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ABSTRACT
Microblog retrieval is the task of retrieving relevant tweets in
response a query. This paper presents our methods and re-
sults for the Real-time Ad-hoc Task in the TREC Microblog
Track 2012. Our experiments focused on different ways of
using temporal information to improve retrieval. Our four
runs include three methods that use temporal information
and a baseline method that does not. One of our temporal
methods favors recent tweets and the other two favor tweets
from time periods associated with a high concentration of
tweets predicted relevant (potentially, but not necessarily
the recent past).

1. INTRODUCTION
Real-time microblog retrieval is the task of retrieving rele-

vant tweets in response to a query. The input to the system
is a query Q issued at a particular time tQ and the output
is a ranking of tweets that were published prior to time tQ.

The School of Information and Library Science at the Uni-
versity of Carolina at Chapel Hill submitted four runs to the
Microblog Track’s Real-Time Task. None of our runs used
external or future information. That is, the methods used
did not use any kind of information that is external to the
collection of tweets (e.g., information derived from linked-
to webpages) or any kind of information that would not
be available at the time the query was issued (e.g., query-
expansion terms derived from future tweets).

Our focus was to investigate different ways of using tem-
poral information from tweets predicted relevant in order
to improve retrieval. In a general sense, the assumption is
that for many queries, the relevant tweets are concentrated
in temporal bursts in the past and that identifying these
bursts and favoring tweets published during those time pe-
riods can improve retrieval.

2. CORPUS PREPROCESSING
The TREC 2012 Microblog Track used the Tweets2011

collection.1 The original collection consisted of approxi-
mately 16 million tweets that were randomly sampled over
a period of two weeks between January 24, 2011 to Febru-
ary 8, 2011. Our version of the collection was downloaded

∗Work done at the School of Information and Library Sci-
ence at the University of North Carolina in Chapel Hill.
†Primary author.
1http://trec.nist.gov/data/tweets/

using the HTML API on February 21, 2012 and contained
only about 12 million tweets. Thus, approximately 4 million
tweets present in the original collection were not downloaded
either because the Twitter user deleted the tweet since the
original collection was created or due to a download error.

Based on the track guidelines, non-English tweets were
considered non-relevant a priori. Therefore, our main pre-
processing step was to remove non-English tweets using the
following heuristic. Each tweet was tokenized and every to-
ken was issued to ASpell, a freely available open-source spell
checker.2 All tweets for which more than half of its tokens
were not found in ASpell were removed from the collection.
This procedure removed 65% of all downloaded tweets, leav-
ing a corpus of 4,168,266 tweets.

As previously mentioned, we did not want our runs to use
future information. To this end, we constructed 60 different
indexes (one per query). Each index contained only the
subset of tweets published prior to the query date/time.

All indexes had stopwords removed using a customized
stopword list of 189 terms. Stopwords were selected based on
part of speech and IDF value. For convenience, IDF values
were computed using the entire collection. That is, we did
not generate a different stopword list for each query-specific
corpus. One might view this as using future evidence. How-
ever, we expected the terms with the lowest IDF value to
be stable across the different query-specific corpora and the
entire two-week corpus.

3. ALGORITHMS
As previously mentioned, our focus was to explore dif-

ferent ways of incorporating temporal information to im-
prove retrieval. We submitted four runs to the Real-time
Microblog Retrieval Task. Our baseline run (Section 3.1)
is the only one that does not use temporal information.
The recency-based query-expansion approach (Section 3.2),
which is a slight modification of the approach from Mas-
soudi et al. [3], uses query-expansion the favor recent tweets.
The temporal prior approach (Section 3.3), borrowed from
Dakka et al. [1], conducts an initial retrieval and promotes
documents from time periods with a high concentration of
top results. Finally, the temporal query-expansion approach
(Section 3.4) combines these two previous approaches.

2http://aspell.net/



3.1 Full Dependence with PRF
Our baseline approach combines Metzler and Croft’s Markov

Random Field (MRF) retrieval [5] and Indri’s pseudo-relevance
feedback (PRF) implementation, which is based on Lavrenko’s
relevance language model [2].

Assuming a uniform document prior, the MRF retrieval
model ranks documents according to

P (D|Q) ∝ P (Q|D)P (D)

∝ P (Q|D)

The query-likelihood component is estimated using Dirichlet-
smoothed maximum likelihood estimates

P (Q|D) =
∏

ψi∈Ψ(Q)

(
tfψi;D + µP (ψi|C)

|D|+ µ

)wi

, (1)

where the ψi’s are the query features used in Metzler and
Croft’s full-dependence model [5] (query-term unigram, or-
dered window, and unordered window features), the wi’s
are the weights associated with those features, and µ is a
smoothing parameter. We used the default value of µ = 2500
and the wi’s were taken directly from previous work and
have been shown to perform well on different tasks and col-
lections [4]. The full-dependence model query (Qfdm) was
implemented using the following Indri query template.

#weight(0.80 #combine(unigram query)

(0.10 #combine(ordered window query)

(0.10 #combine(unordered window query))

Indri’s default PRF implementation selects expansion terms
with a high probability in a relevance language model de-
rived from an initial retrieval [2]. Given relevance model
θQ, the probability of candidate expansion term w is given
by

P (w|θQ) =
1

Z
∑

D∈R100

P (w|D)P (Q|D),

where P (w|D) is the probability of w given document D’s
language model, P (Q|D) is the document score (Equation 1),
R100 corresponds to the top 100 tweets retrieved for the ini-
tial query, and normalizer Z is computed as

Z =
∑

D∈R100

P (Q|D).

Because tweets are associated with little text, we decided
to extract expansion terms from the top 100 results rather
than the top 10, which is a more common heuristic. The ex-
panded relevance model query (Qrm) was constructed from
the top 10 terms with the highest probability in θQ using
the following Indri query template

#weight(λ1 w1 λ2 w2 ... λ10 w10),

where λi = P (wi|θQ).
The final query was implemented using the following Indri

query template

#weight(0.50 Qfdm 0.50 Qrm)

We consider this our baseline approach because it does not
use temporal information and denote it as UNCQE (UNC
query-expansion).

3.2 Recency-based Query-Expansion
Our recency-based query-expansion approach is a slight

modification of the query-expansion method described in
Massoudi et al. [3]. Candidate expansion terms are scored
based on their level of co-occurrence with the original query-
terms in recent tweets.

The original approach from Massoudi et al. [3] scores can-
didate expansion terms as follows. Let tQ denote the time
query Q was issued and let tD denote the time document
D was published. Candidate expansion term w is scored
according to

score(w,Q) =

 1

|Q|
∑
q∈Q

∑
{D:q,w∈D}

e−β(tQ−tD)

× log

(
N

dfw

)
,

where N denotes the number of documents in the collection
(which only included documents published before tQ), dfw
denotes the number of documents where w appears, and
parameter β controls the amount of temporal decay.

The above equation can be interpreted as follows. The
first component considers the average number of documents
where term w co-occurs with a query-term q ∈ Q. However,
through the function e−β(tQ−tD), it favors co-occurrences in
more recent documents. The second component is simply
term w’s inverse document frequency (IDF) and is added in
order to filter near stopwords that have a high co-occurrence
with every term (not only the query-terms).

One potential limitation of this approach is that it may
favor expansion terms with a disproportionately high co-
occurrence with one of the query terms (e.g., “war” in the
query “mexico drug war”), but not all of the query terms.
Our slight modification of the scoring formula above was
done in order to favor candidates terms with a high co-
occurrence with all of the query-terms. To this end, rather
than use the arithmetic mean, we used the harmonic mean 1

|Q|
∑
q∈Q

 ∑
{D:q,w∈D}

e−β(tQ−tD)

−1−1

× log

(
N

dfw

)
The recency-biased expanded query (Qrb) was constructed

from the 10 terms with the highest score using the following
Indri query template

#weight(λ1 w1 λ2 w2 ... λ10 w10),

and was combined with the original full-dependence model
query as

#weight(0.50 Qfdm 0.50 Qrb).

This approach favors recent tweets by expanding the query
with terms that co-occur with the original query-terms in
the most recent tweets. Hence, we refer to it as the recency-
based query-expansion approach and denote it as UNCRQE.

One potential limitation of this approach is that the most
relevant time periods for a particular query may not be the
most recent. This is particularly the case if the query con-
cerns recurring events (e.g., “earthquakes”). The next two
approaches are aimed to address this issue.



3.3 Temporal Prior
In order to favor tweets from relevant time periods, which

may not necessarily be the most recent, we adopted the ap-
proach described in Dakka et al. [1]. This approach identi-
fies relevant time periods by conducting an initial retrieval,
binning the top n results by date/time, and then finally fa-
voring results from the largest bins (i.e., those time periods
associated with many of the top n results).

More formally, the approach works as follows. In proba-
bilistic IR, documents are scored according to

P (D|Q) ∝ P (Q|D)P (D).

The approach from Dakka et al. [1] assumes that document
D can be “decoupled” into a content component (Dc) and
a temporal component (Dt). If we assume that these com-
ponents are independent given the query, then the scoring
function can be written as

P (D|Q) = P (cD, tD|Q)

= P (cD|Q)P (tD|Q)

∝ P (Q|Dc)P (Dc)P (q|Dt)P (Dt).

Furthermore, if we assume a uniform prior for both the con-
tent component Dc and temporal component Dt, then

P (D|Q) ∝ P (Q|Dc)P (Q|Dt).

P (Q|Dc) can be estimated using Equation 1 and P (Q|Dt)
can be estimated as follows. Given an initial retrieval, the
query’s temporal profile is generated by binning the top n
results into different time periods, using a pre-determined
temporal unit (e.g. minute, hour, day, etc.). Note that the
number of bins for a particular retrieval would depend on
the number of distinct temporal units (e.g., minutes, hours,
days) present in top n results. Then, bins are ranked in de-
scending order of size (i.e., number of assigned tweets) and
indexed by i = {1, ..., T}. The first bin (i = 1) corresponds
to the one with the greatest number of top-n tweets and the
last bin (i = T ) corresponds to the one with the fewest num-
ber of top-n tweets. Let the function bin(t) return the index
of the bin corresponding to temporal unit t. The query’s
temporal profile is defined by

P (Q|t) = λe−λbin(t),

where parameter λ (explained in more detail below) con-
trols the amount of decay. Then, for a given document D,
published at time tD

P (Q|Dt) = λe−λbin(tD).

The final document score is given by

P (D|Q) ∝ P (Q|Dc)× λe−λbin(tD). (2)

Parameter λ controls the amount of decay. If λ is set
to a large value, then the documents published in the time
period(s) corresponding to the largest bin(s) are aggressively
promoted to the top-ranks. That is, the re-ranked results
may substantially differ from the original. Conversely, if λ
is set to a small value, then all bins are effectively given
a similar importance and the re-ranked results will closely
resemble the original.

Equation 2 can be viewed as a combination of the full-
dependence model with a query-specific temporal prior on

document D. Hence, we refer to this approach as the tem-
poral prior approach and denote it as UNCTP.3

3.4 Temporal Query-Expansion
The recency-based query-expansion approach described in

Section 3.2 scores candidate expansion terms based on their
degree of co-occurrence with the original query-terms in re-
cent tweets. As previously noted, this may be problematic
if the most relevant time periods associated with the query
are further in the past.

To address this potential limitation, we extended the recency-
based query-expansion approach by using the same binning
technique described in the previous section. First, an initial
retrieval is produced using a full dependence model (Qfdm).
Then, these results are binned according to the temporal
periods reflected in the top n results. Finally, the bins are
sorted by size and indexed by i = {1, ..., T}, where the first
bin (i = 1) has the greatest number of top-n results and the
last bin (i = T ) has the fewest number of top-n results.

Given a temporal binning of top-n results, the temporal
query-expansion approach scores candidate expansion terms
according to, 1

|Q|
∑
q∈Q

 ∑
{D:q,w∈D}

λe−λ(bin(tD))

−1−1

× log

(
N

dfw

)
,

where function bin(tD) returns the index of the bin associ-
ated with tD and is in the range [1, T ].

The temporally-biased expanded query (Qtmp) was con-
structed from the 10 terms with the highest score using the
following Indri query template

#weight(λ1 w1 λ2 w2 ... λ10 w10),

and was combined with the original full dependence model
query as follows

#weight(0.50 Qfdm 0.50 Qtmp).

The temporal query-expansion approach is denoted as UNC-
TQE.

4. PARAMETER TUNING
Parameters were tuned by maximizing mean average pre-

cision (MAP) on the 2011 Microblog Track topics (MB01-
MB50).

For the baseline approach (UNCQE), no parameters were
tuned. As previously noted, we used the default Indri pa-
rameters and we assigned equal weight to the initial (full-
dependence model) query and the expanded query. This
was the case for all of our query-expansion runs: UNCQE,
UNCRQE, and UNCTQE. For the temporal prior approach
(UNCTP) and temporal query-expansion approach (UNC-
TQE), we binned the top 10, 000 results and experimented
with hourly and daily binning. Furthermore, we tuned pa-
rameter λ across different orders of magnitude from λ = 1 to
λ = 0.0001. These parameters were set jointly using a grid
search. Finally, for the recency-based query-expansion ap-
proach (UNCRQE), we tuned the decay parameter β for an
approximate tweet half-life of a second, a minute, an hour,
and a day.

3We admit that this is somewhat of a misnomer because a
prior should be query agnostic.



5. RESULTS
Table 1 shows average performance across several metrics

for all four of our runs: (1) the baseline approach UNCQE
(Section 3.1), (2) the recency based query-expansion ap-
proach UNCRQE (Section 3.2), (3) the temporal prior ap-
proach UNCTP (Section 3.3), and (4) the temporal query-
expansion approach UNCTQE. (Section 3.4). These aver-
ages exclude queries MB053, MB068, and MB105, for which
the pooling of results yielded no relevant documents. Sta-
tistical significance was tested using a paired t-test (paired
on queries).

These results show several important trends. The tem-
poral prior approach (UNCTP) had the lowest performance
across all metrics and performed significantly worse than
the baseline approach (UNCQE) in terms of P@10, P@30,
AP, and R-Precision. A possible reason for its poor perfor-
mance is the following. Different from the rest of our runs,
this approach does not expand the original query with new
terms. Instead, it simply re-scores the results retrieved by
the original (full-dependence model) query. Because tweets
are text impoverished, it seems like some form of query
and/or document expansion (e.g., using linked-to webpages)
is important. Indeed, this approach retrieved fewer results
than other three. On average, the other approaches re-
trieved close to the maximum number of results per query
(10, 000). The temporal prior approach averaged 5, 293 re-
sults per query. The temporal prior approach might have
performed better in combination with document expansion.

The temporal query-expansion approach (UNCTQE) was
the best performing across all metrics. Its improvement over
the baseline was marginally significant in terms of MAP
(p = 0.059) and significant in terms of R-Precision (p = 0 <
0.05). This provides modest evidence that exploiting tem-
poral information can improve performance. The temporal
query-expansion approach also outperformed the recency-
based query-expansion approach (UNCRQE). While it is not
shown in Table 1 in order to avoid clutter, its improvement
over UNCRQE was significant in terms of AP (p < 0.05)
and R-Precision (p < 0.05). This suggests that the most
relevant time periods are not always the most recent. In
other words, allowing the model to favor tweets for certain
time periods, but not necessarily the most recent, improves
performance.

Figure 1 illustrates our per-query performance compared
to each query’s median- and best-performing system in terms
of AP. The queries along the x-axis are sorted in descending
order of our run’s AP performance. Notice that the lines
associated with the median and best performance are differ-
ent across figures. This is because the ranking of queries is
also different. As the figure shows, all of our runs were close
to the median performance for each query and far from the
best performance for each query. However, these median and
best performances include runs that used external or future
evidence or both. The UNCQE, UNCTP, UNCRQE, and
UNCTQE approaches were above the median performance
for 46%, 36%, 41%, and 48% of all queries, respectively.

6. DISCUSSION
Our UNCRQE run used a slight modification of the query

expansion method described in Massoudi et al., [3]. The
original method computes the degree of co-occurrence be-
tween each query term and each candidate expansion term

(favoring co-occurrences in recent documents) and then ac-
cumulates scores across query terms by using the arithmetic
mean. In order to favor candidate terms with a high co-
occurrence with all the query-terms, we used the harmonic
mean. Figure 2 compares different means (arithmetic [3],
geometric, and harmonic) for P@30 and MAP on last year’s
queries, which were used for parameter tuning and model
selection. The results are shown for different values of β
(setting β for an approximate half-life decay of an hour, a
minute, and a second). As shown in the figure, the improve-
ment from using the harmonic mean was very small (< 5%)
and not likely to be noticeable. However, the improvement
was consistent across metrics and values of β, so we decided
to substitute the arithmetic mean with the harmonic mean
in our final run (UNCRQE).
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Figure 2: Evaluation of different averaging meth-
ods for the approach from Massoudi et al., [3]. The
original approach uses the arithmetic mean and our
slight modification uses the harmonic mean.

The results presented in the previous section suggest that
UNCTP suffered from a lack of query and/or document ex-
pansion. We investigated this further by applying the tem-
poral prior re-scoring to the results from UNCQE rather
than the results from the full-dependence model query, which
uses only the original query terms. We denote this unof-
ficial run as UNCQE+TP. These results are provided in
Table 2. The lack of query expansion was a major contribu-
tor to UNCTP’s poor performance. The temporal prior ap-
proach improved dramatically by re-scoring the results from
UNCQE rather than the results from the full-dependence
model query. There was no significant difference between
UNCQE and UNCQE+TP.

In the following error analysis, we examine different cases
where temporal information improves or deteriorates per-
formance, depending on how it is used. We focus this anal-
ysis on the recency-based query-expansion approach from
Massoudi et al., [3] (UNCTQE) and the temporal query-
expansion approach (UNCRQE). Both methods use query
expansion. However, the recency-based approach favors ex-
pansion terms from recent tweets and the temporal approach
favors expansion terms from relevant busts in the recent (or
not-so-recent) past. The relevant bursts are predicted from
the temporal distribution of the top-n results from an initial
(full-dependence model) retrieval.



Table 1: Average performance. The percentages correspond to the percent improvement over the baseline
UNCQE approach and the H and N denote a statistically significant drop or improvement in performance
compared to UNCQE. The best run for each metric is shown in bold.

UNCQE UNCTP UNCRQE UNCTQE
P@5 0.271 0.257 -5.26% 0.261 -3.95% 0.279 2.63%

P@10 0.246 0.214H -13.04% 0.248 0.72% 0.261 5.80%
P@30 0.190 0.164H -13.48% 0.192 0.95% 0.204 7.53%

AP 0.154 0.132H -14.08% 0.157 1.97% 0.173 12.33%
R-Prec 0.187 0.159H -15.11% 0.191 1.88% 0.212N 12.90%

(a) UNCQE (b) UNCTP

(c) UNCRQE) (d) UNCTQE

Figure 1: Result in terms of average precision (AP) compared to each query’s median and best performance.

Table 2: Average performance. A N denotes a statis-
tically significant improvement in performance com-
pared to UNCTP. UNCQE and UNCQE+TP were
statistically indistinguishable.

UNCQE UNCTP UNCQE+TP
P@5 0.271 0.257 0.268

P@10 0.246 0.214 0.248N

P@30 0.190 0.164 0.188N

MAP 0.154 0.132 0.155N

R-Prec 0.187 0.159 0.188N

Figures 3-5 show the temporal distribution (top) and bin-
size distribution (bottom) associated with the top-n initial
results (denoted here as the “baseline” run) and the true
relevant documents for three different topics: Topic 80 (Fig-
ure 3), Topic 86 (Figure 4), and Topic 103 (Figure 5). We
analyze these topics because UNCRQE and UNCTQE were
associated with different levels of performance compared to
the UNCQE approach and each other.

In the case of Topic 80 (Figure 3), both UNCRQE and
UNCTQE performed considerably better than UNCQE based
on AP. UNCRQE outperformed UNCQE by 348.70% and
UNCTQE outperformed UNCQE by 199.73%. Figure 3
(top) shows how the true relevant documents are concen-
trated in the most recent tweets (recency in the top figure
should be read from right to left). Figure 3 (bottom) also
shows how the day associated with the second largest bin
had a large concentration of true relevant documents (bin-
size in the bottom figure should be read from left to right).
This helps to explain why both UNCRQE and UNCTQE



performed well for this topic. Furthermore, it can be seen
that many relevant documents were published during the
day associated with the smallest bin (the one on the far
right). This might explain why UNCTQE did not do as well
as UNCRQE for this topic.

In the case of Topic 86 (Figure 4), UNCTQE performed
better than UNCQE by 20.92% in terms of AP and UN-
CRQE performed worse than UNCQE by 21.38% in terms
of AP. Figure 4 (top) shows how the relevant tweets were
not the most recent, but were concentrated around 1/24, a
week before the query date (1/31). This might explain why
UNCRQE failed to generate good expansion terms and per-
formed worse than UNCQE. Figure 4 (bottom) also shows
how these relevant bursts were associated with the first,
third, and fifth largest bins. That is, many of the true rel-
evant documents were published on those days associated
with the largest bins. This might explain why UNCTQE
outperformed both UNCQE and UNCRQE for this topic.

A similar scenario is depicted for Topic 103 (Figure 5).
In this case, UNCTQE outperformed UNCQE by 283.81%,
whereas UNCRQE outperformed UNCQE by only 19.81%.
Why did UNCTQE do better? As Figure 5 (top) shows, the
true relevant documents were not concentrated in the most
recent tweets. Instead, they were concentrated about a week
before the query date. As shown in Figure 5 (bottom), the
dates associated with the fourth and sixth largest bins had
many true relevant documents.

Figure 3: Topic 80: “chipotle raid”

This analysis shows that both query-expansion approaches
have pitfalls. The recency-based query-expansion approach
suffers when the true relevant documents are further in the
past and when recent tweets “look” relevant, but are not.
Conversely, the temporal query-expansion approach suffers
when the initial retrieval fails to identify the bins with the
highest concentration of true relevant documents.

7. CONCLUSION
We experimented with three different ways of incorpo-

rating temporal information to improve ad-hoc microblog
retrieval. Our results show two important trends. First,
given that tweets are text-impoverished, query-expansion
seems to be important. The only method we tested that
did not use query-expansion (UNCTP) performed signifi-
cantly worse than the others. Second, incorporating tempo-
ral information can improve retrieval, and it is beneficial to

Figure 4: Topic 86: “joanna yeates murder”

Figure 5: Topic 103: “tea party caucus”

give the model the flexibility of favoring tweets that are not
necessarily the most recent. This was the main difference
between our UNCTQE and UNCRQE runs, and UNCTQE
performed better across all evaluation metrics considered.
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