
The University of Amsterdam at TREC 2012

Richard Berendsen Edgar Meij Daan Odijk
Maarten de Rijke Wouter Weerkamp

ISLA, University of Amsterdam
http://ilps.science.uva.nl/

Abstract: We describe the participation of the
University of Amsterdam’s ILPS group in the
Knowledge Base Acceleration and Microblog
tracks at TREC 2012.

1 Introduction
This year the Information and Language Processing Systems
(ILPS) group of the University of Amsterdam participated in
the Microblog and the Knowledge Base Acceleration (KBA)
tracks. In this paper, we describe our participation for each
of these tracks, in two largely independent sections: Sec-
tion 2 on our KBA track participation and Section 3 on our
work in the Microblog track. We detail the runs we sub-
mitted, present the results of the submitted runs, and, where
possible, provide an initial analysis of these results. We con-
clude in Section 4.

2 Knowledge Base Acceleration
Recent advances have enabled a precise manner of analy-
sis, where phrases occurring in documents are automatically
linked to entries in a knowledge base [11]. This process
is commonly known as entity linking. Entity linking fa-
cilitates advanced forms of searching and browsing in var-
ious domains and contexts. It can be used, for instance,
to anchor the textual resources in background knowledge;
authors or readers of a piece of text may find entity links
to supply useful pointers [6, 9]. Another application can
be found in search engines, where it is increasingly com-
mon to link queries to entities and present entity-specific
overviews [1, 8].

This year’s single task at TREC KBA concerned entity
linking on a stream of data. That is, given a target entity
from a knowledge base and an incoming stream consisting
of textual content such as web pages, news items, and social
media content, generate a score for each item based on how
pertinent it is to the target entity.

Typical solutions to entity linking operate on static col-
lections of documents [9]. In this year’s TREC participa-
tion, we adapt our entity linking system to be able to operate
in this dynamic setting. To this end, we have implemented

an incremental learning algorithm that updates at each time
step, thereby improving performance at each point in time.
Our algorithm also caters for different levels of aboutness.

2.1 Learning to Link Entities
We base our submissions mainly on the approach detailed in
[9]. This approach is a learning to rerank approach to im-
prove precision on a recall-oriented baseline. In this section
we first introduce our general machine learning framework
and the features we use. We then zoom in on how we adapt
these to account for the incremental nature of the document
collection.

2.1.1 Machine Learning

For entity linking on document streams we build upon a two-
step process that has been shown to perform well on generic
entity linking, i.e., exhaustively identifying all possible links
in a piece of text [9]. The goal of the first step is to provide
a filter and identify whether or not a document d contains a
mention of the entity of interest, e. To this end, we consider
all surface forms for e and determine whether the document
contains any of these surface forms. In the second step we
determine the level of centrality of e in d by applying su-
pervised machine learning, using the set of features listed in
Section 2.1.2. Using a machine learning framework allows
us to encode different levels of relevance into our learning al-
gorithm. Filtering the documents to be used as input for the
machine learning algorithm reduces the number of feature
vectors that need to be created in the second step, decreasing
the end-to-end runtime.

We cast the second step as a binary classification problem
and use the classifier’s confidence to rank each document
with respect to an entity. We employ random forests (RF)
as our classification algorithm [2]. RF is an ensemble-based
decision tree classifier based on bagging, in which a learn-
ing algorithm is applied multiple times to a subset of the in-
stances and the results averaged. In this case, for each itera-
tion a bootstrap sample is taken and a full tree is constructed.
For each node of the tree, m features are randomly selected
to obtain the best split. This process reduces overfitting by
averaging classifiers that are trained on different subsets of

http://ilps.science.uva.nl/

TF(re, fd) Term frequency.
POSf (re, fd) Position of first occurrence.
POSl(re, fd) Position of last occurrence.
SPR(re, fd) Distance between the first and last occur-

rence.
SIM(fd ,ae) Asymmetric similarity between fd and ae.
SIM(ae, fd) Asymmetric similarity between ae and fd .
CTA(e, fd) Number of times all context is found in

the document (e.g., “music group” for Ba-
sic Element (music group).

CTS(e, fd) Number of times some context is found
in the document (e.g., “music” for Ba-
sic Element (music group).

Table 1: List of features we use. fd refers to the document
fields, re to the representations of e, and ae to the Wikipedia
article associated with e; more details can be found in Sec-
tion 2.1.2.

the data with the same underlying distribution. RF is also
relatively insensitive to parameter settings, resistant to over-
fitting, and easily parallelizable. We set m to the square root
of the number of features [5]. Besides m, RF has one addi-
tional parameter: the number of iterations which we set to
k = 1500.

2.1.2 Features

Table 1 shows the features that we use. They are calculated
on two distinct parts of each document, fd : the title and the
body. All feature values are normalized by the length of this
part of the document, if applicable. Moreover, for the fea-
tures TF, POSf , POSl, and SPR, we extract separate feature
values for each of the different representations of the entity,
re. These representations are obtained from the Wikipedia
article associated with e and include (i) the title, (ii) the text
of the incoming anchors, (iii) the text of any incoming redi-
rect links, and (iv) the union of these three. So, for instance
for the feature TF, we actually have eight feature values, one
for each combination of representation and document field.
This yields a total of 48 features.

The SIM feature indicates the similarity between the en-
tity and the document and is determined using the KL-
divergence (KL-div) between the language models of the en-
tity and the document:

KL-div(θ||θ′) = ∑
t∈V

P(t|θ) log
P(t|θ)
P(t|θ′)

, (1)

where t ∈ V denotes a term in the shared vocabulary; each
language model is estimated using a multinomial distribu-
tion over unigrams. To avoid zero frequency issues, we ap-
ply additive smoothing:

P(t|θd) =
δ+n(t,d)

δ+∑t ′ n(t ′,d)
, (2)

Run Cutoff Prec. Recall F SU

Minimum relevance level “central”

Baseline 0 0.1974 0.9727 0.2902 0.1339
Learning 181 0.3029 0.6130 0.3651 0.2565
IncLearnT1 98 0.2642 0.6910 0.3570 0.2074
IncLearnT5 199 0.3103 0.5819 0.3588 0.2687
IncLearnT10 191 0.3152 0.5782 0.3681 0.2746

Minimum relevance level “relevant”

Baseline 0 0.5396 0.9806 0.6414 0.6044
Learning 3 0.5482 0.9191 0.6448 0.6144
IncLearnT1 0 0.5396 0.9811 0.6416 0.6047
IncLearnT5 0 0.5396 0.9811 0.6416 0.6047
IncLearnT10 0 0.5396 0.9811 0.6416 0.6047

Table 2: Results for TREC KBA. For each run the opti-
mal cutoff is indicated; this is determined by considering the
highest value for the F-measure for that run.

and set δ = 1. Here, n(t,d) denotes the count of term t in
d. Note that KL-div is an asymmetric measure, hence we
calculate it twice.

2.1.3 Incremental Learning

As we have a set of training documents, we experiment with
a number of incremental learning variants. Each incremen-
tal learning algorithm can be cast as a sequential prediction
problem, where for each time step i = 1,2, . . .:

1. An unlabeled document di arrives.

2. We perform a prediction ŷi, with confidence ci based on
e and the current model mi.

3. We assume the predicted labels are correct and add a
subset of documents as training material with assumed
label yi according to some constraint.

4. Update the model mi+1.

We vary the constraints for step 3 in our experimental condi-
tions below. In all cases, we consider a semi-supervised sce-
nario, were we start with set of training material with anno-
tated labels and try to learn from newly seen material. Here
we start with a model m1 based on the 2011 training data
and update the model mi+1 at each step using the predictions
made on documents arriving at step i. We define each day to
be a time step.

2.2 Runs
We preprocess the TREC KBA document collection as fol-
lows. We tokenize each document, lowercase all characters,
and remove all diacritics. We implement our algorithm on
Hadoop; the code can be found on GitHub.1 All our submit-
ted runs are automatic runs.

1See https://github.com/ejmeij/trec-kba.

https://github.com/ejmeij/trec-kba

Run R-Prec MAP MRR P@5 P@10

Minimum relevance level “central”

Baseline 0.4514 0.4484 0.5766 0.4828 0.5069
Learning 0.4445 0.4533 0.7031 0.6207 0.5897
IncLearnT1 0.4363 0.4362 0.6449 0.5379 0.5310
IncLearnT5 0.4372 0.4411 0.6515 0.5586 0.5103
IncLearnT10 0.4317 0.4366 0.5999 0.5724 0.5586

Table 3: Results for TREC KBA, measured by rank based
evaluation metrics.

UvAbaseline Run based on simple lexical matching, i.e.,
only applying the first, recall-oriented step from Sec-
tion 2.1.1. This considers all surface forms for e and de-
termines whether each document contains any of these
surface forms: more frequent matches yield a higher
score.

UvALearning Run that builds upon UvAbaseline and ap-
plies machine learning using the 2011 training docu-
ments to perform predictions.

UvAIncLearnT25 Incremental learning; add the top-k
most probable documents for each class at time step i,
where k = 25.

UvAIncLearnT50 Same as UvAIncLearnT25, with k = 50.

UvAIncLearnLow Incremental learning; We consider the
confidence of the machine learning algorithm and in-
clude di only if the confidence of the machine learning
algorithm is above a certain threshold for each class.

UvAIncLearnHigh Same as UvAIncLearnLow, with a
higher threshold.

Note that we discovered a bug in our official submission files
and the performance of our submitted runs is therefore not
indicative of the performance of our system. Furthermore,
we trained a single classifier for all entities, whereas our ap-
proach calls for training machine learning models on a per-
entity basis. In the next section, we report on the results of
the repaired version.

2.3 Results
We found that the threshold-based runs (UvAIncLearnLow
and UvAIncLearnHigh) did not perform significantly dif-
ferent from the top-k runs (UvAIncLearnT25 and UvAIn-
cLearnT50). We therefore do not include the former in our
analysis, but discuss different, bug-fixed variants of the latter
instead (see above).

Table 2 shows the main results for our TREC KBA partic-
ipation. We observe that our machine learning approach im-
proves precision over the baseline, resulting at an improved
highest F-measure. Incremental learning has a positive effect

P R F SU

Social

Baseline 0 0.2092 0.8708 0.3025 0.1687
Learning 36 0.2306 0.7025 0.3122 0.1872
IncLearnT10 73 0.2528 0.5725 0.3159 0.2180

News

Baseline 0 0.2346 0.9013 0.3163 0.2077
Learning 178 0.3609 0.6181 0.4107 0.3529
IncLearnT10 159 0.3490 0.6095 0.4023 0.3674

Linking

Baseline 0 0.2064 0.8807 0.2888 0.1684
Learning 224 0.2891 0.5191 0.3046 0.2640
IncLearnT10 135 0.2472 0.5411 0.2983 0.2479

Table 4: Results per genre for TREC KBA. For each run the
optimal cutoff is indicated; this is determined by considering
the highest value for the F-measure for that run.

on performance in terms of F-measure. For the “central” rel-
evance level, this is mainly due to a higher precision; recall
at the highest F-measure is lower. Figure 1 shows the perfor-
mance of the IncLearnT10 run at varying cutoff levels. We
observe that precision remains quite constant over all cutoff
levels, while recall increases as expected. This results in a
highest F-measure at a rather low cutoff of 191. Overall,
precision is fairly low, which is mainly due to the fact that
we approach the task as a ranking problem (instead of clas-
sification). As such, we do not “classify” many documents
as being non-relevant.

Table 3 shows the results of our runs as measured using
rank-based evaluation measures. We observe a similar pat-
tern as for precision, recall, F-measure, and SU, with our
machine learning approach improving on most rank-based
measures. For most measures, incremental learning is not
able to improve on the static machine learning approach.

2.4 Per Genre
Next, we consider the performance for each genre (news,
social, linking) separately. That is, we split up the “central”
assessments based on the genre associated with each docu-
ment. Table 4 shows the results. We observe that we obtain
the best scores on all four measures in the news genre. Inter-
estingly, in the news and linking genre, incremental learning
does not improve precision for the optimal cutoff, where it
does improve in the social genre.

2.5 Per Day
Figure 2 shows the performance of each run in terms of MAP
on each day in the test set, determined using the minimum
relevance level “central.” This plot shows that no run outper-
forms any other overall. We also observe a pattern of peaks

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800 900 1000

cutoff

Precision
Recall

F
SU

Figure 1: Performance changes over a varying cutoff for the TREC KBA IncLearnT10 run with minimum relevance level
“central.”

0.0

0.1

0.2

0.3

0.4

0.5

0.6

01 Jan 01 Feb 01 Mar 01 Apr 01 May

Baseline
Learning

IncLearnT10

Figure 2: Performance changes in terms of MAP over each day with minimum relevance level “central.”

that seems to be consistent with the number of documents in
the collection for that particular day.

3 Microblog
This year’s TREC Microblog track consists of two tasks:
real-time ad-hoc and filtering. We participated only in the
real-time ad-hoc task. Due to technical problems we could
only submit one official run for this track (UvAFilter, see be-
low), but in this section we also discuss the two runs that we
originally planned to submit (UvAtrain2011 and UvAtrain-
Gen). We discuss the following three runs in this section:

UvAFilter A baseline approach that filters out tweets based
on a set of heuristics.

UvAFilterExp Baseline retrieval run with query expansion
based on UvAFilter.

UvAtrain2011 A learning to rank approach trained on the
TREC 2011 Microblog track topics.

UvAtrainGen The same learning to rank approach as UvA-
trainGen, but trained on a generated pseudo test collec-
tion.

3.1 Preprocessing

For all our runs we use a preprocessed version of the corpus.
First, we discard non-English tweets using a language iden-
tification method for microblogs [3]. We then remove exact
duplicates and keep the oldest of each duplicate set, and fi-
nally, we discard retweets, unless there are added comments.
For each tweet we remove punctuation and stopwords us-
ing a collection-based stopword list. After preprocessing our
collection has just over four million tweets, roughly 25% of
the raw collection.

3.2 UvAFilter
Based on observations from last year’s Microblog track,
we follow a heuristics-based approach for our baseline run.
Starting from a retrieved set of tweets, constructed using
Indri2 and queries rewritten using a Markov random field
model for term dependencies [10], we only keep tweets in
our final result list if they match the following criteria: A
tweet should (i) contain a URL, (ii) not contain a mention to
another user (“@user . . . ”), and (iii) does not refer to first or
second person pronouns (“you,” “me,” “I,” . . .).

The intuition behind the three filtering criteria is that a
tweet only becomes “interesting” once it refers to more in-
formation besides the 140 characters of the tweets itself (the
URL criterium), if it is not part of a conversation or directed
as another user (the mention criterium and the second per-
son pronouns), and finally, if it is not talking about personal
opinions or experiences (the first person pronouns).

3.3 UvAFilterExp
A potential problem with query expansion is topic drift and
the inclusion of non-informative terms from highly ranked
documents. In this run we try to counter this by using the
strictly filtered UvAFilter run as our input set of tweets for
query expansion. We use a naive expansion technique that
takes the top K tweets for each topic and return only those
terms that appear more than N times in this set of tweets. We
apply this method on our preprocessed collection of tweets,
which does not contain stopwords.

We use the following settings: K = 20 and N = 4. As an
example, Table 5 shows three example topics that improve
over UvAFilter and one topic that drops in performance. For
each topic we show the original query and the selected ex-
pansion terms.

3.4 UvAtrain2011
For microblog search, learning to rank (LTR) is a natural ap-
proach to take into account features such as the existence of
a link, a hashtag, the recency of a tweet, the authority of the
user, and so on. Training an LTR system requires good qual-
ity training material, the more the better. A natural training
set are the TREC 2011 Microblog track topics. Our LTR run
UvAtrain2011 run trains on these topics. We describe the
details of this run below.

As features we use:

Query-document features Five Indri2 runs; Five Terrier3

runs; The number of rankers that retrieved a tweet; The
{min, max, avg, median} reciprocal rank of a tweet;
The recency of a tweet.

Query features Query clarity, as described in [4].

2http://www.lemurproject.com
3http://terrier.org/

Tweet features Presence of a link, number of user men-
tions, tweet length, capitalization [14], density [7], is
the message a direct message.

The parameters of Indri and Terrier retrieval runs were first
tuned on the TREC 2011 microblog topics.

Learning to rank We linearly normalized all features. We
used a pairwise SVM based learner [13], and set it to learn
a linear model, optimizing the ROC area under curve. The
regularization parameter λ was set to 0.1, and 100,000 itera-
tions were performed.

3.5 UvAtrainGen
Training material for microblog search systems is expensive,
and non-trivial to obtain. Therefore we explore the possi-
bility of mining a collection of tweets for training material.
We use hashtags for this, and are able to generate a pseudo
test collection for microblog search. This pseudo test collec-
tion consists of a set of timestamped queries, with for each
query a set of relevant tweets with a publication date prior to
the timestamp. In the next paragraphs we describe how this
pseudo test collection was generated. The UvAtrainGen run
uses the same LTR pipeline as the UvAtrain2011 run, but
it is trained on a generated pseudo test collection. Another
difference is that the Indri and Terrier retrieval runs (which
are used as features for the LTR run) are now tuned on the
pseudo test collection as well.

Selecting hashtags We selected hashtags that appeared
in at least fifty tweets in the TREC 2011 Microblog track
collection.

Generating timestamps For each hashtag, the publica-
tion dates of its associated tweets form a time series. We set
the timestamp for the hashtag to the time of the first peak
in this series. We discard hashtags that have less than fifty
hashtags before the timestamp.

Keeping interesting tweets We rank all tweets in our col-
lection that contain one or more hashtags by their interest-
ingness. We think of a tweet as interesting if it could be
relevant to a query. We estimate interestingness by learning
from tweets that we know were relevant to some query: the
union of all relevant tweets for the TREC 2011 Microblog
track queries. After ranking the tweets, we keep the top fifty
percent of them. We discard hashtags that have less than fifty
interesting tweets.

Generating a query For each hashtag, we compare the
set of associated tweets (Th) with the collection of all tweets
(T). We rank terms by a log-likelihood ratio test statistic.
Terms of which the term frequency in Th is most significantly
different from the term frequency in T are ranked at the top.

http://www.lemurproject.com
http://terrier.org/

Topic Query Expansion terms

55 berries and weight loss been, fat, lose, amazon, berry, calories, acai, diets
86 Joanna Yeates murder man, jo, charged, accused, remanded, tabak, vincent
109 Gasland gas, oscar

65 Michelle Obama’s obesity campaign first, green, lady, weight, ap, loss, major, insurance, rate, role, response,
plays, atlanta, rising, oprah, childhood, crescent

Table 5: Example topics and their selected query expansion terms. Topics 55, 86, and 109 improved over the baseline on most
metrics, topic 65 dropped in performance.

Run MAP P30 P20 P10

Depth: 1000, minimum relevance level 1

UvAFilter 0.1658 0.3384 0.3839 0.4627
UvAFilterExp 0.1852 0.3627 0.3992 0.4644
UvAtrain2011 0.2153 0.3514 0.3847 0.4390
UvAtrainGen 0.2057 0.3475 0.3890 0.4288

Depth: 1000, minimum relevance level 2

UvAFilter 0.1385 0.1774 0.2085 0.2780
UvAFilterExp 0.1561 0.1932 0.2161 0.2644
UvAtrain2011 0.1524 0.1831 0.2076 0.2508
UvAtrainGen 0.1501 0.1836 0.2110 0.2542

Table 6: Results for the TREC 2012 Microblog track teal-
time ad-hoc task.

The top ten terms from this list form the query for the hash-
tag h [12]

3.6 UvA Microblog results
The results for our microblog runs are listed in Table 6. We
find similar patterns for both relevance levels in that the two
learning to rank runs (UvAtrain2011 and UvAtrainGen) per-
form almost identical. This shows that automatically con-
structing training data for this task is feasible and that a large
set of human-annotated queries and tweets is not required.

The second finding is that our naive filtering baseline is a
good choice when it comes to query expansion. The UvAFil-
ter run itself shows strong performance on early precision
(P10), which leads to an improved set of tweets from which
to select expansion terms. This in turn results in improved
performance of the UvAFilterExp run over both its baseline
and thelearning to rank runs on most metrics. We should
note, however, that differences are small.

4 Conclusion
In this paper we have described the participation of the Uni-
versity of Amsterdam’s ILPS group at TREC 2012. We
have participated in two tracks, Knowledge Base Acceler-
ation (KBA) and Microblog. For the KBA track, we find

that our machine learning-based approaches outperform the
baseline. For the Microblog track our main observations are
(i) that automatic construction of training data for a learn-
ing to rank approach is equally helpful as using a human-
annotated dataset, (ii) that strict heuristics-based filtering
leads to improved early precision, and (iii) that using this
filtered run as basis for query expansion leads to best overall
performance.

5 Acknowledgments
This research was partially supported by the European
Union’s ICT Policy Support Programme as part of the Com-
petitiveness and Innovation Framework Programme, CIP
ICT-PSP under grant agreement nr 250430, the European
Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreements nr 258191 (PROMISE Net-
work of Excellence) and 288024 (LiMoSINe project), the
Netherlands Organisation for Scientific Research (NWO)
under project nrs 612.061.814, 612.061.815, 640.004.-
802, 727.011.005, 612.001.116, HOR-11-10, the Center
for Creation, Content and Technology (CCCT), the BI-
LAND project funded by the CLARIN-nl program, the
Dutch national program COMMIT, the ESF Research Net-
work Program ELIAS, the Elite Network Shifts project
funded by the Royal Dutch Academy of Sciences (KNAW),
and the Netherlands eScience Center under project number
027.012.105.

6 References
[1] Balasubramanian, N. and Cucerzan, S. (2010). Topic

pages: An alternative to the ten blue links. In ICSC ’10.

[2] Breiman, L. (2001). Random forests. Machine
Learning, 45(1):5–32.

[3] Carter, S., Weerkamp, W., and Tsagkias, M. (2012).
Microblog language identification: overcoming the
limitations of short, unedited and idiomatic text.
Language Resources and Evaluation, pages 1–21.

[4] Cronen-Townsend, S. and Croft, W. (2002).
Quantifying query ambiguity. In Proceedings of the

second international conference on Human Language
Technology Research, pages 104–109. Morgan
Kaufmann Publishers Inc.

[5] Hastie, T., Tibshirani, R., and Friedman, J. H. (2003).
The Elements of Statistical Learning. Springer.

[6] He, J., de Rijke, M., Sevenster, M., van Ommering, R.,
and Qian, Y. (2011). Generating links to background
knowledge: a case study using narrative radiology
reports. In CIKM ’11.

[7] Lee, G. G., Seo, J., Lee, S., Jung, H., hyun Cho, B.,
Lee, C., Kwak, B.-K., Cha, J., Kim, D., An, J., Kim, H.,
and Kim, K. (2001). SiteQ: Engineering high
performance QA system using lexico-semantic pattern
matching and shallow NLP. In TREC 2001, pages
442–451.

[8] Meij, E., Bron, M., Hollink, L., Huurnink, B., and
de Rijke, M. (2011). Mapping queries to the Linking
Open Data cloud: A case study using DBpedia. Web
Semantics: Science, Services and Agents on the World
Wide Web, 9(4):418 – 433.

[9] Meij, E., Weerkamp, W., and de Rijke, M. (2012).
Adding semantics to microblog posts. In WSDM ’12.

[10] Metzler, D. and Croft, W. B. (2005). A markov
random field model for term dependencies. In
Proceedings of the 28th annual international ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 472–479.

[11] Mihalcea, R. and Csomai, A. (2007). Wikify!:
Linking documents to encyclopedic knowledge. In
CIKM ’07.

[12] Rayson, P. and Garside, R. (2000). Comparing
corpora using frequency profiling. In Proceedings of the
workshop on Comparing Corpora, pages 1–6.
Association for Computational Linguistics.

[13] Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007).
Pegasos: Primal estimated sub-gradient solver for svm.
In ICML ’12, pages 807–814. ACM.

[14] Weerkamp, W. and de Rijke, M. (2008). Credibility
improves topical blog post retrieval. In Proceedings of
ACL-08: HLT, page 923931, Columbus, Ohio.
Association for Computational Linguistics, Association
for Computational Linguistics.

