
PKUICST at TREC 2012 Microblog Track

Feng Liang Runwei Qiang Yihong Hong Yue Fei Jianwu Yang
∗

{liangfeng,qiangrw,hongyihong,feiyue,yangjw}@pku.edu.cn
Institute of Computer Science and Technology

Peking University,Beijing 100871,China

ABSTRACT
This paper describes the PKUICST’s entry into the TREC
2012 Microblog track. In this year of microblog track, we
participate in both the Real-time Adhoc Task and Real-time
Filtering Task. In the Real-time Adhoc Task, we designed
and conducted a series of experiments based on different
retrieval models, namely Real-time Tweet Ranking (RTR)
model and learning to rank framework. In the Real-time Fil-
tering Task, we adopted various strategies to determine the
filtering threshold. Official results demonstrate that our ap-
proach obtains convincing performances and more unofficial
runs lead to some further conclusions.

1. INTRODUCTION
The popularity of microblog has significantly increased

information seeking behaviors in the microblogging envi-
ronments. To explore the search behavior and boost the
search performance in the real-time environment, TREC in-
troduced a novel pilot track named microblog track last year.
In this year of microblog track, two tasks are introduced,
namely Real-time Adhoc Task and Real-time Filtering Task,
whereby a user’s information need is represented by a query
at a specific time. In the real-time adhoc task, the user
wishes to see the most recent but relevant information to
the query. However, different from last year, participants
are required to return top 10,000 tweets prior to the query
time per topic according to their relevance score. Hence,
systems should favor relevant and highly informative tweets
about the query topic, which makes this task skin to ad-hoc
search on Twitter. In this task, we adopt both RTR model
and state-of-art learning to rank framework to improve the
retrieval effectiveness.
The real-time filtering task aims at deciding if subsequently

posted tweets are relevant for a query entered at a particu-
lar point in time. In this task, the user is interested in new
relevant tweets, thus to keep up to date about a developing
topic. The topics used for the real-time filtering task are
the same as last year, which provides a way to use super-
vised methodology. Hence, we train different models from
training data and try various strategies to determine the fil-
tering threshold which is of vital importance in the adaptive
filtering task.

2. REAL-TIME ADHOC TASK
In this section, we describe our approach for the Real-time

Adhoc Task in detail.

∗Corresponding author.

Table 1: Summary statistics of Tweet corpus
Html Code Status Tweets in 2011 Tweets in 2012
200 OK 13,839,083 8,084,724
302 Found 1,106,999 815,794
403 Not Found 284,225 817,273
404 Forbidden 844,494 868,667
Null Null 67,011 67,011
Searchable 14,946,082 8,900,518

2.1 System Overview
Our system contains two major steps: initial search using

RTR Model [7], which is based on statistic language model
and re-ranking the initial result sets with Ranking SVM [5].
The architecture of our system is shown in Figure 1. Corpus
and query are processed in parallel.

Our system does some necessary text preprocessing to the
corpus and query, such as stemming and stopwords elim-
ination. The links within tweets are very informative as
they are always aimed at tracking breaking news stories,
recommending interesting video clips and brand marketing
[3]. Thus, we crawl all the links and extract topic informa-
tion from the pages we get[7], forming a new corpus called
TopicInfo Corpus. Another way to use topic information is
directly replacing the links in the original tweet and generate
a new DE(Document Expansion) Corpus. After the retrieval
step with the help of RTR Model, the system produces top
20,000 scoring candidate tweets. Then we collect features
for these candidate tweets, such as semantic features, tweet-
related features and temporal features, then use learning to
rank framework to re-rank the candidate tweets. Lastly, we
choose the top 10,000 relevant tweets as the final results.

2.2 Preprocessing
Tweet11 corpus was obtained using a donation of the

unique identifiers of a sample of tweets from Twitter [10].
We crawled the HTML version copy of the corpus with the
provided tools.Table 1 shows basic statistics of our HTML
version acquisition on June 23, 2011. Given the corpus and
topic set, we do the following preprocessings.

• Corpus status update: For the sake of fairness,
organizers re-crawled the Tweet11 corpus at the be-
ginning of this year’s track, and offered a list of valid
IDs for corpus update. We filter all the invalid IDs to
generate the Tweet12 corpus.

• Crawled TopicInfo corpus: To expand the docu-
ment representation, we collect all the external URLs

Tweet2012 Corpus

Preprocessing

Original Query

Incre Index

Query

Top 20,000 Candidate Tweets

Real-Time Tweet Ranking Model

Top 10,000 Final Tweets

Ranking SVM

Origin
Corpus

DE
Corpus

Candidate
Corpus

TopicInfo
Corpus

Preprocessing

Figure 1: System Architecture

Table 2: Summary statistics of TopicInfo corpus
Html Code Status Tweets in 2011
200 OK 1,225,947
302 Found 688
403 Not Found 5,050
404 Forbidden 92,378
Null Null 265,468
Searchable 1,226,635

(i.e. TopicInfo corpus) contained in Tweet11 corpus
and extract their topic information for our document
expansion process in early December, 2011.Note that
web pages might be deleted as time elapsed, we have
only crawled a portion of the external URL set. Sum-
mary statistics of TopicInfo corpus is present in Table
2.

• Non-English filter: We filter out all tweets that have
words encoded with non-ASCII code.

• Simple retweet elimination: We eliminate tweets
that begin with ‘RT’ with the consideration that these
tweets are simple retweets without any other addi-
tional information.

2.3 Retrieval Models

2.3.1 Real-Time Tweet Ranking Model
Given a real-time search problem, the ideal system should

consider: 1) build a dynamic dataset for each query to avoid
using the future resources; 2) use expansion techniques to en-
rich the representation of both query and document; 3) make

a tradeoff between relevance and recentness. To solve these
challenges, Feng et al. [7] propose a Real-time Tweet Rank-
ing (RTR) model, which highlights the following aspects:
1) describe a two-stage pseudo-relevance feedback query ex-
pansion to estimate a query language model. 2) propose two
ways to expand document with the shortened URL’s infor-
mation to enrich the representation of document. 3) suggest
several temporal re-ranking functions and two representa-
tions of temporal profile to evaluate the temporal aspect of
documents.

To rank tweets for a given topic, RTR model is to estimate
the probability of generating a query Q given the content D
and timestamp t of the tweet as follows:

P (Q|D, t) =
P (t|Q,D) · P (Q|D)

P (t|D)
(1)

Assuming that P (Q|D) ∝ Score(Q,D) which can be cal-
culated using Kullback-Leibler retrieval model [14], and that
P (t|D) can be assumed as a constant because it is query-
independent, the ranking formula can be rewritten as fol-
lows:

P (Q|D, t) ∝ P (t|Q,D) · P (Q|D)

∝ P (t|Q,D) · Score(Q,D)

= P (t|Q,D) ·
∑
w∈V

P (w|θ̂Q) · logP (w|θ̂D)(2)

With the ranking formula, the retrieval task is reduced
to three subtasks, i.e. the estimation of query model θ̂Q,

the estimation of document model θ̂D and the temporal
re-ranking component P (t|Q,D), respectively. Considering
that this year’s task doesn’t require participants to rank
returned tweets by timestamp, we just implement the es-
timation of query model and the estimation of document
model.

For the estimation of query model, RTR model adopts
a two-stage pseudo-relevance feedback query expansion as
follows: 1) in the first stage, a single tweet is picked up
to generate topical words using the maximum likelihood es-
timator. 2) in the second stage, a group pseudo-relevant
tweets are used to distill the relevant content by implement-
ing the model-based feedback approach [15].

It is important to point out that the single tweet (i.e.
issue tweet), which is generated in the first stage query ex-
pansion can be used to calculate another score with both
original tweets and topic information for further semantic
representation. Overall, the estimation of query model can
be represented as:

P (w|θ̂Q′) = (1− α) · P (w|θ̂Q) + α · P (w|θ̂PRF1) (3)

For the estimation of document model, RTRmodel presents
two ways to utilize the external resource, i.e. TopicInfo cor-
pus. One is to merge the original tweet T and topic infor-
mation I if exists to form a new document and estimate the
document language model using Dirichlet Smoothing [14] as
follows:

P (w|θ̂D) =
c(w,D) + µP (w|C)

|D|+ µ
(4)

Another approach is to smooth the original document model
using linear incorporation with the topic information lan-
guage model estimated based on TopicInfo corpus, and each
model is smoothed using Dirichlet method as well. The doc-

Testing Set

Feature
Selection

Labelers
Learning

Algorithm

Vectors

Ranking
System

Instants
with label

11(,)
MM Nq t

1 1(,)M Qq t

1 2(,)M Qq t

11(,)
M QM Q Nq t

... ...

...

1 1(,)Mq t

1 2(,)Mq t

Feature
Selection

Vectors

1 1(,)MS q t

1 2(,)MS q t

11(,)
MM NS q t

...

1 1(,)M QS q t

1 2(,)M QS q t

11(,)
M QM Q NS q t

...

...

Scores

1 1(,)q t

1 2(,)q t

11(,)Nq t

...

1(,)Mq t

2(,)Mq t

(,)
MM Nq t

...

...

Training Set

Figure 2: Learning to rank framework

Table 3: Training Data Relevance Distribution
Category TREC11 Labeled Tweets Crawled

Minimally Relevant 2306 2075
Highly Relevant 558 511

Non Relevant 37900 33803
Total 40764 36389

ument model is present as follows:

P (w|θ̂D) = (1− λ) · P (w|θ̂T) + λ · P (w|θ̂I) (5)

P (w|θ̂T) =
c(w, T) + µTP (w|CT)

|T |+ µT
(6)

thickP (w|θ̂I) =
c(w, I) + µIP (w|CI)

|I|+ µI
(7)

2.3.2 Learning to Rank Framework
Learning to rank is a data-driven approach which inte-

grates a bag of features in the model effectively [2]. Our
system adopts the same framework that Duan et al [2] pro-
posed except that we select different features for the learning
algorithm. The basic learning to rank framework is shown
in Figure 2.
In order to train an effective model, adequate training

data and useful feature set are required. The candidate
tweets is produced by the RTR model described in section
2.3.1. Our training set is generated from official result set
of TREC’11 Microblog Track, the relevance distribution in
the result set is listed in Table 3.Our system trains Ranking
SVM [5] as learning to rank model.
Three major types of features are used in our model: se-

mantic features, tweet related features and temporal fea-
tures.

Semantic features
Semantic features refer to the features that describe the rel-
evance between the query and tweets, such as the Kullback-
Leilbler divergence between query model and document model.
Using different query or document model can generate dif-
ferent features that may reflect different aspects of query-
document similarity. For example, using TopicInfo Corpus,

we may get the relevance between the tweet link and user’s
query while using Origin Corpus, we can get the content
relevance between the query and the tweet text.

In our approaches, we propose four semantic features.

• OrgTweetScore score generated by the RTR Model
with original query and Origin Corpus

• OrgTitleScore score generated by the RTR Model
with original query and TopicInfo Corpus

• IssueTweetScore Issue tweet is highly relevant tweet
retrieved in the first stage of RTR Model that is de-
scribed in section 2.3.1, IssueTweetScore is generated
by the RTR Model with this issue tweet, as a new
query and Origin Corpus.

• IssueTitleScore like IssueTweetScore, generated by
the RTR Model with the issue tweet and TopicInfo
Corpus.

Temporal Feature
Recentness is also an important aspect in the microblogo-
sphere. In TREC’11 Microblog Track, participants are re-
quired to produce a ranked list of tweets from the latest
timestamp to the earliest. Thus, tweets posted an hour ago
are often more worthy than those were updated a day be-
fore. So we use the normalized time difference between the
time when the query issued and the time when the tweet
published as temporal feature.

2.4 Result Analysis
In this section, we analyze the results of our approaches.

In this year’s track, all submitted runs were pooled to depth
100 (while in last year the pooling depth is 30) according to
the retrieval scores indicated in each run.

2.4.1 Analysis of Official Runs
Table 4 show the performance values of our submitted

four runs. The primary evaluation measures for this year’s
task are still P@30 (Precision at 30), MAP (Mean Average
Precision) and R-Prec(R-Precision). Our training metric in
learning to rank framework is MAP.

Table 4: Performance of our submitted runs
Run ID P@30 MAP R-Prec
PKUICST1 0.2164 0.1639 0.2176
PKUICST2 0.2068 0.1561 0.2120
PKUICST3 0.2113 0.1686 0.2174
PKUICST4 0.2333 0.2263 0.2174

PKUICST3 only uses RTR model with the DE Corpus
and cuts the top 10,000 tweets from the candidate tweet
set. Except PKUICST3, other runs all adopt learning to
rank framework. PKUICST1 and PKUICST2’s candidate
tweet sets are both generated with the DE Corpus, while
PKUICST4’s candidate tweet set is generated with the Ori-
gin Corpus. The difference between PKUICST1 and PKUICST2
is that they train in different training set. The former trains
on the 49 allrel topics while the latter trains on the 33 high-
rel topics. All ranking SVM models use all the semantic
features and tweet related features. PKUICST4 doesn’t use
the OrgTitleScore and IssueTitleScore features as it doesn’t
use any external resources.

Table 5: Model Description in unofficial runs
Model Name Candidate Set Feature Set
OrgBase Origin Corpus OrgTweetScore, Tweet Related Features
OrgTime Origin Corpus OrgTweetScore, Tweet Related Features, Temporal Feature
DEBase DE Corpus OrgTweetScore, Tweet Related Features
DEIssueTitle DE Corpus OrgTweetScore, OrgTitleScore, IssueTweetScore, IssueTitleScore, Tweet Related Fea-

tures

From the evaluation result, we can see that training on
allrel topics is better than training on highrel topics. Com-
pared with PKUICST2, PKUICST1 achieves 4.64% and 5.00%
further increases in P@30 and MAP, respectively. As we
known, the official evaluation used only highly relevant tweets
as relevant, however we didn’t gain any improvements by
training on highrel topics, further investigation is needed
for this issue. Origin candidate is even better than the DE
candidate according to the official evaluation.

2.4.2 Analysis of Unofficial Runs
In addition to the submitted runs, we also do some com-

plementary experiments on TREC2011 data for compari-
son. These experiments aim at comparing the selection of
candidate tweet sets, semantic features and the effectiveness
of temporal feature. All models in the experiments adopt
learning to rank algorithm and apply repeated random sub-
sampling validation. The metric used in our learning algo-
rithm is MAP, which is one of the major evaluation measures
in TREC’11 microblog track.
The models we compare adopt different candidates or fea-

ture sets. The model description is shown in Table 5. The
second column describes the corpus used in the RTR Model
to generate the candidate tweet set. With the optimum pa-
rameters C (trade-off between training errors) in SVMrank

[6], we re-rank the candidate tweets and generate the final
results.

Table 6: Performance of unofficial runs
Model Name P@30 MAP R-Prec
OrgBase 0.4623 0.2914 0.3317
OrgTime 0.4532 0.2902 0.3314
DEBase 0.4654 0.2921 0.3319
DEIssueTitle 0.4567 0.2989 0.3355

The performance of each run is shown in Table 6. The
performance of DEBase and OrgBase is basically the same,
so is OrgBase and OrgTime. DEIssueTitle gains about 2.3%
improvements in MAP score compared with DEBase.
According to these experiments, we conclude that:

• When feature set are determined, candidate set influ-
ence a little in the unofficial runs.

• Temporal feature may not be effective in the current
framework.

• More semantic features can improve the MAP score to
some extent.

The conclusion may not be the same with the ones from
the official runs, as the unofficial runs are all tested on the
TREC2011 Tweet Corpus. As now the evalation tool for
TREC2012 is published, we’ll do more experiments for fur-
ther conclusions.

3. REAL-TIME FILTERING PILOT TASK
This section describes our approach for Real-time Filter-

ing Pilot Task. Filtering differs from searching in that docu-
ments arrive sequentially over time. The Real-time filtering
task aims at simulating online time-critical tweet filtering
applications, which means that potentially relevant tweet
must be presented immediately to the user.

3.1 System Overview

Tweet2012
Corpus

Preprocessing

Query

Real-Time Tweet Filtering Model

Relevance Feedback Model

Filtering Result

Original
Query

Index

Update
Index

Preprocessing

Foreground
Corpus

Background
Corpus

Origin
Corpus

DE
Corpus

TopicInfo
Corpus

Candidate
Corpus

Figure 3: FIltering System Architecture

Figure 3 shows the architecture of our filtering system. In
our filtering system, we do the same preprocessing as the
Real-time Adhoc Task for the corpus at first. The corpus
index is still built with the help of the Lemur IR toolkit1.
The Filtering Model and the Relevance Feedback Model are
the core parts of our system. For each tweet, we use the
Filtering Model to estimate its relevance score with respect
to the current query and generate the filtering result ac-
cording to the relationship between the relevance score and
threshold obtained in the training phase. We vary the de-
cision threshold to get the best evaluation result based on
P@30 evaluation metric. The Relevance Feedback Model
aims at expanding the keywords of the query and it can be
regarded as an evolvement of topic. To achieve the goal of
filtering task, we try different filtering models and feedback

1http://www.lemurproject.org/lemur.php

algorithms which will be discussed in detail next. When the
filtering action is done, new tweets from the foreground cor-
pus will be added to the background corpus. Thus we can
update the index dynamically with the time [8].

3.2 Real-Time Tweet Filtering Model
The filtering model we used in the filtering model will

be introduced in this section. For each model, we train
the decision thresholds to make evaluation result best based
on P@30 evaluation metric in the training stage except the
SVM model.

3.2.1 Baseline Models
In the Filtering Model, several traditional retrieval models

such as Boolean Model, Language Model and Vector Space
Model are applied as the scoring method[9].

Boolean Model
The Boolean Retrieval Model was used by the earliest search
engines and is still in use today. And Boolean Retrieval
System achieves its goal by judging whether the document
contains the keywords of query.

Language Model
Language Model described in the Adhoc task is also applied
to the filtering task while we still use the Kullback-Leibler
divergence as the relevance score.

Vector Space Model
Vector space model (VSM) is an algebraic model for repre-
senting text documents as vectors of identifiers. We express
the tweet and the query as vector.

−→
Ti = (w1i, w2i, w3i, · · ·wni)

−→
Qi = (w1q, w2q, w3q, · · ·wnq)

The TFIDF weighting scheme is adopted as the term weight
and the Cosine Similarity Metric is used to evaluate the
relevance between tweets and query. The Cosine Similarity
Metric is defined as Eq.8.

Sim = cos θ =

−→
Ti ·

−→
Q

‖
−→
Ti‖ · ‖

−→
Q‖

(8)

3.2.2 Two-Stage Filtering Model Combined VSM and
Improved Boolean Model

We propose an efficient but simple combination model in
the filtering task. Figure 4 describes a Two-Stage Filtering
Model which combines Vector Space Model and Improved
Boolean Model. The two score thresholds tc and tb are ob-
tained in the training phase.
For each tweet, we calculate its relevant score based on

the Improved Boolean Model if it survives in the Vector
Space Model, which depends on the Cosine Similarity Met-
ric. Here, we use an improved Boolean Model instead of the
traditional Boolean Model. Since each tweet contains no
more than 140 words, the tweet is likely to be more relevant
to the query if it contains a high proportion of keywords.
Thus we define its relevance score as Eq.9.

Sim(T,Q) =
|{t|t ∈ (T ∩Q)}|

|Q| (9)

where T and Q denote the term set of the tweet and query.

QueryTweet

Vector Space
Model

sc>tc ?

Improved Boolean Model Yes

Non-
Relvance

No

sb>tb ?

Relvance

Yes

No

score sc

score sb

Figure 4: Two-Stage Filtering Model

3.2.3 SVM-based Model
Support Vector Machine (SVM) is a robust machine learn-

ing methodology which has been shown to yield state-of-the-
art performance for text classification [4]. D. Sculley et al
[13] also demonstrates that online SVMs do indeed provide
good performance for online spam filtering. Thus we try to
combine SVM in our approach to gain a more robust per-
formance in tweet filtering task. In our experiment, libSVM
tool developed by Chih-Chung Chang and Chih-Jen Lin [1]
is used as our core SVM solver.

Generating machine learning features from text could be
done in a variety of ways, especially when the text may
include hyper-content and meta-content such as tweet link
and hash tag. All the tweet related features mentioned in
section 2.3.2 are used in our algorithm. The score generated
by the language model described in section 3.2.1 is used
as semantic feature. In addition, the query words’ average
inverse document frequency and the score generated by the
Boolean model which is described in Eq.9 are both candidate
features.

The SVM tradeoff parameter C must be tuned to obtain
the optimal performance. The filtering task provides us 10
topics whose related tweets are classified as high relevant,
minimally relevant and non-relevant. To tune our system
parameters, five-fold cross validation was used in our exper-
iment to determine the optimum parameter C of SVM.

With the optimum parameter, we classify the query doc-
uments pair of the remaining 39 topics as 3 levels: 3(highly
relevant), 2(minimally relevant) and 1(non-relevant). These
label info can help us filter tweets. Our relevance judging
strategy is described as follows: (1) if a tweet is labeled by
SVM as minimally relevant or highly relevant, we output yes
for this tweet. (2) Else we will judge the tweet by the score
calculated from the language model. if the score is higher
than the static threshold tuned using the training set, then
system outputs yes. (3) Otherwise, outputs no.

To conclude, we consider SVM as a high performance clas-
sifier that may merely miss relevant tweets, and these miss-
ing tweets are expected to be judged correctly by static score
threshold method.

3.3 Relevance Feedback Model
The Relevance Feedback Model aims at expanding the

keywords of the query and it can be regarded as an evolve-
ment of topic. And we apply two relevance feedback models

Table 7: Performace of submitted runs
Run ID T11SU F(beta=0.5) Precision Recall
PKUICSTF1 0.3424 0.2722 0.3963 0.2300
PKUICSTF2 0.3244 0.2525 0.3701 0.2809
PKUICSTF3 0.3233 0.2556 0.3857 0.2272
PKUICSTF4 0.3341 0.2629 0.3766 0.2936

in our filtering system.

3.3.1 Rocchio Algorithm
The Rocchio algorithm [12] is based on a method of rele-

vance feedback found in information retrieval systems which
stemmed from the SMART Information Retrieval System.
And the Rocchio feedback approach is developed with the
help of Vector Space Model. The algorithm is based on
the assumption that most users have a general conception
of which documents should be denoted as relevant or non-
relevant. Therefore, the user’s search query is revised to
include an arbitrary percentage of relevant and non-relevant
documents as a means of increasing the search engine’s re-
call, and possibly the precision as well.
The Rocchio Feedback Algorithm is described as Eq.10.

−→
Qm = α

−→
Q0 + β

∑
Tj∈TR

−→
Tj

|TR|
+ γ

∑
Tl∈TNR

−→
Tk

|TNR|
(10)

where TR denotes the set of relevant tweets while TNR de-
notes the set of non-relevant tweets, and Qm represents the
feature vector after m tweets. We set γ as zero since we can
only use the non-relevant tweets as background dataset.

3.3.2 Iteration Algorithm
The Iteration Algorithm used in the filtering task is sim-

ilar to the Rocchio Algorithm. It’s also a method of rele-
vance feedback and developed with the help of Vector Space
Model. In the feedback stage, terms with low weight will be
discarded. The Iteration Algorithm is described as Eq.11.

−→
Qm = α

−−−→
Qm−1 + β

−−−→
Tm−1 (11)

where α and β are the tuning parameters and the sum of
them equals 1.

3.4 Result Analysis
Table 7 show the performance values of our submitted four

runs. The primary evaluation measures for the filtering task
are T11SU [11], F-score (beta=0.5), P-score (Precision) and
R-score (Recall). Our training metric is based on the P30
evaluation metric.
Run PKUICSTF1 uses the two-stage filtering model that

combines the VSM and improved Boolean Model. And the
Rocchio Algorithm is denoted to Run PKUICSTF1 as the
relevace feedback model. Run PKUICSTF3 uses the lan-
guage model only with a static threshold set as −6. PKUIC-
STF2 and PKUICSTF4 both apply another two-stage strat-
egy which include SVM classifier and Language Model. The
difference between two runs is that Run PKUICSTF4 took
the external link resources into consideration and the pa-
rameters of these two runs are different.
We’ll do more experiments for further conclusions after

the publication of evalation tool.

4. CONCLUSION AND FUTURE WORK

In this paper, we present our system for TREC’12 Mi-
croblog Track. For the real-time search task, we adopt Real-
time Tweet Ranking (RTR) model to rank the tweets to the
given topic, and meanwhile the RTR model provides candi-
date tweets to Learning to Rank framework for the further
ranking process. For the real-time filtering pilot task, we
compare different baseline models and propose the two-stage
filtering model which combines VSM model and Boolean
model. In addition, we apply two relevance feedback mod-
els to improve the filtering results. Many studies remain for
the future work. One of the most interesting directions is to
improve learning to rank/filter framework for better results.
Moreover, we also interested in the unified methodology of
how to determine a decision threshold for different topics.

5. ACKNOWLEDGMENTS
The work reported in this paper was supported by the Na-

tional Natural science Foundation of China Grant 60875033.

6. REFERENCES
[1] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A

library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[2] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and
Heung-Yeung Shum. An empirical study on learning
to rank of tweets. In Chu-Ren Huang and Dan
Jurafsky, editors, COLING, pages 295–303. Tsinghua
University Press, 2010.

[3] Bernard J. Jansen, Mimi Zhang, Kate Sobel, and
Abdur Chowdury. Micro-blogging as online word of
mouth branding. In Dan R. Olsen Jr., Richard B.
Arthur, Ken Hinckley, Meredith Ringel Morris,
Scott E. Hudson, and Saul Greenberg, editors, CHI
Extended Abstracts, pages 3859–3864. ACM, 2009.

[4] Thorsten Joachims. Text categorization with suport
vector machines: Learning with many relevant
features. In ECML, pages 137–142, 1998.

[5] Thorsten Joachims. Optimizing search engines using
clickthrough data. In KDD, pages 133–142, 2002.

[6] Thorsten Joachims. Training linear svms in linear
time. In KDD, pages 217–226, 2006.

[7] Feng Liang, Runwei Qiang, and Jianwu Yang.
Exploiting real-time information retrieval in the
microblogosphere. In JCDL, pages 267–276, 2012.

[8] Jimmy Lin, Rion Snow, and William Morgan.
Smoothing techniques for adaptive online language
models: topic tracking in tweet streams. In Proceedings
of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’11, pages
422–429, New York, NY, USA, 2011. ACM.

[9] Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. Introduction to information retrieval.
Cambridge University Press, New York, 2008.

[10] Iadh Ounis, Craigand Macdonald, Jimmy Lin, and Ian
Soboroff. Overview of the TREC-2011 Microblog
Track. In Proceedings of TREC 2011, 2012.

[11] Stephen Robertson and Ian Soboroff. The TREC 2002

filtering track report. In TEXT RETRIEVAL
CONFERENCE, 2002.

[12] J. J. Rocchio. Relevance feedback in information
retrieval. 1971.

[13] D. Sculley and Gabriel Wachman. Relaxed online svms
for spam filtering. In SIGIR, pages 415–422, 2007.

[14] Chengxiang Zhai and John Lafferty. A study of
smoothing methods for language models applied to
information retrieval. ACM Trans. Inf. Syst.,
22(2):179–214, 2004.

[15] ChengXiang Zhai and John D. Lafferty. Model-based
feedback in the language modeling approach to
information retrieval. In CIKM, pages 403–410. ACM,
2001.

