPDT SNPT, VU UPDT DOC,
VU UPDT SNPT.

3.2 Extracting documents from the Corpus
Using variant collection from target entities profile,
we go through every single document in the corpus
and search for a mention of any variant. A single
document can be extracted more than once if multi-
ple target entities appear in it. We use a hash of the
“target id” as well as the document unique identifier
(stream id) to name the xml file that represents the
document so it is easier to find which document con-
tains which entity while keeping track on what time
the document appears on the stream. It is therefore
possible to read all documents still chronologically.

In order to find a match in a document we im-
plemented an algorithm inspired of the “Back-
ward Nondeterministic Dawg Matching” (BNDM)
to which we add the possibility to ignore space and
some punctuation such as dash “-” (BNDM IR).
An entity name can indeed be composed of several
names not always segmented the same way. For in-
stance KBA12 entity “lovebug starsky” was also
found as “love bug starski”.

To have an idea of the gain of this method, we
compute the recall using the formula in equation 1
on the training and test collection:

recall =
#documentsfound ∈ corpus

#documentsfound ∈ train ∪ test
(1)

4 The Ranking System
The ranking system is to identify according to a pro-
file how useful a document is. This system can only

Method Recall
BNDM .7396
BNDM IR .8226

Table 3: Recall computed using training and test set

consider prior and current documents to decide the
rank of a document in : garbage, neutral, useful and
vital. In addition, the system must issue a confidence
score ∈]0, 1000] ∈ Z where 1000 is very confident.

Our system uses Random Forest (RF) classifiers
with a set of features to determine the rank. The RF
is composed of a multitude of decision trees, where
each one uses a subset of features. The final deci-
sion is made by averaging scores of the trees. We
use three different kind of features : documents re-
lated features, entity related features and time related
features. We design our features so adaptive learn-
ing can be used. Therefore our system could be used
to rank documents of an entity that has not been part
of the training. The remaining of this section discuss
the features we use for classification.

Document related features are used to depict a
layout from documents independently of the entity.
We use three features here apply to a document D as
shown in table 4.

has title(D) ∈ {0, 1}
voc size(D) |D|
entropy(D)

∑D
i=0 p(wi, D)log2(p(wi, D))

Table 4: Document related Features

Entity related features are used to determine
how a document concerns the target entity it has
been extract for. Here, the previously build profile
is used to compute the different features(cf., table
5).

Some entity features require term frequency (TF)
to be computed. To compute a TF of an entity e,
we sum up the frequency of all mentions of variant
names vi from the collection Ve in a document D.
We eventually normalize by the number of words|D|
in D (cf., equation 2).

tf(e,D) =

∑Ve

i=1 f(vi, D)

|D|
(2)

The features that compute the coverage is com-
puted as in equation 3

cov.(Dsnippet, D)) =
|Dsnippet|

|D|
(3)

tftitle tf(e,Dtitle)
tfdocument tf(e,D)
voc sizedocument |D|
covsnippet equation 3
tfrelationType tf(reltype, D)

Table 5: Entity related features

When building profile, we said that we extract re-
lation an entity may have with another from WP us-
ing three different kind of relations: incoming, out-
going and mutual. For each kind of relation and for
each entity in this relation group, we compute the
average tf on the whole document.

Time related Features: the corpus offers the pros
to be able to work with time information. We de-
signed the time related features so the classifiers are
able to work with information concerning previous
documents. Such information may help detecting
that may be something is going on about an entity
using different clues such as burst effect. As shown
on the figure 2, the burst does not always depicts vi-
tal documents, although it still might be a relevant
information for classification.

Figure 2: Burst on different entities does not always
imply vital documents.

To depict the burst effect we used an implementa-
tion of the Kleinberg Algorithm (Kleinberg, 2003).
Given a time series, it captures burst and measure the
strength of it as well as the direction (up or down).
We decided to scale the time series on an hour ba-
sis. In order not to mess the classifiers with too
many information we decided not to use the direc-
tion as a feature but to merge the direction with the
strength by applying a coefficient of -1 when direc-
tion is down and 1 otherwise.

In addition to burst detection, we also consider
the number of documents having a mention the last
24hours.

We noticed from our last year experiments on
KBA12 that time features were actually degrading

final results since when ignoring them our scores
was better. So we decided to focus only on features
(cf table 6) that can really bring useful time informa-
tion.

kleinberg1h burst strength and direction
match24h # documents found last 24h

Table 6: Time related features used for classification

4.1 Classification
As a reminder of section 3.1.2, we implemented dif-
ferent ways to update (or not) a dynamic language
model:

- No Update: NO UPDT

- Update with Snippet: UPDT SNPT

- Update with Document: UPDT DOC

When we update the dynamic model, we can
choose to update either Vital or Vital and Useful doc-
uments which adds 2 different outputs. In total 5
outputs are computed.

To classify documents based on computed fea-
tures, we designed several ways to handle it. The
first method “TwoStep” we use, considers the prob-
lem as a binary classification problem where we use
two classifiers in cascade. The first one CGN/UV is
to classify between two classes: “Garbage/Neutral”
and “Useful/Vital”. For documents being classified
as “Useful/Vital” the second classifier CU/V is used
to determine the final output class between “Useful”
and “Vital”.

The second method “Single” performs directly a
classification between the four classes.

The third method “VitalVSOthers” trains a classi-
fier on recognizing vital documents amongst all oth-
ers classes. When this classifier gives a non-vital
class, the “Single” method is used to determine an-
other class from “Garbage” to “Useful”.

The last but not least method “CombineScores”
uses scores emitted by all previous classifier and try
to learn the best output class considering all classi-
fiers scores for every classes.

4.2 System Outputs
To summarize, we have 5 different outputs possible
with 4 different methods which makes 20 different
runs. For the official run submission, we had is-
sues with our system making our runs not consistent
enough. In addition, we also had issues for extract-
ing documents from stream-corpus which makes our
system miss a lot of documents. The result of those

experiments have been performed after the TREC
conference held in november 2013.

5 Result Analysis
All results have been computed using the official
kba-scorer with the following command line pro-
vided in documentation. Moreover, the official met-
rics is the f1 score which is an harmonic mean of
precision and recall. Precision and Recall are both
micro and macro average before computing fmicro

and fmacro.
Since there are many results to discuss, I’ll sum-

mary the more interesting ones. First of all the sys-
tem which, uses no updates, performs better than any
other system on micro-average point of view. The
table 7 shows that most ranking methods perform
equally besides VitalVsOther which has a score a bit
below.

Ranking Methods fmicro fmacro

Single .400 .341
TwoStep .418 .340
VitalVsOther .383 289
Combine .415 .327

Table 7: Scores from system that do not update a
dynamic model.

The system that performs best on macro-average
point of view is the one where only vital document
are use to update dynamic model and the model is
updated with the snippet (UPDT SNIPPET VOnly)
(cf. table 8).

Ranking Methods fmicro fmacro

Single .458 .316
TwoStep .452 .303
VitalVsOther .428 .273
Combine .456 .305

Table 8: Scores from system that uses update using
snippet of vital documents only.

When observing the different curves given by the
official scorer, we noticed that our system has not a
good recall which penalize a lot the scores. In ad-
dition, the official scorer is considering that docu-
ments appearing in test collection and not in the eval-
uate run as false negative. Let’s consider the docu-
ment not being found by our system and therefore
not classified, it has been considered as if we classi-
fied it wrong.

We implemented a similar scorer that consider
only what has been classified using different cutoff.

When the confidence score is below the cutoff, the
document is considered as false negative. We run
the scorer on the both better results above and ob-
tained the following results (we select the best trade
off between precision and recall for each methods):

Scores for No Update:

Methods Precision Recall f1
Single .652 .423 .513
TwoStep .627 .453 .526
VitalVsOther .716 .391 .506
Combine .669 .434 .527

Table 9: Scores from alternative scorer to measure
classifier performance on system without update.

Scores for Update Snippet with Vital:

Methods Precision Recall f1
Single .771 .422 .545
TwoStep .726 .427 .537
VitalVsOther .791 .386 .519
Combine .750 .425 .542

Table 10: Scores from alternative scorer to measure
classifier performance on system without update.

Those two tables (9, 10) show that using a dy-
namic model really helps for both precision and re-
call. Therefore, the f-measure is also better.

6 Conclusion and Perspectives
We present an approach to filter out entity centric
documents from a stream. This approach has the
pros to be adaptive and can therefore be used on en-
tities which no training data have been provided for.
In our last year system (Bonnefoy et al., 2013) we
showed that even though the system has no training
data for an entity, it is still able to find out some vi-
tal documents for the entity. We also show that time
features as well as a dynamic model is valuable for
the classification purposes although we have to im-
prove our IR system which lake of performances.

We are currently working on improving our sys-
tem to find out whether it may have any other way
to update profile to improve even more precision.
We also plan to investigate on a method to know
when is the best moment to update a profile, whether
some information must be forgotten inside the pro-
file. Eventually, we will look at methods to improve
the recall.

References
Ludovic Bonnefoy, Vincent Bouvier, and Patrice

Bellot. 2013. A Weakly-Supervised Detection
of Entity Central Documents in a Stream. SIGIR
2013, pages 1–4, February.

S Cucerzan. 2007. Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. EMNLP-
CoNLL.

J Frank, M Kleiman-Weiner, D Roberts, F Niu,
and C Zhang. 2012. Building an Entity-Centric
Stream Filtering Test Collection for TREC 2012.
. . . of The 21th TREC.

J Kleinberg. 2003. Bursty and hierarchical structure
in streams. Data Mining and Knowledge Discov-
ery.

