Microblog Search and Filtering with Time Sensitive
Feedback and Thresholding based on BM25

Wei Gao Zhongyu Wei Kam-Fai Wong
Qatar Computing Research The Chinese University of The Chinese University of
Institute Hong Kong Hong Kong
Qatar Foundation Shatin, N.T., Hong Kong Shatin, N.T., Hong Kong
Doha, Qatar zywei@se.cuhk.edu.hk kfwong@se.cuhk.edu.hk
wgao@qf.org.qa

ABSTRACT

Microblogs such as Twitter are considered faster first-hand sources
of information with many real-time fashions, We report cur work
in the real-time adhoc search and filtering tasks of TREC 2012 mi-
croblog track. Our system is built based on the traditional BM25
relevance model, in which specific techniques are tried out to re-
spond to the need of finding relevant tweets. In the real-time adhoc
task, we applied a peak detection algorithm for the process of blind
feedback. We also tried to automatically combine the search results
of multiple retrieval techniques. In the real-time filtering pilot task,
we examnine the effectiveness of some typical filtering methods pre-
viously used in TREC filtering track.

1. INTRODUCTION

This year comes the second edition of the TREC Microblog track
following the evaluation for real-time tasks on Tweets2011 corpus,
Like the real-time adhoc task in 2011°s edition, the system is re-
quired to return the most recent relevant tweets for 60 newly cre-
ated topics, posted earlier than the time each query was issued. In
addition, Microblog track 2012 introduced a real-time filtering pi-
lot task for the first time thought of as orthogonal to the real-time
adhoc task. In this task, the goal is to select relevant tweets that
are subsequently posted after a query issued at a particular time.
This caters for the need of a user to monitor a developing topic on
Twitter.

We participated in both of the tasks and submitted 4 runs for the
adhoc and 3 runs for the filtering, all of which used the traditional
BM25 [5] as the core relevance model, The reason to use BM25
is that its score function performs more effectively for IR in gen-
eral. By this participation, we are hoping to create some baseline
methods and then try to improve upon them.

o Real-time adhoc task: The 4 runs we submitted for this task
are BM25, BM25PRF, BM25TRF, and MergedRun, which

comrespond to the baseline using BM235 scoring function, BM235
plus blind {pseudo-relevance) feedback, BM25 plus blind feed-

back favoring the tweets fell into the temporally detected
peaks, and the weighted merge of result lists from the pre-

Permission to make digital or hard copies of all or part of this work for
personal ot classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ..510.00.

Query
T expansion

3 t

Preprocessing i |

i s i Scoring | i H
{ e a—-p-l Search i—)-l v g-—h Blind fecdback |

Peak-find | i

£ MergedRun _/

Figure 1: The work flow of Twitter search system for real-time
adhoc task. We output 4 runs: BM25, BM25PRF, BM25TRF
and MergedRun,

vious 3 runs, respectively.

o Real-time filtering task: We chose a typical adaptive filter-
ing algorithm YFilter [8] as the baseline, which used BM25
with Rocchio feedback [6] as the basic scoring function. The
reason to choose it is it’s a greedy and purely real-time algo-
rithm without the need of any offline training. Then its three
variants are used to Tweets2011 corpus for experiments, re-
sulting in QFilRunl, QFilRun2 and QFilRun3 for submis-
sion.

2. SYSTEMS OVERVIEW

2.1 Real-time adhoc search system

The architecture of search system is described in Figure 1.

The incoming tweets are firstly preprocessed with some basic
normalization steps before indexing. All the English tweets are au-
tomaticaily identified using a language detection toolkit. All words
were converted to lTowercase and stemmed using Krovetz stemmer,
the punctuations were removed, the words in the hastag *# were
duplicated, but we didn’t removed the stop words,

To simulate the requirement of not using future information, we
indexed only the tweets posted before the querytweet time for each
query for avoiding the influence from future tweets on IDF,

We tried two types of blind feedback for query expansion. One is
the traditional pseudo-relevance feedback (PRF) which assumes the
top-n tweets in the initial search result as relevant, and the other is
the temporal relevance feedback (TRF) which assumed the tweets
falling into the largest peak detected from the initial results as rel-

I Frcodilng

! Twesets.] o
| Quary [N

L"...—)

el
!

ves,

dat q
un‘:o:i: selected L
_,."""'N - =N Decrusse
=2 Hms rqgu;u::z,_mﬂm
v...I

Vau

T Relevant? 7o

—— o

” Iio
—

Figure 2: The work flow of Twitter filtering system for real-
time filtering task.

evant. We applied the peak-finding algorithm {2] to automatically .
discover the main peaks from the results.

Based on the results of BM25, PRF and TRF, we merged the
three result lists into a single list for the MergedRun using a weighted
score combination method [7]. We utilized the queries and rele-
vance judgement of Microblog track 2011 to train the weights of
the lists for maximizing the MAP measure as did in [7].

The detailed method of peak-find-based blind feedback is pre-
sented in Section 4.1 and the result combination is given in Sec-
tion 4.2,

2.2 Real-time filtering system

The workflow of the filtering system is described in Figure 2,

The procedure was an variant of YFilter [8]. The algorithm did
not need any prior training data. Instead, it continuously updated
the threshold of relevancy and the profile of queries with the incom-
ing tweet streams. Initially, each query is profiled only based on
the query words, and then the profile is updated automatically us-
ing Rocchio feedback [6] according to the decision of selection and
the relevancy of the current tweet, The scoring function is based on
BM25.

We output 3 runs. QFill used the tweets in the corpus that are
out of the time range between the lowest querytweettime and the
highest querynewesttweet of ail queries for calculating prior IDF
values, considered as using limited future information. QFil2 used
only tweets that are up to the current incoming tweet for computing
prior IDF values. QFil3 is based on QFil2 and placed more strict
threshold update rules.

The details of the algorithm are described in Section 4.3,

3. DATASET AND STATISTICS

The Tweet2011 corpus contains tweets of two weeks from Jan.
23rd to Feb. 8th, 2011. According to the policy of Twitter, tweets
corpus is not allowed to redistribute. Therefore, TREC Microblog
dataset only contains the ids of over 16 million tweets, and the par-
ticipants are required to crawl tweets content separately. However,
the availability of past tweets is uncertain because twitter authors
can delete their posts. Besides, the tweets downloaded by different
groups may not be identical due to different quality of network con-
nection. The statistics of our obtained dataset are shown in Table 1
and Table 2.

HTTP Response Code | # of tweets downloaded
200 (correct) 14,451,657
301 763
302 1,146,533
403 146,696
404 {connection error) 396,163

Table 1: Statistics of tweets download in the dataset.

with freq. | Unique # | # of Tweets
Mention 3,845,290 | 1,933,002 | 2,968,353
Hashtag 1,483,349 356,172 1,073,085
URL 1,560,068 - 1,537,608
Retweet (RT) - - 304,391
Total 80,009,364 | 385,742 | 6,246,970

Table 2: Statistics of downloaded English tweets in the dataset.

As shown in Table 1, among total 16,141,812 HTTP requests, we
successfully downloaded 15,598,190 valid tweets. Since the task
focuses on English tweets only, we eliminated all the non-English
tweets first using the language identifier tool provided by Nutch',
resulting in 6,246,970 English tweets in our corpus.

Table 2 indicates that in our English tweets, there are 3,845,290
mentions (with preceding symbol ‘@', which is used to directly
refer to other users’ tweets), 1,483,349 hash tags and 1,560,068
URLSs. Totally, there are 80,009,364 words.

4. TECHNICAL DETAILS
4.1 Peak-Find-based blind feedback

Microblog streams are in the form of continuous incoming data
flows, which is analogous to the network data transmission where
care must be take for controlling conjestion. Peak-finding algo-
rithm (2] was inspired by the similar problem encountered in TCPs
conjection contrel mechanism. The goal is to determine whether a
window (a fixed period of time) contains an usually large number
of tweets in it. Unlike the pseudo-relevance feedback, we assume
that only those tweets in the peaks of the initial search result tist
are relevant which can be used for guiding the blind feedback pro-
cess. The rationale is that it is more likely those relevant terms to
be found in the peaks of tweets for doing query expansion.

The peak-finding algorithm first groups the tweets into a his-
togram by time. We used hour as the basic unit and a whole day (24
hours) as a bin in our implementation. We counted the tweet-arrival
rate in each bin starting from the querytweettime to the time of the
oldest retrieved tweet. Then the detection process goes as follows
{see [2] for details):

+ When the algorithm encounters a significant increase in bin
count relative to the historical mean, it starts a new window
and follows the increase to its maximum.

¢ The algorithm ends the peak’s window once the bin count
returns to the same level it started at, or when it encounters
another significant increase,

In Figure 3, we illustrate the correlation between the peaks of
event and the relevant tweets according to the relevance judgement.

"https://issues. apache.org/jira/browse/
NUTCH-623

Figure 3: The close correlation of burst patterns between the
retrieved tweets about the query and the relevant tweets from
relevance judgement.

Figure 3 shows three real-time adhoc task topics in Microblog track
2011 when we used it to develop the system, where the curves at the
left side are the count of relevant tweets (including highly relevant
ones) in each day after the query is issued, and the histograms at
the right side are the bursts of tweets of each day automatically
identified by peak-finding from the initial search results. We can
clearly observe such correlation between the bursty patterns of two
sides,

After the initial retrieval, we applied peak-finding to the top-
1000 search results and extracted those tweets falling into the first
and second largest peaks, which are deemed as feedback docu-
ments used for query expansion. We output the results of the second-
round retrieval using the expanded querics, referred to as BM25TRF.

4.2 Merge of different result lists

To improve the ranking of search result, many retrieval systems
used score combination approach to merge the result lists produced
by different retrieval methods. The basic assumption of improving
ranking accuracy by combining ranked lists is that relevant docu-
ments are generally retrieved by multiple retrieval algorithms while
different retrieval algorithms tend to retrieve different irrelevant
documents [7]. Similar idea has been used in Metasearch, feder-
ate search and multilingual information retrieval {(MLIR). Si and
Callan [7] introduced a leaming based merge algorithm for MLIR,
where they used training data to leamn the weights of each result
list by directly optimizing the mean average precision (MAP) mea-
sure of the combined ranking result. We applied this approach to
merge the results of our first three runs, i.e., BM25, BM25PRF, and
BM25TRF.

Suppose there are N ranked lists to combine, we first normalized
the retrieval scores of the each ranked list using Min-Max algo-
rithm. Then the final combined scores for each tweet £ is calculated
as follows:

; * score;(t)™ (1)

N
score(t) = Z

where score(t) is the final combined score, score;(t) is the nor-
malized score of ¢ in the i-th ranked list, {w;} and {r;} are the
mode! parameters.

The parameters {w;} and {r;} are estimated by maximizing
MAP criterion which is interpolated with two regularization terms
for the parameters to avoid overfitting:

N Y e
(wi,r)" = argmax {logMAp _ Z [(w*2a 1) _ (7 2bl)] }

(wqmi) i=1

where (w;,r] is the optimal model parameters and (a, b) are two
regularization factors. In this work, we set a = b = 3.0 empir-
ically, and the model parameters are estimated using the Poweil's
search method [3, 4].

We trained the model parameters using the 50 topics and the rel-
evance judgernent from the data of Microblog track 2011. Then
the ranking scores of tweets in MergedRun on the 2012 topics was
calculated using Eq. 1.

4.3 Greedy algorithm for online filtering

We implemented the profile updating algorithm of YFilter [8],
which includes the process of indexing, profiling, relevance scor-
ing, Ricchio's feedback and threshold updating as shown in Fig-
ure 2.

Unlike information retrieval, indexing for filtering is simpler in
a sense that only certain statistics on document frequency (DF) are
needed, and complex index structure can be ignored. We used hash
map to store word DF. Note that the DF table should be updated
once an incoming tweet is received.

The profiling process creates and maintains the information of
a topic and its expansion, which is initialized with the original
query words and is updated with the expansion words extracted
from feedback tweets.

The scoring function for relevance is based on BM25 formula [5]
with regard to profile words and tweet words, where we set the
common BM25 parameters as k1 = 1.2, k2 = 0, k3 = 8 and
b = 0.75. An incoming tweet is selected or filtered out depending
on whether its relevance score is greater than the threshold.

Ricchio’s feedback is used to update the profile. Whenever a
relevant tweets is selected, all words in the tweets are added to
the profile’s candidate word list and then weighted using the incre-
mental Rocchio formula (see [8] for details). We set the common
Ricchio parameters as e« = 1.0, 8 = 0.5, and y = 0.25,

The threshold is dynamically updated depending on the nature of
a sclected tweet. If the selected tweet is not relevant, we increase
the threshold to make it more strict. If the selected tweet has no
feedback at all, we decrease the threshold in a small scale to allow
for a higher chance to see the tweets with feedback information
(see [8] for details).

5. EXPERIMENTS AND RESULTS

5.1 Topics and Statistics

The test dataset of real-time adhoc task (grels) was established
by pooling all the runs from the participating groups. There are 60
new topics in total this year. Like last year, three levels of relevancy
are defined-highly relevant, relevant and non-relevant. Retweets
without further information were removed from the pool as they
were assumed non-relevant.

The evaluation was done by considering only the highly relevant
as relevant tweets. However, topic 53, 69 and 105 did not contain
any highly relevant tweets in the pool, thus was discarded from the

Full size corpus | Our missing Run Rel_Ret (2,572) | P@30 | MAP | R-Prec
Total tweets number 73,073 6,416 BM25 1,652 0.150 | 0.133 { 0.152
Highly relevant tweets number 2,572 52 BM25PRF 1,875 0.182 | 0.154 | 0.188
Relevant tweets number 6,286 107 BM25TRF 1,907 0.171 | 0.150 | 0.183
Non-relevant tweets number 66,787 6,309 MergedRun 1,902 0.178 | 0.157 | 0.176
Best (est.) - 0392 | 0.414 | 0.430
Median {est.) - 0.181 | 0.14% | 0.187

Table 3: Statistics of the test dataset (qrels) in real-time adhoc
task with 60 new topics.

Full size corpus | Our missing

Total tweets number 40,855 4,302
Highly relevant tweets number 558 13
Relevant tweets number 2,864 73

Non-relevant tweets number 37,991 4,229

Table 4: Statistics of the test dataset (grels) in real-time filtering
task with 50 topics.

evaluation resulting in 57 topics. We retrieve 10,000 tweets per
query.

The statistics of the adhoc task test dataset are shown in Table 3,
where the missing column reports the number of tweets missed in
our corpus due to download failure.

The test dataset in real-time filtering task consists of the 50 topics
in the 2011 adhoc task and the same relevance judgement. The
statistics of the filtering task test dataset are shown in Table 4.

5.2 Results

5.2.1 Result of real-time adhoc task

BM25 is the baseline run. The results of all 4 runs are shown
in Table 5 in terms of Precison@30, MAP and R-Prec. The ROC
curves [1] of the 4 runs are given in Figure 4.

As we can observe, the performance of all our best runs (the
bolded) is higher than the median. In terms of MAP and ROC
curve, MergedRun outperformed other runs. T-test showed that
its better performance over BM25 and BM25TRF is statistically
significant (95% confidence level). But according 1o P@30 and
R-Prec, BM25PRF performed the best. However, it's not signifi-
cantly better than others except for BM25. This may suggest that
the MergedRun has obvious advantage than other approaches.

Although BM25PRF outperfermed BM25TRF in terms of the
three measures, we didn't find it statistically significant. This indi-
cates that the relevance feedback based on the bursty event detec-
tion using peak-finding algorithm can achieve comparable effec-
tiveness as the commonly used pseudo-relevance feedback, Also
as we can see, BM25TRF returned the most number of relevant
tweets.

5.2.2 Result of real-time filtering task

We submitted 3 similar runs in this task, in which QFill used
limited amount of future information, QFil2 didn’t use any future
tweets, and QFil3 imposed some extra constraints on threshold up-
dating to make it more strict than the original rule of YFilter. The
results of all runs are shown in Table 6.

We found our results are generally poor in terms of all measures
except for the excellent performance on the recall. This is actually
caused by the large number of retrieved results we returned due
to the conservative threshold setting, which let pass most of the
relevant tweets but also much more irrelevant ones. For example,
both QFill and QFil2 returned over 200K tweets. QFil3 returned

Table 5: The adhoc task performance of our submitted runs
compared to the results of the estimated best and median, The
bold numbers indicate our best runs.

(1] T

LA

Falen Posdive Rale

Figure 4: The ROC curves of the 4 adhoc runs. The curve
closest to the upper left corner is deemed the best performance.

over 60K due to its relatively strict threshold setting strategy, and
this obviously improved the result a lot.

We did an additional experiment by simply aggressively increas-
ing the initial threshold value by 60% after the official result was
released. The numbers in the row of “Post” in Table 6 indicate some
significant improvement on the three measures over our best result
with wide margin. There also could be other factors adjustable for
further improvement, such as the magnitude of increase or decrease
of the threshold when feedback is obtained. This suggests a large
room for us to improve the thresholding in the future.

6. CONCLUSIONS

We describe our microblog search and filtering systems for par-
ticipating in microblog track 2011 which were built based on the
traditional BM25 model. For the real-time adhoc task, we applied
a peak detection algorithm for the process of blind feedback. We
also tried to automatically combine the search results of multiple
retrieval techniques. Results suggested that the result merging per-

Run Ret Rel_Ret | TIISU | FO.5 { Prec | Recl
QFill 202,283 1,620 0 0.037 | 0.030 | 0.726
QFil2 208,760 1,611 1] 0.040 1 0.033 | 0.723
QFil3 66,416 1,421 0013 | 0072 | 0.062 | 0.610

Post 23,415 752 0.078 | 0.116 | 0.104 | 0.38)

Best (est.) - - 0596 | 0.607 | 0.922 | 0.946
Median (est.) 0.207 | 0.149 | 0.176 | 0.334

Table 6: The filtering performance of our submitted runs com-
pared to the results of the estimated best and median.

formed the hest, and the temporally detected bursts can be helpful
to the relevance feedback, archiving comparable effectiveness as
the commonly used pseudo-relevance feedback. In the real-time
filtering pilot task, we examine the effectiveness of some typical
filtering methods previously used in TREC filtering track, The
method didn’t work well due to our lenient threshold updating strat-

egy.

However, more aggressive update on threshold did demon-

strate some improvement. We will continue to tune our systems.

7.
(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]

REFERENCES

C. D. Manning, P. Raghavan, and H. Schiltze, Introduction to
Information Retrieval. Combridge University Press, 2008.
A. Marcus, M. 8. Bernstein, O. Badar, . R. Karger, S.
Madden, and R. C. Miller. Twitinfo: Aggregating and
Visualizing Microblogs for Event Exploration. In
Proceedings of CHI 2011.

M. J. D. Powell. An efficient method for finding the
minimum of a function of several variables without
calculating derivatives, Computer Journal, 7(2): 155-162,
1964,

W. H. Press, S. A, Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: The Art of Scientific
Computing (10.5) Cambridge University Press, Cambridge,
1992.

S. E. Robertson, S. Walker, 5. Jones, M. M. .
Hancock-Beaulieu, and M. Gatford. Okapi at TREC-3. In
Prceedings of the Third Text REtreival Conference, 1994,
G. Salton. The SMART retrieval system: experiments in
automatic document processing. pages 313-323,
Prentice-Hall Inc., 1971.

L. Si and J. Callan, CLEF 2005: Multilingual Retrieval by
Combining Multiple Multilingual Ranked Lists, In
Proceedings of CLEF 2005.

Y. Zhang and J, Callan, YFilter at TREC-9. In Prceedings of
the Ninth Text REtreival Conference, 2000.

