University of Glasgow (uog_tw) at TREC Microblog 2012

Jesus A. Rodriguez Perez, Andrew J. McMinn, and Joemon M. Jose
{j.rodriguez-perez.1, a.mcminn.1}@research.gla.ac.uk, joemon.jose@glasgow.ac.uk

School of Computing Science
University of Glasgow
Glasgow, UK
G128QQ

ABSTRACT

In TREC 2012, we participated in the search and filtering
tasks of the Microblog Track. The Microblog track is in its
second year, and whilst the real-time ad-hoc search task re-
mained very similar to 2011, a new real-time filtering task
was introduced. For both tasks, we made use of temporal ev-
idence and a burst detection algorithm to re-rank documents
created during bursty periods. We also made extensive use
of query expansion, which yielded good results in the ad-hoc
task, but mixed results in the filtering task. Many of our
runs were well above the TREC Median, and the methods
we propose show promise for application to Twitter.

1. INTRODUCTION

Microblogging has grown in popularity in recent years,
and is gradually transforming the way we communicate with
each other, share information, and find out about events.
Twitter is a particularly interesting service because it en-
courages users to discuss events in real-time, and often in-
cludes first hand reports of an event as it is developing. This
allows for a unique insight into events from the subjective
opinions of those directly involved to the discussion between
others following the event through social and traditional me-
dia.

Ad-hoc retrieval is one of the the most commonly re-
searched tasks in Information Retrieval, where the goal is
to return documents that are relevant to an immediate in-
formation need, expressed as a query. Tweets are limited
to 140 characters in length, and over 340 million tweets are
posted every day. Tweets are generally of a low quality as
they contain bad grammar or spelling mistakes, and slang is
often used to overcome their restricted length.

The combination of these factors makes searching in Twit-
ter extremely difficult, causing traditional ranking models,
such as TF-IDF [1], to experience difficulty in retrieving the
most relevant documents.

For our experiments in the real-time ad-hoc and real-time
filtering tasks, we employed various different techniques. Our
main focus was on temporal features and query expansion
techniques in the challenging context of tweet retrieval.

2. TWEETS11 CORPUS

The Tweets11 collection was once again used for the 2012
track, however, in the interest of fairness, the collection was
re-downloaded from Twitter shortly before the May 7 cutoff
time. This was because Tweets often become inaccessible

over time due to deletions and changes in their public vis-
ibility. This would have disadvantaged newcomers who did
not already have a copy of the corpus as they would not
have had access to the full collection.

The corpus spans a two-week period from the 24th of Jan-
uary to the 8th of February 2011. It contains approximately
16 million Tweets across all languages, and is designed to be
a representative sample of Twitter, containing both useful
and spam tweets.

2.1 Spam and Language Filtering

We performed basic filtering to remove spam and non-
English Tweets from the Tweetsll corpus. Tweets which
contained more than 3 hashtags, 3 mentions, or 2 URLs were
classified as spam and removed. This decision was based
upon statistical observations of the corpus, and thorough
careful examination of the most common types of spam on
Twitter.

Non-English tweets were removed based upon two factors:
(1) the author’s primary language, and (2) the language of
the tweet. The author’s language was taken directly from
their profile data, which is included in the JSON of every
tweet. However, we found that simply relying on the lan-
guage specified by the user was very unreliable, and that a
large percentage of users did not write tweets in the language
specified by their profile. In particular, a disproportionately
large number of users identified their language as English,
but wrote tweets in another language. The language used
in individual tweets was identified using a Java language-
detection library' which uses naive Bayesian filtering and
claims over 99% precision for 53 languages.

After filtering, around 4 million of the original 16 million
Tweets remained. This gave us a clean base from which
to run our experiments, and greatly reduced the time and
space required to index the collection.

3. BURST DETECTION ALGORITHM

We believe that ad-hoc retrieval performance in microblog
streams can be improved by taking the temporal dimension
of the documents into consideration. In order to do this, we
need two components. Firstly, a burst detection algorithm
from which we can extract temporal features during bursts.
Secondly, a retrieval model which incorporates the temporal
features to weight terms and rank relevant documents.

3.1 Burst detection
"http://code.google.com/p/language-detection /

2-state Burst Detection

Measures during bursts are discarded once it is over

80

70

60

50

40

30

20

Measure values

10

0

—&— Cumulative AVG
cSTD

—4—Avg_cSTD

=»—bursty?

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100106112118124130136142148154
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109115121127133139145151157

Time points

Figure 1: Example of burst detection using real data for the term “Airport”

Our approach examines the timeline of terms searching
for sudden positive changes in the frequency, which can rep-
resent a burst. To identify a burst, we produce two signals:
one which carries the historical rate of change of the timeline,
and another which reflects to current rate of change. To this
end, we propose the use of the relationship between two cu-
mulative statistical measures, namely cumulative Standard
Deviation (¢ST D), with the current rate of change and aver-
age of the cumulative Standard Deviation (Avg_c¢ST D) with
the averaged historical rate of change. Computing these
signals for each hour long time windows, we can evaluate
whether a term has bursted at a particular time window.
All the measures utilised are formalised below:

Xei+ (’L — 1)(cAvgt7¢,1)

cAvgs; =
i

(1)

eSTDy i1+ (Xt — Avgei1)(Xei — cSTDy)

' %)

CSTDt,i =

A’Ug,CSTDt,i = AUg(CSTDt’i)t,i (3)

where the frequency X of term ¢ is defined as the times ¢t is
mentioned during a time window i. Moreover, we compute
the arithmetic cumulative mean (cAvg) as the frequency for
term t up to time window i. Likewise, we compute ¢ST D
for a term t for the given time window i. Finally Avg_cSTD
is computed for the same window i and term t.

¢ST D represents the cumulative standard deviation of the
frequency for a given term ¢ at a give time window 4 within
the time series. It is computed using Formula 2. Notice that
this formula depends on the cumulative arithmetic mean of
the term frequency up to time window ¢ (Defined in For-
mula 1), as well as the ¢STD value from the previous time
window.

As Avg_cSTD gives us a stable measure of the historical
rate of change, we consider that a term ¢ is bursty at time
window i when the ¢STD signal is larger than Avg_cSTD
(i.e. the current rate of change is higher than that previously
observed). Note that whilst equations 1 and 2 have been
used by [3], we provide Avg_cSTD allowing our system to
determine whether a term is bursting or not.

The main issue with these statistical measures is that
smaller bursts can be smothered if proceeded by a larger
burst. The measures may become numb as the cumulative
arithmetic mean takes into account the sudden change in
frequency. To address this problem, we borrow an idea from
[2], by which bursts are modelled as states of a state ma-
chine. Our model contains two states, idle and bursting.
The transition from idle to bursting is done when ¢ST'D is
higher than Avg_c¢STD. Likewise, the transition from burst-
ing to idle occurs when the value for ¢STD drops below
Avg cSTD.

When transitioning from idle to bursting, the values of
all measures are stored in the idle state. These values are
later restored when the idle state is re-established, discard-
ing the values obtained during bursts from future compu-
tations, which results in better sensitivity to bursts. This
approach is formalised in Algorithm 2.

Since no previous information for a term is available when
it appears first time, the signals require between 3 and 5
samples to stabilize. Consequently during this range of time,
bursts are not considered as they are very likely to be a
false positives. To help minimize this loss, a global average
frequency across all terms is maintained throughout all time
windows, and it is used as a preinitialization value for a
new incoming term. In other words, if the ¢STD signal is
larger than Avg_c¢STD when using the sampled frequency
for the new term, and the global average, then a burst may
be considered at start.

Figure 1 illustrates how the burst detection algorithm per-
forms during a real scenario. This figure includes the above

Figure 2: Burst Detection algorithm pseudo code

input: term ¢
input: time window 1
foreach time window i do
foreach term t in window i do
cAvg(t,i) = cumulative avg frequency up to i for term ¢
cSTD(t,i) = cumulative standard deviation of frequency for ¢ up to ¢
Avg ST D(t, w) = cumulative avg of ¢STD(t,4) for ¢t up to ¢
if ¢STD > Avg ¢STD then
current _state = “bursty”
if old_ state is not “bursty” then
store current values

end

else
if old_ state is “bursty” then

restore old _state values

end -

end

end
end

mentioned measures, as well as the decision by our algorithm
denoted by bursty?. A term is considered “bursty” at a par-
ticular time window, when the bursty? measure, is higher
than 0. We can observe how it correlates quite closely with
the bursts we may evaluate manually with respect to the
frequency (“Samples (X)” measure in Figure 1).

One of this method’s main advantages is its low storage
and computational complexity. The measures are cumu-
lative, and as such, we only require the most recent time
window and a reference window, eliminating the need for
historical frequency information during the burst computa-
tion. Furthermore, all terms are dealt with independently,
simplifying the computational complexity greatly. This en-
ables the burst detection algorithm to scale well, and allows
it to work in real-time on modest hardware.

During a time window, when a burst is identified we store
three pieces of information: The start time of the burst, the
end time of the burst, and its magnitude, which is defined
as:

mage; = Avg_cSTDy; — cSTDy (4)

Finally, this information is kept in an inverted index where
the terms are the keys and the bursts information is stored
as values, and later used by the retrieval models.

4. REAL-TIME AD-HOC TASK

Real-time ad-hoc tasks are based on the scenario where
a user wants the latest information with respect to a tex-
tual query. Therefore the participating systems in this task
should return the best documents to satisfy the user’s infor-
mation need, ordered from newest to oldest.

After preprocessing all tweets, we indexed the collection
using the Terrier IR [4] platform and its double pass indexing
option. The information kept in the index was comprised
of the text and the tweet ids, which are later used for the
retrieval. We chose to use Terrier IR as it provides a Java
APT and a variety of retrieval models which we could use
out of the box.

When choosing our baseline, we experimented with mul-
tiple traditional retrieval models including tf*idf, idf, bm25
and Hiemstra’s Language Model, etc. We found that IDF
outperformed all other models due to its independence with
respect to document specific metrics. This motivated the

use of idf as our baseline, since models relying on document
specific metrics, in the tweet retrieval context, performed
much worse in terms of precision, recall and MAP.

4.1 RUNI: IDF Only

This run was used as our baseline, and uses the IDF re-
trieval model over the filtered collection, with the resulting
list of tweets ordered according to recency (Most recent doc-
ument first).

4.2 RUN2: IDF and Query Expansion by PRF

This run builds upon the first run, and extends the search
providing a query expansion approach based on pseudo rele-
vance feedback (PRF'). PRF assumes the first N documents
are relevant to the information need posed by the user by
means of the query. We empirically set N to be the first
3 tweets as it becomes counter productive to consider more
documents in this context, resulting in worse performance.
When selecting a term for query expansion, we adopt a very
conservative posture, considering only terms which appear
at least in two of the three tweets.

4.3 RUN3: IDF and Burst Detection

This run utilises the temporal information provided by the
burst detection algorithm described previously, to reorder
results according to their temporal relevance. To accomplish
this, retrieval performed in two stages. Firstly, a query is
issued and a ranked list of documents is generated for each
of the topics using idf. Secondly we analyse the query terms
looking for bursts in frequency they might have had during
the same time the tweets in the list were published. Each
of the time windows in which the documents were published
will then have a score which reflects the burstiness of the
query terms at that particular time. We compute the score
using this equation:

Ztotal,terms

w=1
100)

Where w refers to a word, ¢ refers to a time window and
mag the magnitude of the burst for a term w during a win-
dow i. There are two aspects we wanted to reflect in this
equation. First the co-ocurrency of bursty terms is pro-
moted, giving higher scores to documents containing more
bursty query terms through N. Secondly, to characterize the
temporal impact of the bursts, the equation adds together
the magnitudes of the bursts experieced by the query terms
during that time window. Finally we have empirically seen
that the sum of magnitudes is never higher than 100, thus to
use this feature as a second tier in the reranking, we divide
the sum of the magnitudes by 100.

Due to having a fixed window size and the time required
for detecting a burst, it is possible for an important number
of relevant tweets to lie in the temporal vicinity of a detected
burst. We attempt to minimize this issue by assigning scores
to tweets located near the bursty windows, using a linear
interpolation approach. Specifically, we interpolate a score
for the tweet contained in the temporal vicinity using the
range [mag,, ;...0]

magw,i

Score; = N; +

S. REAL-TIME FILTERING PILOT TASK

The aim in the real-time filtering tasks is to decided if a
subsequently posted tweet is relevant to a query submitted

Table 2: This table shows the results achieved for each of the runs performed as part of the filtering task.

Run Submitted? | Scaled Utility | F (beta=0.5) | Set-Preciston | Set-Recall
TREC Median yes 0.2076 0.1491 0.1766 0.3343
FRUNI yes 0.2072 0.2297 0.2657 0.4238
FRUN2 yes 0.0617 0.1017 0.1099 0.4928
FRUN3 yes 0.2590 0.2835 0.3414 0.4440

Table 1: This table shows the results achieved for
the real-time ad-hoc task.

Run Submitted?” | MAP P@30 | R-prec
TREC Median yes — 0.1509 | 0.1905
RUNI yes 0.0978 | 0.1192 0.1270
RUN2 yes 0.1089 | 0.1333 0.1387
RUN3 yes 0.1297 | 0.1582 | 0.1567

[IDF+IBF | no [0.1087] 0.3226 | 0.1I570 |

at particular point in time. In this task, the assumption is
that the user has already seen a tweet, or tweets, related to a
topic they are interested in. The user now wishes to find new
relevant tweets to keep them informed of any developments.

For these runs, we made use of the ability to receive im-
mediate relevance feedback for the users.

5.1 FRUNI: IBF

Events are highly temporal, therefore we assume that uti-
lizing temporally sensitive approaches to retrieval, can im-
prove the retrieval performance for event based queries. In-
verse Burst Frequency (IBF) works under the assumption
that temporal data can be used to compute the discrimina-
tive power of a term, analogously to i¢df. To this end, IBF
uses data provided by the burst detection algorithm follow-
ing the structure set by idf, as formalized in equation (6).

Bl (6)
lbe B:tebl +1
where t refers to the term, B the set of all bursts recorded by
all the query terms, b represents a burst and |B| is the total
number of bursts identified in the collection. Alternatively
B can include the bursts produced by all terms, but we
achieved best results when we used query terms only.
Similar to idf, the more often a term is identified as bursty,
the lower the score assigned to the term. Therefore, terms
that burst infrequently are assumed to be more discrimina-
tive of the documents we want to retrieve.

5.2 FRUN2: IBF & Query Expansion by RF

This run builds upon last run, by using the relevance feed-
back we were allowed to use in this particular task. When
the system assessed a document as being relevant to the
query at hand, the system was allowed to instantly know
if its decision was correct, providing an incredibly fast and
quite unrealistic relevance feedback.

5.3 FRUN3: Adaptive Query Expansion

As each new Tweet is received, a score is calculated for
the Tweet d against query gq. If score(d,q) is greater than
0.5, the Tweet is displayed to the user, who is then able to
judge it as relevant or non-relevant. Query expansion beings
once 2 documents have been marked as relevant by the user,
and is revised after every subsequent judgment.

IBF, p =

5.3.1 Query Expansion

We take the most frequently occurring terms which appear
in at least %rd of the documents marked as relevant by the
user, and append them to the query. New query terms are
added to the original query until the query reaches a max-
imum length of 5 terms. For example, the query “Mexico
drug war” is capable of being expanded by up-to 2 terms,
however queries such as “phone hacking British politicians
voicemail Prime Minister Gordon Brown police” will receive
no expansion.

5.3.2 Scoring

Scoring was performed using query length normalized TF.
Although term frequency is known to perform poorly in re-
trieval tasks when applied to Twitter, its performance seems
considerably better in filtering tasks.

The original query terms are double weighted when calcu-
lating a document’s score. This is to reduce the likelihood
that the results will be skewed too far from the original
query, whilst still allowing for a reasonable difference to be
made by the expanded terms.

The score for a document d and query g is given as:

d-q

lq
6. RESULTS AND DISCUSSION

In this section, we present the results obtained for each
of our experiments in the Microblog Track. Many of our
submitted runs in the filtering task out-performed the TREC
Median, and development after the TREC deadline allowed
us to further improve our algorithm’s performance in the
ad-hoc search task.

6.1 Real-time Ad-hoc Task

Table 1 shows the results of our experiments in the real-
time ad-hoc retrieval task. This year’s standard measure-
ments, as agreed by TREC organizers, are given. Note that
we have also included results for an additional run which
was performed after improvements to our algorithm after
the ad-hoc deadline.

From the results obtained, we can see that only our third
run performs better than the TREC Median in terms of pre-
cision at 30. In terms of R-precision, all of our submitted
ad-hoc runs perform worse than the TREC Media. However,
our additional experiments with IDF+IBF, which is based
on the same principles as runs 2 and 3, achieves twice the
precision at 30 compared to the TREC Median — an encour-
aging result. However, the R-precision performance of our
newest approach remains lower than the median, and near
identical to our best submitted run. We believe this may be
due to our system being able to target highly relevant doc-
uments, which is easily reflected in terms of precision, but
does not have an effect in terms of recall. Thus R-precision

score(d, q) =

ROC curves for the Ad-hoc submitted runs

0.6 T T T

04 -

03

true-positive-rate

02

01

0 1 1 1 1

T T T T
RUN1 ——

RUN2
RUN3 —%—

e
o

5.0845e-02 5.0850e-02 5.0855e-02 5.0860e-02 5.0865e-02 5.0870e-02 5.0875e-02 5.0880e-02 5.0885e-02 5.0890e-02 5.0895e-

false-positive-rate

Figure 3: Roc curves for submitted runs

does not correlate with the improvement in performance ex-
perienced by the precision measures in our runs.

Finally, a comparison is made in Figure 3, which shows the
plot of ROC curves for each of the submitted runs. Here, we
can see how RUN3 gives the best performance. This means
that the rate of false positives is lower with respect to true
positives when compared to the other two runs. Following
the same reasoning, we can see that the second best per-
forming run in terms of the ROC is RUNZ2, as it is closer to
the left than RUN1, leaving RUN 1 in third place.

6.2 Real-time Filtering task

Table 2 shows the results for the filtering task. The ad-
dition of more terms as part of query expansion in FRUN2
may have been counter productive, as many terms do not
appear to show signs of burstiness. As a result, we believe
that IBF is better suited as complementary weighting when
combined with more traditional ranking methods. In partic-
ularly, we have had success pairing it with IDF weighting.

Our Adaptive Query Expansion, which was used by FRUN3,

seems to provide the best results by a significant margin -
with its F and Precision measures being almost double that
of the TREC Median. The performance of the query-length
normalized TF scoring is surprising, especially given that TF
has been show to be one of the worst performing weighting
schemes for ad-hoc retrieval on Twitter. Further investiga-
tion is needed to compare other scoring systems, such as
IDF, with the adaptive query expansion method described.

7. CONCLUSION

In this paper, we have presented a burst detection tech-
nique and query expansion techniques for use with Twitter.
We applied our burst detection technique to both the ad-hoc
and filtering tasks which showed significant improvements

over the baseline IDF ranking. Further investigation, af-
ter the ad-hoc deadline, produced the IBF ranking scheme,
which showed further improvements over the baseline.

Experiments with query expansion yielded slight improve-
ments in the ad-hoc search task, and mixed results in the fil-
tering task. The different query expansion algorithms used
in the filtering runs produced vastly differing results, sug-
gesting that query expansion can be very beneficial, or very
detrimental depending heavily on the method of expansion
and the data available. Overall, IBF and our query expan-
sion techniques produced results significantly higher than
the TREC Median in the filtering task, and shows that they
have great potential for use on Twitter.

8. REFERENCES

[1] K. S. Jones. A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28:11-21, 1972.

[2] J. Kleinberg. Bursty and hierarchical structure in
streams. Data Mining and Knowledge Discovery,
7(4):373-397, 2003.

[3] M. Naaman, H. Becker, and L. Gravano. Hip and
trendy: Characterizing emerging trends on twitter.
Journal of the American Society for Information
Science and Technology, 62(5):902-918, 2011.

[4] L. Ounis, G. Amati, V. Plachouras, B. He,

C. Macdonald, and C. Lioma. Terrier: A High
Performance and Scalable Information Retrieval
Platform. In Proceedings SIGIR’06 Workshop (OSIR
2006), 2006.

