
Effective Structured Query Formulation for Session Search
Dongyi Guan Hui Yang Nazli Goharian

Department of Computer Science
Georgetown University

37th and O Street, NW, Washington, DC, 20057
dg372@georgetown.edu, {huiyang, nazli}@cs.georgetown.edu

Abstract
In this work, we emphasize on formulating effective structured queries for session search. For a given
query, phrase-like text nuggets are identified and formulated into Lemur queries to feed into the Lemur
search engine. Nuggets are substrings in qn, similar to phrases but not necessarily as semantically coherent
as phrases. We assume that a valid nugget appears frequently in top returned snippets for qn. In this work,
the longest sequences of words consisting of frequent bigrams within the top returned snippets are
identified as nuggets and are used to formulate a new query. By formulating structured query using the
nuggets, we greatly boost the search accuracy than just using qn. We experiment both strict and relaxed
forms of structured query formulation. The strict form of query formulation achieves an improvement of
13.5% and the relaxed form achieves an improvement of 17.8% on nDCG@10 on TREC 2011 query sets.
We further combine the nuggets generated from all queries q1, … , qn-1, qn, to formulate one structured
session query for the entire session. Nuggets from each query are weighed by various weighting schemes to
indicate their relations to the current query and their potential contributions to the retrieval performance.
We experiment three weighting schemes, uniform (all queries share the same weight), previous vs. current
(previous queries q1, … , qn-1 share the same weight while qn uses a different and higher weight), and
distance-based (the weights are distributed based on how far a query’s position in the session is from the
current query). We find that previous vs. current achieves the best search accuracy. For retrieval, we first
retrieve a large pool of documents for qn. We then employ a re-ranking model that considers document
similarity between clicked documents and documents in the pool as well as dwell time.
1 Introduction
TREC 2012 Session track features sequences of queries q1, q2, … , qn-1, qn, with only current query qn being
the subject for retrieval. Four subtasks progressively include four types of session information. They are:
RL1: a subtask only use the current query qn; RL2: a subtask uses the previous queries q1, q2, … , qn-1 and
the current query qn; RL3: a subtask provides top retrieved documents for previous queries; and RL4:
additional information about which top results are clicked by users.
In this research, we emphasize on formulating effective structured queries for search tasks within a session.
In RL1, we attempt to find text nuggets in the current query to generate structured queries. In RL2, we
merge the nuggets extracted from all queries to build a structured session query. In RL3 and RL4, we
employ anchor texts in the top 10 search results to expand the structured session query. We remove
duplicated queries from the query sequence. Dwell time for clicked documents is employed for document
re-ranking in RL4. In the following sections, we present our methods for query formulation, query
expansion, duplicate removal and document re-ranking.
2 Structured Query Formulation
In a query, several words often bundle together as a phrase to express a coherent meaning. We identify
phrase-like text nuggets and formulate them into Lemur queries for retrieval . Nuggets are substrings in qn,
similar to phrases but not necessarily as semantically coherent as phrases. We observe that a valid nugget
appears frequently in the top returned snippets for qn. We then use nuggets to formulate new structured
queries in the Lemur query language. Particularly, we look or nuggets in the top k snippets returned by
Lemur with the original current query qn. The nuggets are identified by two methods, strict and relaxed, as
described below.
2.1 Strict Method
First, we send the original query qn into Lemur and retrieve the top k snippets over an index built for
ClueWeb CatB. Then all snippets are concatenated as a reference document R. The original query is
represented as a word list q = w1w2...wn.

cubs sport injuries with girls back of knee injuries school sports injuries bladder assistance for spinal cord injuries reigning ...
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 1. The word indexing in a snippet built from TREC 2012 session 53 query “servering spinal cord
consequenses”, where bold words “spinal cord” positioned at 16 and 17 appear in the query.

For every bigram in qn, we count its occurrences in the reference document R. Frequent bigrams are marked
“candidate” if its normalized occurrence exceeds a threshold.

count(𝑤!𝑤!!!;𝑅)

min(count 𝑤!;𝑅 , count(𝑤!!!;𝑅))
≥ 𝜃 (1)

where count(x; R) denotes the occurrence of x in the reference document R, wi and wi+1 are adjacent words
in the query, θ is the threshold, which is trained to be 0.97 according to the TREC 2011 session data.

For example, in TREC 2012 session 53 query “servering spinal cord consequenses”, we find bigram “spinal
cord” as candidates.

The bigrams could connect to form longer n-grams. For instance, in TREC 2011 session 11 query “hawaii
real estate average resale value house or condo news”, we discover that “hawaii real” and “real estate” are
both marked “candidate”, and they can be merged into a longer sequence “hawaii real estate”. On the
contrary, “estate average”, is not a candidate, hence we cannot form “hawaii real estate average” and
“hawaii real estate” is the longest sequence and is recognized as a nugget. Formally, we define:

 𝑛𝑢𝑔𝑔𝑒𝑡 = #1(𝑤! ˽𝑤!!!˽… ˽𝑤!!!) (2)
such that

 𝑤!𝑤!!! is connected for each 𝑗 ∈ 𝑖, 𝑖 + 𝑘 − 1
𝑤!!!𝑤! and 𝑤!!!𝑤!!!!!are not connected

(3)

where #1 is the ordered window operator with size 1 in Lemur query language which means the words in
the bracket are all adjacent, “˽” denotes the space. Consequently the query is broken down into nuggets and
single words. All serve as the elements to build up a structured query using the Lemur query language

 #combine(𝑛𝑢𝑔𝑔𝑒𝑡!˽𝑛𝑢𝑔𝑔𝑒𝑡!˽… 𝑛𝑢𝑔𝑔𝑒𝑡!˽𝑤!˽𝑤!˽…𝑤!) (4)
where we suppose there are m nuggets and r single words.
2.2 Relaxed Method
#1 is a strict structure operator and may produce many false negatives in retrieval. We therefore introduce
another relaxed method for query formulation. We relax the constraints based on the intuition that distance
between two words reflects the associativeness of them. Particularly, we first retrieve the top k snippets as
in Section 2.1. For RL2, every word’s position in the snippet is marked as shown in Figure 1.
We then estimate the position of word wi as

 𝑥 𝑤! =
1
𝑘
∙

𝑥!(𝑤!; 𝑆!)!

count(𝑤!; 𝑆!)

!

!!!

 (5)

where k is the number of snippets, St is the tth snippet, xj(wi; St) is the index of the jth instance of wi in St,
count(wi; St) is the occurrence of wi in St. The estimated postion is averaged over all the snippets.
For every bigram in the query, the distance between their estimated postions is calculated. We predict the
window size (X in #X) of a nugget by learned through a decision tree:

 𝑛𝑢𝑔𝑔𝑒𝑡 =
#1(𝑤! 𝑤!!!) 𝑥 𝑤! − 𝑥 𝑤!!! ≤ 5
#2(𝑤! 𝑤!!!) 5 < 𝑥 𝑤! − 𝑥 𝑤!!! ≤ 10

∅ 𝑥 𝑤! − 𝑥 𝑤!!! > 10
 (6)

The structured query is then formulated as in eq (4).

For TREC 2012 session 53 query “servering spinal cord consequenses”, we obtain the structured query
“#2(spinal cord) servering consequenses”.
3 Query Expansion
To include more information to formulate effective queries, we expand the queries by using top search
results for previous queries and click information.

http://animals.howstuffworks.com/mammals/marsupials.htm http://animals.howstuffworks.com/mammals Marsupials
Figure 2. A sample anchor text.

3.1 Query expansion with previous queries (RL2)
For RL2, we first obtain a set of nuggets and single words from every query qk = {nuggetik, wjk} by the
approach presented in Section 2. We then merge these nuggets to form an expanded query:

#weight(
𝜆! #combine(𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑛𝑢𝑔𝑔𝑒𝑡!"˽… 𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑤!!˽𝑤!"˽…𝑤!!)
𝜆! #combine(𝑛𝑢𝑔𝑔𝑒𝑡!"˽𝑛𝑢𝑔𝑔𝑒𝑡!!˽… 𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑤!"˽𝑤!!˽…𝑤!!)
…
𝜆! #combine(𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑛𝑢𝑔𝑔𝑒𝑡!!˽… 𝑛𝑢𝑔𝑔𝑒𝑡!"˽𝑤!!˽𝑤!!˽…𝑤!")
)

(7)

where λk denotes the weight of query qk. Note that the last #combine is for the current query qn.
Three weighting schemes are designed to determine the weight λk, namely uniform, previous vs. current,
and distance-based.
• uniform. All queries are assigned the same weight, i.e., λk = 1.
• previous vs. current. All previous queries share the same weight while the current query uses a

complementary and higher weight. Particularly, we define:

 𝜆! =
𝜆! 𝑘 = 1, 2,… , 𝑛 − 1

1 − 𝜆! 𝑘 = 𝑛 (8)

where λp is trained to be 0.4 on TREC 2011 session track data.
• distance-based. The weights are distributed based on how far a query’s position in the session is from the

current query. We use a reciprocal decay function to model it.

 𝜆! =
𝜆!

𝑛 − 𝑘
𝑘 = 1, 2,… , 𝑛 − 1

1 − 𝜆! 𝑘 = 𝑛
 (9)

where λp is trained to be 0.4 based on TREC 2011 session track data, k is the position of a query..
3.2 Query expansion with previous search results (RL3 and RL4)
Anchor texts pointing to a page often provide valuable human-created description to this page [1], which
enable us to expand the query by the words in the anchor texts. The anchor log is extracted by the
harvestlinks in Lemur toolkit. The format is shown in Figure 2: The first column is the page linked by an
anchor. The second column is the page this anchor lies in. The third column is the anchor text that describes
the page in the first column.
We collect the anchor texts for all previous search results and sort them by frequency in decreasing order.
The top 5 frequent anchor texts are appended to the expanded query generated for RL2 with a weight
proportional to their frequencies.

#weight(
𝜆! #combine(𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑛𝑢𝑔𝑔𝑒𝑡!"˽… 𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑤!!˽𝑤!"˽…𝑤!!)
𝜆! #combine(𝑛𝑢𝑔𝑔𝑒𝑡!"˽𝑛𝑢𝑔𝑔𝑒𝑡!!˽… 𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑤!"˽𝑤!!˽…𝑤!!)
…
𝜆! #combine(𝑛𝑢𝑔𝑔𝑒𝑡!!˽𝑛𝑢𝑔𝑔𝑒𝑡!!˽… 𝑛𝑢𝑔𝑔𝑒𝑡!"˽𝑤!!˽𝑤!!˽…𝑤!")
𝛽𝜔! #combine 𝑒! 𝛽𝜔! #combine 𝑒! … 𝛽𝜔! #combine(𝑒!)
)

(1)

where ei (i = 1 ... 5) is the top 5 anchor texts, ωi (i = 1 ... 5) denotes the corresponding frequency of the
anchor texts normalized by the maximum frequency, β is a factor to adjust the intervention of the anchor
texts, which is trained to be 0.1 on the TREC 2011 session data.
For example, in TREC 2012 session 53, the anchor texts with top frequency are “type of paralysi”,
“quadriplegia paraplegia”, “paraplegia”, “spinal cord injury”, and “quadriplegic tetraplegic”, so the final
structured query is “#weight(1.0 #1(spinal cord) 0.6 consequenses 0.4 paralysis 1.0 servering 0.380723
#combine(type of paralysi) 0.004819 #combine(quadriplegia paraplegia) 0.004819 paraplegia 0.004819
#combine(spinal cord injury) 0.00241 #combine(quadriplegic tetraplegic))”, where the underlined part is
from anchor texts.
This expansion is applied to both RL3 and RL4. In RL4, only the anchor texts in clicked documents are
extracted to expand the final structured session query.

Table 1. The nDCG@10 for RL1 using 2011 session track data. Dirichlet smoothing method is used. µ = 4000, k
= 10 for strict method and µ = 4000, k = 20 for relaxed method. Methods are compared to the baseline - original
query. A significant improvement over the baseline is indicated with a † at p<0.05 level and a ‡ at p<0.005 level.

The best run and median run in TREC 2011 are listed for comparison
Method original query strict relaxed Best run in 2011 Median run in 2011

nDCG@10 0.3378 0.3834 0.3979 0.3789 0.3232
%chg +13.50%† +17.79%‡

4 Duplicated Queries
The trace of how a user modifies queries in a session may suggest the intention of the user so that it can be
exploited to study the real information need of the user. We notice that sometimes the user repeats a
previous query and makes a duplicated query. We thus refine the final structured session query as follows.
• If there exists a previous query that is the same as the current query qn, we only use the current query to

generate the structured session query.
• If several previous queries are duplicated but they are all different from qn, we remove these queries

when formulating the structured session query.
We also consider a special situation as follows. If one substring is the abbreviation of another, we also
consider these two queries duplicates. For example, the only difference between queries “History of
DSEC” and “History of dupont science essay contest” is “DSEC” and “dupont science essay contest”, in
which the former is the abbreviation of the latter, so they are considered duplicates. To detect
abbreviations, we scan the query string and split a word into letters if this word is entirely uppercase. In the
example above, the first query is transformed to “History of D S E C”. When comparing two queries, two
words in corresponding positions are considered the same if one of them contains only one capital letter
and they start with the same letter. Also in the above example, “dupont” and “D” are considered the same.
We process duplicated queries in RL3 and RL4.
5 Document Re-ranking
Users intend to stay in a page that he is interested for longer time [3,4,5]. We use dwell time, which is
defined as the elapsed time that user stays in the page, to re-rank the search results in RL3.
The click information provided in RL4 is associated with a start time ts and an end time te. The dwell time
Δt can be derived by te - ts. In a session, we retrieve all clicked pages ci with their dwell time Δti. For each
returned document dj for the structured query, the cosine similarity to ci is computed. We calculate the
score of dj by

 𝑠 𝑑! = Sim 𝑑! , 𝑐! ⋅ Δ𝑡!
!

 (2)

where Sim(dj, ci) is the cosine similarity between dj and ci. We rank dj by s(dj) in decreasing order as the
final search results.
The re-ranking method is applied in run gurelaxphr for RL4. In our experiments, the raw dwell time used in
our method strongly bias the document weights towards those with long dwell time, which corresponds to
satisfing visits receive much higher weights.
6 Experiments
6.1 Dataset and Evaluation Metrics
We employ the Lemur search engine1 as the basis and use ClueWeb09 Category B (CatB) as the document
collection. The index is built on CatB, and the anchor log is acquired by applying harvestlinks on
ClueWeb09 Category A (CatA) since the official previous search results are from CatA.
Previous research demonstrates that ClueWeb09 collection involves many spam documents. We filter out
spam documents based on Waterloo “GroupX” spam ranking score2 less than 70[2].

1 http://www.lemurproject.org/, version 5.0
2 http://durum0.uwaterloo.ca/clueweb09spam/

Table 2. The nDCG@10 for RL2 using 2011 session track data. Dirichlet smoothing method and strict method
are used. µ = 4000, k = 5 for uniform, µ = 4500, k = 5 for previous vs. current and distance-based. Methods are

compared to the baseline - original query. A significant improvement over the baseline is indicated with a † at
p<0.05 level and a ‡ at p<0.005 level. The best run and median run in TREC 2011 are listed for comparison.
Sheme original query uniform previous vs. current distance-based Best run in 2011 Media run in 2011

nDCG@10 0.3378 0.4475 0.4626 0.4431 0.4281 0.3215
%chg 32.47%‡ 36.94%‡ 31.17%‡

Table 3. The nDCG@10 for RL3 and RL4 using 2011 session track data. All runs use strict method and the
configuration of µ = 4500, k = 5. Methods are compared to the baseline - original query. A significant

improvement over the baseline is indicated with a † at p<0.05 level and a ‡ at p<0.005 level. The best run and
median run in TREC 2011 are listed for comparison

 Baseline = 0.3378 anchor text nDCG@10 in 2011
 all documents clicked documents (RL4 only) Best run Median run

Method nDCG@10 %chg nDCG@10 %chg RL3 RL3
all queries 0.4695 38.99%‡ 0.4680 38.54%‡ 0.4307 0.3259
remove duplicated queries 0.4836 43.16%‡ 0.4542 34.46%‡ RL4 RL4
re-rank by dwell time (RL4 only) 0.4435 31.29% N/A 0.4540 0.3354

Language model with Bayesian smoothing using Dirichlet priors is applied when performing search by
Lemur. The language model is a multinomial distribution, for which the conjugate prior for Bayesian
analysis is the Dirichlet distribution:

 𝑝!(𝑤|𝑑) =
𝑐 𝑤;𝑑 + 𝜇𝑝(𝑤|𝐶)

𝑐 𝑤;𝑑 + 𝜇!
 (3)

where c(w;d) denotes the occurrences of term w in document d, p(w|C) is the collection language model, µ
is the parameter. The parameter µ is tuned based on the 2011 session data. We do not use the topic
descriptions provided by NIST. nDCG@10 is the main metric to evaluate the retrieval performance.
6.2 Results on TREC 2011
For RL1, where only the current query qn is available, we generate the structured query from qn by the
approach described in 2 and send it into Lemur. The Dirichlet parameter µ and the number of pseudo
relevance feedback k are tested on TREC 2011 session data. The documents retrieved by directly searching
qn serve as the baseline. Table 1 shows the nDCG@10 results for RL1 on TREC 2011. By formulating
structured query using nuggets, we greatly boost the search accuracy than baseline by 13.50%. The relaxed
form achieves even better search accuracy of 0.3979 (+17.79%).
For RL2, we apply query expansion with the previous queries explained in Section 0. We observe that the
strict method performs much better, because the window size in relaxed method is hard to optimize for
multiple queries. Table 2 presents the nDCG@10 for RL2 on TREC 2011 session data. We find that
previous vs. current gives the best search accuracy. It is worth noting that distance-based scheme performs
even worse than uniform scheme, which implies that the modification of user intention is complex and we
cannot assume that the early query has less importance in the entire session.
For RL3 and RL4, we combine several methods, including anchor texts, removing duplicated queries and
re-ranking by dwell time. Table 3 displays the nDCG@10 for RL3 and RL4 on 2011 session track data. It
illustrates that removing duplicated queries significantly improves the performance. However, neither re-
ranking nor only involving clicked document contributes to the results. The reason may lie in that we treat
the time too roughly. Bold fonts in Table 1 to Table 3 indicate a performance better than the 2011 best run.
6.3 Results on TREC 2012
We submit three runs to TREC 2012 session track. The run names, methods and parameters are listed in
Table 4, where µ is the Dirichlet smoothing parameter and k is the number of pseudo relevance feedback.
The evaluation results of nDCG@10 and Average Precision (AP) by TREC are presented in Table 5 and
Table 6. They show similar trends as what we observe on the TREC 2011 data, but in a much lower range;
which may imply that our query formulation methods may overfit on TREC 2011 session data. We also
realize that we fail to well handle the typo in the queries like “consequenses” in TREC 2012 session 53.
Nonetheless, using previous queries and eliminating duplicates keep demonstrating significant
improvement in search accuracy.

Table 4. Methods and parameter settings in TREC 2012 runs. µ is the Dirichlet smoothing parameter, k is the
number of pseudo relevance feedback.

run RL1 RL2 RL3 RL4

guphrase1 strict method
µ = 4000, k = 10

strict method
query expansion
µ = 4500, k = 5

strict method
query expansion
anchor text
remove duplicates
µ = 4500, k = 5

strict method
query expansion
anchor text
all queries
µ = 4500, k = 5

guphrase2 strict method
µ = 3500, k = 10

strict method
query expansion
µ = 5000, k = 5

strict method
query expansion
anchor text
remove duplicates
µ = 5000, k = 5

strict method
query expansion
anchor text
all queries
µ = 5000, k = 5

gurelaxphr relaxed method
µ = 4000, k = 20

relaxed method
query expansion
µ = 4500, k = 20

relaxed method
query expansion
anchor text
remove duplicates
µ = 4500, k = 20

strict method
query expansion
anchor text
re-ranking by time
µ = 4500, k = 5

Table 5. nDCG@10 for TREC 2012 runs. Mean of the median of the evaluation results in TREC 2012 are listed.
run guphrase1 guphrase2 gurelaxphr Mean of the median
RL1 0.2298 0.2265 0.2334 0.1746
RL2 0.2932 0.2839 0.2832 0.1901
RL3 0.3021 0.2995 0.3033 0.216
RL4 0.3021 0.2995 0.29 0.2261

Table 6. AP for TREC 2012 runs. Mean of the median of the evaluation results in TREC 2012 are listed.
run guphrase1 guphrase2 gurelaxphr Mean of the median
RL1 0.1185 0.1186 0.1223 0.0967
RL2 0.1466 0.1457 0.1455 0.1024
RL3 0.149 0.1483 0.1482 0.1112
RL4 0.149 0.1483 0.1467 0.1176
7 Conclusions
We attempt to generate structured Lemur query for the entire session by involving the previous queries
with the rules to eliminate duplicated queries. The evaluation results show that search accuracy can be
significantly increased. Although, due to overfitting to TREC 2011 and typos in TREC 2012 queries, the
nugget finding method does not work well as what we expect. We still believe it is a promising approach
since it greatly boosts the performance on TREC 2011 data. We will investigate the overfitting issue and
refine our approach as the future work.
8 References
[1] Albakour, m.-d., Kruschwitz, u., and Nanas, N., University of Essex at the TREC 2011 Session Track.

In TREC 2011.
[2] Cormack, G.V., Smucker, M.D., and Clarke, C.L.A., Efficient and effective spam filtering and re-

ranking for large web datasets. CoRR, (2010).
[3] Fox, S., Karnawat, K., Mydland, M., Dumais, S., and White, T., Evaluating implicit measures to

improve web search. ACM Trans. Inf. Syst. 23, 2, 147-168 (2005).
[4] Guo, Q. and Agichtein, E., Ready to buy or just browsing?: detecting web searcher goals from

interaction data. In SIGIR 2010, 130-137.
[5] Xu, S., Jiang, H., and Lau, F.C.M., User-oriented document summarization through vision-based eye-

tracking. In IUI 2009, 7-16.

