
Evaluating Learning-to-Rank Methods in the Web
Track Adhoc Task.

Leonid Boytsov and Anna Belova
leo@boytsov.info, anna@belova.org

TREC-20, November 2011, Gaithersburg, Maryland, USA

Learning-to-rank methods are becoming ubiquitous in information retrieval. Their advantage
lies in the ability to combine a large number of low-impact relevance signals. This requires
large training and test data sets. A large test data set is also needed to verify the usefulness of
specific relevance signals (using statistical methods). There are several publicly available data
collections geared towards evaluation of learning-to-rank methods. These collections are large,
but they typically provide a fixed set of precomputed (and often anonymized) relevance signals.
In turn, computing new signals may be impossible. This limitation motivated us to experiment
with learning-to-rank methods using the TREC Web adhoc collection. Specifically, we compared
performance of learning-to-rank methods with performance of a hand-tuned formula (based on
the same set of relevance signals). Even though the TREC data set did not have enough queries
to draw definitive conclusions, the hand-tuned formula seemed to be at par with learning-to-rank
methods.

1. INTRODUCTION

1.1 Motivation and Research Questions

Strong relevance signals are similar to antibiotics: development, testing, and im-
provement of new formulas that provide strong relevance signals take many years.
On the other hand, the adversarial environment (i.e., the SEO community) con-
stantly adapts to new approaches and learns how to make them less efficient. Be-
cause it is not possible to wait until new ranking formulas are developed and as-
sessed, a typical strategy to improve retrieval effectiveness is to combine a large
number of relevance signals using a learning-to-rank method.

A common belief is that this approach is extremely efficient. We wondered
whether we could actually improve our standing among TREC participants by
applying a general-purpose discriminative learning method. Was there sufficient
training data for this objective? We were also curious about how large the gain in
performance might be.

It is a standard practice to compute hundreds of potential relevance signals and
make a training algorithm decide which signals are good and which are not. On the
other hand, it would be useful to decrease dimensionality of the data by detecting
and discarding signals that do not influence rankings in a meaningful way. A lot
of signals are useful, but their impact on retrieval performance is small. Can we
detect such low-impact signals in a typical TREC setting?

1.2 Paper Organization

In Section 1.3, it is explained why we chose the TREC Web adhoc collection over
specialized learning-to-rank datasets. In Section 2, we describe our experimental
settings. In particular, Section 2.3 has a description of relevance signals. The base-

2 ·

line ranking formula and learning-to-rank methods used in our work are presented
in Sections 2.4 and 2.5, respectively. Experimental results are discussed in Sec-
tion 3, specifically, experiments with low-impact relevance signals are described in
Section 3.2. Failure analysis is given in Section 3.3. Section 4 concludes the paper.

1.3 Why TREC?

There are several large-scale learning-to-rank data sets designed to evaluate learning-
to-rank methods:

—The Microsoft learning-to-rank data set contains 30K queries from a retired train-
ing set previously used by the search engine Bing.1 The semantics of all features
is disclosed. Thus, it is known which relevance signals are represented by these
features. However, there is no proximity information and it cannot be recon-
structed.

—The internal Yahoo! data set (used for the learning-to-rank challenge) does con-
tain proximity information, but all features are anonymized and normalized.2

—The internal Yandex data set (used in the Yandex learning-to-rank competition)
is similar to the Yahoo! data set in that its features are not disclosed.3

—The Microsoft LETOR 4.0 data set employs the publicly available Gov2 collection
and two sets of queries used in the TREC conferences (2007 and 2008 One Million
Query Track).4,5 Unfortunately, proximity information cannot be reconstructed
from provided metadata: to be evaluated it requires full access to the Gov2
collection.

Because it is very hard to manually construct an efficient ranking formula that
encompasses undisclosed and normalized features, Yahoo! and Yandex data sets
were not usable for our purposes. On the other hand, the Microsoft data sets lack
proximity features, which are known to be powerful relevance signals improving
the mean average precision and ERR@20 by approximately 10% [Tao and Zhai
2007; Cummins and O’Riordan 2009; Boytsov and Belova 2010]. Because we did
not have access to Gov2 and, consequently, could not enrich LETOR 4.0 with
proximity scores, we decided to conduct similar experiments with the ClueWeb09
adhoc data set.

2. EXPERIMENTAL SETUP AND EMPLOYED METHODS

2.1 General Notes

We indexed the smaller subset of ClueWeb09 Web adhoc collection (Category B)
that contained 50M pages. Both indexing and retrieval utilities worked on a cluster
of 3 three laptops (running Linux) connected to a 2TB disk storage. We used our
own retrieval and indexing software written mostly in C++. To generate different
morphological word forms, we relied on the library from http://lemmatizer.org. We

1http://research.microsoft.com/en-us/projects/mslr/
2http://learningtorankchallenge.yahoo.com/datasets.php
3Internet Mathematics 2009 contest http://imat2009.yandex.ru/en/datasets
4http://research.microsoft.com/en-us/um/beijing/projects/letor/
5http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm

· 3

also employed third-party implementations of learning-to-rank methods (described
in Section 2.5).

The main Web adhoc performance metric in 2010 and 2011 was ERR@20 [Chapelle
et al. 2009]. To assess statistical significance of results, we used the randomization
test utility developed by Mark Smucker [Smucker et al. 2007]. The results were
considered significant if the p-value did not exceed 0.05.

2.2 Changes in Indexing and Retrieval Methods from 2010

Our 2011 system was based on the 2010 prototype that was capable of indexing
close word pairs efficiently [Boytsov and Belova 2010]. In addition to close word
pairs, this year we created positional postings of adjacent pairs (i.e., bigrams),
where one of the words was a stop word. These bigrams are called stop pairs.

The other important changes were:

—We considerably expanded the list of relevance signals that participated in the
ranking formula. In particular, all the data was divided into fields, which were
indexed separately. We also modified the method of computing proximity-related
signals (see Section 2.3 for details).

—Instead of index-time word normalization (i.e., conversion to a base morphological
form), we performed a retrieval-time weighted morphological query expansion. In
that, each exact occurrence of a query word contributed to a field-specific BM25
score with a weight equal to one, while other morphological forms of query words
contributed with a weight smaller than one.

—Stop pairs were disregarded during retrieval if a query had sufficiently many
non-stop words (more than 60% of all query words).

—Instead of enforcing strictly conjunctive query semantics, we used a quorum rule:
only a fraction (75%) of query words had to be present in a document. Incomplete
matches that missed some query words were penalized. In addition, stop pairs
were treated as optional query terms and did not participate in the computation
of the quorum.

2.3 Relevance Signals

During indexing, the text of each HTML document was divided into several sections
(called fields): title, body, text inside links (in the same document), URL, meta tag
contents (keywords and descriptions), and anchor text (text inside links that point
to this document).

Our retrieval engine operated in two steps. In the first step, for each document we
computed a vector of features, where each element combined one or more relevance
signals. In the second step, feature vectors were either plugged into our baseline
ranking formula or were processed by a learning-to-rank algorithm.

Overall, we had 25 features that could be divided into field-specific and document-
specific relevance features. Given a modest size of the training set, having a small
feature set is probably an advantage, because it makes overfitting less likely.

The main field-specific features were:

—The sum of BM25 scores [Robertson 2004] of non-stop query words, which were
computed using field-specific inverted document frequencies (IDF). These scores

4 ·

were incremented by BM25 scores of stop pairs;6

—The classic pair-wise proximity scores, where a contribution of a word pair was
a power function of the inverse distance between words in a document;

—Proximity scores based on the number of close word pairs in a document. A pair of
query words was considered close if the distance between the words in a document
was smaller than a given threshold MaxClosePairDist (in our experiments 10).

These pair-wise proximity scores are variants of the unordered BM25 bigram
model ([Metzler and Croft 2005; Elsayed et al. 2010; He et al. 2011]). They were
computed as follows. Given a pair of query words qi and qj (not necessarily adja-
cent), we retrieved a list of all documents, where words qi and qj occured within
a certain small distance. A pseudo-frequency f of the pair in a document was
computed as a sum of values of a kernel function g(.):

f =
∑

g(pos(qi), pos(qj)),

where the summation was carried out over occurrences of qi and qj in the document
(in positions pos(qi) and pos(qj), respectively).

To evaluate the total contribution of qi and qj to the document weight, the
pseudo-frequency f was plugged into a standard BM25 formula, where the IDF of
the word pair (qi, qj) was computed as IDF(qi) + IDF(qj).

The classic proximity score relied on the following kernel function:

g(x, y) = |x − y|−α,

where α = 2.5 was a configurable parameter.
The close-pair proximity score employed the rectangular kernel function:

g(x, y) =

{

1, if |x − y| ≤ MaxClosePairDist
0, if |x − y| > MaxClosePairDist

In this case, the pseudo-frequency f is equal to the number of close pairs that occur
within the distance MaxClosePairDist in a document.

The document-specific features included:

—Linearly transformed spam rankings provided by the Waterloo university [Cor-
mack et al. 2010];

—Logarithmically transformed PageRank scores [Brin and Page 1998] provided by
the Carnegie Mellon University.7 During retrieval, these scores were additionally
normalized by the number of query words;

—A boolean flag that is true if and only if a document belongs to the Wikipedia.

2.4 Baseline Ranking Formula

The baseline ranking formula was a simple semi-linear function, where field-specific
proximity scores and field-specific BM25 scores contributed as additive terms. The

6Essentially we treated these bigrams as optional query terms.
7http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=PageRank

· 5

overall document score was equal to

DocumentSpecificScore ×

(

∑

i

FieldWeighti × FieldScorei

)

, (1)

where FieldWeighti was a configurable parameter and the summation was carried
out over all fields. The DocumentSpecificScore was a multiplicative factor equal
to the product of the spam rank score, the PageRank score, and the Wikipedia
score WikiScore (WikiScore > 1 for Wikipedia pages and WikiScore = 1 for all
other documents).

Each FieldScorei was a weighted sum of field-specific relevance features described
in Section 2.3. These feature-specific weights were configurable parameters (iden-
tical for all fields). Overall, there were about 20 parameters that were manually
tuned using 2010 data to maximize ERR@20. Note that even if we had optimized
parameters automatically, this approach could not be classified as a discrimina-
tive learning-to-rank method, because it did not rely on minimization of the loss
function (see a definition given by Liu [2009]).

2.5 Learning-to-Rank Methods

We tested the following learning-to-rank methods:

—Non-linear SVM with polynomial and RBF kernels (package SVMLight [Joachims
2002]);

—Linear SVM (package SVMRank [Joachims 2006]);

—Linear SVM (package LIBLINEAR [Fan et al. 2008]);

—Random forests (package RT-Rank [Mohan et al. 2011]);

—Gradient boosting (package RT-Rank [Mohan et al. 2011]).

The final results include linear SVM (LIBLINEAR), polynomial SVM (SVMLight),
and random forests (RT-Rank). The selected methods performed best in their
respective categories.

In our approach, we relied on the baseline method (outlined in Section 2.4) to
obtain the top 30K results, which were subsequently re-ranked using a learning-to-
rank algorithm. Note that each learning method employed the same set of features
described in Section 2.3.

Initially, we trained all methods using 2010 data and cross-validated using 2009
data. Unfortunately, cross-validation results of all learning-to-rank methods were
poor. Therefore, we did not submit any runs produced by a learning-to-rank al-
gorithm. After the official submission, we re-trained the random forests using the
assessments from the Million Query Track (MQ Track). This time, the results were
much better (see a discussion in Section 3.1).

3. EXPERIMENTAL RESULTS

3.1 Comparisons with Official Runs

We submitted two official runs: srchvrs11b and srchvrs11o. The first run was
produced by the baseline method described in Section 2.4. The second run was

6 ·

Table I: Summary of results

Run name ERR@20 NDCG@20 MAP P@5 P@15
TREC 2011

srchvrs11b (bugfixed, non-official) 0.13888 0.22879 0.1131 0.4160 0.3093
srchvrs11b (baseline method, official run) 0.13145 0.23310 0.1098 0.3920 0.3227
srchvrs11o (2010 method, official run) 0.11224 0.21366 0.1251 0.3760 0.3280

BM25 0.11559 0.17637 0.0834 0.3040 0.2333
SVM linear 0.08431 0.13178 0.0642 0.2560 0.2040
SVM polynomial (s = 1 d = 3) 0.08554 0.15267 0.0674 0.2560 0.2547
SVM polynomial (s = 2 d = 5) 0.12058 0.19418 0.0828 0.3480 0.2747
Random forests (2010-train k = 1 3000 iter.) 0.07692 0.11506 0.0578 0.2240 0.1773
Random forests (MQ-train-best k = 1 1000 iter.) 0.13093 0.21069 0.1204 0.3880 0.3080
TREC 2010

blv79y00shnk (official run) 0.10935 0.18772 0.1334 0.3500 0.3444
BM25 0.07826 0.11477 0.0682 0.2917 0.2514
BM25 +spamrank 0.11229 0.18894 0.1365 0.3625 0.3486
BM25 (+close pairs +spamrank) 0.12265 0.21086 0.1340 0.4083 0.3639

Random forests (MQ-train-best k = 1 1000 iter.) 0.12388 0.19448 0.0901 0.3875 0.3014

Note: Best results for a given year are in bold typeface.

generated by the 2010 retrieval system.8

Using the assessor judgments, we carried out unofficial evaluations of the follow-
ing methods:

• A bug-fixed version of the baseline method;9

• BM25: an unweighted sum of field-specific BM25 scores;

• Linear SVM;

• Polynomial SVM (we list the best and the worst run);

• Random forests (trained using 2010 and MQ-Track data).

The results are shown in Table I. To provide a reference point, we also indicate
performance metrics for 2010 queries.

For 2011 queries, our baseline method produced a very good run (srchvrs11b)
that was better than the TREC median by more than 20% with respect to ERR@20
and NDCG@20 (these differences were statistically significant). The 2011 baseline
method outperformed the 2010 method (represented by run srchvrs11o) with re-
spect to ERR@20, while the opposite was true with respect to MAP. These differ-
ences, though, were not statistically significant.

None of the learning-to-rank methods was better than our baseline method. For
most learning-to-rank runs, the respective value of ERR@20 was even worse than
that of BM25. It was especially surprising in the case of the random forests, whose
effectiveness was demonstrated elsewhere [Chapelle and Chang 2011; Mohan et al.
2011].

One possible explanation of this failure is either scarcity and/or low quality of
the training data. To verify our hypothesis, we retrained the random forests using

8This was the algorithm that produced the 2010 run blv79y00shnk, but it used a better value of
the parameter controlling the contribution of the proximity score.
9The version that produced the run srchvrs11b erroneously missed a close-pair contribution factor
equal to the sum of query term IDFs.

· 7

Table II: Performance of random forests depending on the size of the training set

Size ERR@20 NDCG@20 MAP P@5 P@15 ERR@20 NDCG@20 MAP P@5 P@15

TREC 2010 TREC 2011

10% 0.06532 0.10827 0.0617 0.2458 0.2028 0.11963 0.18931 0.1030 0.3440 0.2800

20% 0.06484 0.09866 0.0637 0.1792 0.1750 0.11336 0.19504 0.1088 0.3440 0.2747

30% 0.11343 0.16425 0.0761 0.2875 0.2472 0.11828 0.21001 0.1207 0.4000 0.3000

40% 0.10329 0.15110 0.0740 0.3083 0.2458 0.11733 0.20189 0.1096 0.4080 0.2840

50% 0.11343 0.16425 0.0761 0.2875 0.2472 0.11828 0.21001 0.1207 0.4000 0.3000

60% 0.11030 0.16747 0.0818 0.3083 0.2611 0.13063 0.21592 0.1267 0.3960 0.3147

70% 0.11644 0.18014 0.0823 0.3292 0.2889 0.12767 0.21638 0.1249 0.3880 0.3093

80% 0.11771 0.18017 0.0841 0.3375 0.2875 0.13093 0.21069 0.1204 0.3880 0.3080

90% 0.11472 0.18487 0.0846 0.3458 0.2986 0.12749 0.20564 0.1200 0.3840 0.3093

100% 0.12388 0.19448 0.0901 0.3875 0.3014 0.12810 0.21309 0.1260 0.3800 0.3133

Notes: The full training set has 22K relevance judgements, best results are given in bold typeface.

the MQ-Track data. The MQ Track data set represents 40K queries (as compared
to 50 queries in 2010 Web adhoc Track). However, instead of the standard pooling
method, the documents presented to assessors were collected using the Minimal
Test Collections method [Carterette et al. 2009]. As a result, there were many
fewer judgments per query (on average). To study the effect of the training set
size, we divided the training data into 10 subsets of progressively increasing size
(all increments represented approximately the same volume of training data). We
then used this data to produce and evaluate the runs for 2010 and 2011 queries.

From the results of this experiment presented in Table II we concluded the fol-
lowing:

—The MQ-Track training data is apparently much better than 2010 data. Note
especially the results for 2011 queries. The 10% training subset has about three
times as few judgments as the full 2010 data set. However, random forests trained
on the 10% subset generated a run that was 50% better than random forests
trained on 2010 data (with respect to ERR@20). This difference was statistically
significant.

—The number of judgments in a training set does play an important role. The
value of all performance metrics mostly increases with the size of the training
set. This effect is more pronounced for 2010 queries than for 2011 queries. The
best value of ERR@20 is achieved by using approximately 80% of the training
data for 2011 queries and by using the entire MQ-track training data for 2010
queries. Also note that the difference between the worst and the best run was
statistically significant only for 2010 queries.

3.2 Measuring Individual Contributions of Relevance Signals

To investigate how different relevance signals affected the overall performance of
our retrieval system, we evaluated several extensions of BM25. Each extension
combined one or more of the following:

—Addition of one or more relevance features;

—Exclusion of field-specific BM25 scores for one or more of the fields: URL, key-
words, description, title, and anchor text;

—Inclusion of BM25 scores of stop pairs;

8 ·

Table III: Contributions of relevance signals to search performance

Run name ERR@20 NDCG@20 MAP P@5 P@15
TREC 2011 (unofficial runs)

srchvrs11b (bugfixed, non-oficial) 0.13888 +20.2% 0.22879 +29.7% 0.1131 +35.6% 0.4160 +36.8% 0.3093 +32.6%

BM25 (+close pairs) 0.13427 +16.2% 0.22306 +26.5% 0.1144 +37.2% 0.3480 +14.5% 0.3080 +32%

BM25 (+prox +close pairs) 0.12984 +12.3% 0.22136 +25.5% 0.1146 +37.4% 0.3480 +14.5% 0.3053 +30.9%

BM25 (+spamrank) 0.12725 +10.1% 0.20234 +14.7% 0.0933 +12% 0.3280 +7.9% 0.2600 +11.4%

BM25 (-anchor ext) 0.10423 -9.7% 0.17252 -2.1% 0.0802 -3.7% 0.3080 +1.3% 0.2360 +1.1%

BM25 (+morph. +stop pairs) 0.12380 +7.1% 0.18242 +3.4% 0.0874 +4.8% 0.3160 +3.9% 0.2413 +3.4%

BM25 (+prox.) 0.12293 +6.4% 0.19916 +12.9% 0.1018 +22.1% 0.3400 +11.8% 0.2653 +13.7%

BM25 (-keywords -description) 0.12264 +6.1% 0.19419 +10.1% 0.0936 +12.2% 0.3400 +11.8% 0.2547 +9.1%

BM25 (+morph.) 0.12198 +5.5% 0.17923 +1.6% 0.0839 +0.7% 0.3160 +3.9% 0.2413 +3.4%

BM25 (+morph. +stop pairs +wiki) 0.11926 +3.2% 0.18522 +5% 0.0869 +4.3% 0.3160 +3.9% 0.2453 +5.1%

BM25 (+wiki) 0.11869 +2.7% 0.18378 +4.2% 0.0873 +4.7% 0.3080 +1.3% 0.2440 +4.6%

BM25 (-title) 0.11249 -2.6% 0.17020 -3.4% 0.0822 -1.3% 0.3040 +0% 0.2213 -5%

BM25 (+stop pairs) 0.11737 +1.5% 0.17973 +1.9% 0.0868 +4.1% 0.3040 +0% 0.2333 +0%

BM25 (-url) 0.11671 +1% 0.17588 -0.2% 0.0813 -2.4% 0.3160 +3.9% 0.2373 +1.7%

BM25 (+pagerank) 0.11568 +0.1% 0.17657 +0.1% 0.0837 +0.4% 0.3040 +0% 0.2347 +0.6

BM25 0.11559 0.17637 0.0834 0.3040 0.2333

TREC 2011 + 450 queries from MQ track (unofficial runs)
srchvrs11b (bugfixed, non-oficial) 0.09358 +29.2% 0.24282 +29.4% 0.1441 +23.1% 0.2424 +33.4% 0.1750 +24.5%

BM25 (+close pairs) 0.08148 +12.5% 0.22285 +18.8% 0.1400 +19.6% 0.2189 +20.5% 0.1633 +16.2%

BM25 (+prox +close pairs) 0.08118 +12.1% 0.22338 +19.1% 0.1402 +19.8% 0.2212 +21.8% 0.1626 +15.6%

BM25 (-keywords -description) 0.08151 +12.6% 0.20791 +10.8% 0.1242 +6.1% 0.2126 +17% 0.1526 +8.6%

BM25 (+prox.) 0.07673 +6% 0.20538 +9.5% 0.1302 +11.2% 0.2000 +10.1% 0.1511 +7.5%

BM25 (-anchor ext) 0.06818 -5.7% 0.17652 -5.8% 0.1061 -9.2% 0.1691 -6.8% 0.1354 -3.6%

BM25 (+morph. +stop pairs +wiki) 0.07661 +5.8% 0.19964 +6.4% 0.1257 +7.4% 0.1943 +6.9% 0.1479 +5.2%

BM25 (+morph. +stop pairs) 0.07663 +5.8% 0.19458 +3.7% 0.1234 +5.4% 0.1926 +6% 0.1440 +2.4%

BM25 (+wiki) 0.07480 +3.3% 0.19322 +3% 0.1203 +2.8% 0.1874 +3.2% 0.1457 +3.7%

BM25 (+morph.) 0.07498 +3.5% 0.19069 +1.7% 0.1199 +2.5% 0.1908 +5% 0.1435 +2%

BM25 (-title) 0.07031 -2.8% 0.17957 -4.2% 0.1092 -6.6% 0.1748 -3.7% 0.1337 -4.8%

BM25 (+stop pairs) 0.07395 +2.1% 0.19134 +2% 0.1204 +2.9% 0.1845 +1.6% 0.1410 +0.3%

BM25 (+spamrank) 0.07131 -1.4% 0.19165 +2.2% 0.1162 -0.6% 0.1857 +2.2% 0.1419 +1%

BM25 (+pagerank) 0.07315 +1% 0.18876 +0.6% 0.1172 +0.1% 0.1851 +1.9% 0.1415 +0.7%

BM25 (-url) 0.07195 -0.5% 0.18510 -1.2% 0.1130 -3.4% 0.1840 +1.3% 0.1372 -2.3%

BM25 0.07241 0.18759 0.1170 0.1817 0.1406

Note: Significant differences from BM25 are given in bold typeface.

—Application of the weighted morphological query expansion.

This experiment was conducted separately for two sets of queries. One set con-
tained only 2011 queries and the other set contained a mix of 2011 queries with the
first 450 MQ-Track queries. Table III contains the results. It shows the absolute
values of the performance metrics as well as their percent differences from the BM25
score (significant differences are given in bold typeface). We also post performance
results of the bug-fixed baseline method (runs denoted as srchvrs11b).

Let us consider 2011 queries first. It can be seen that improvement in search
performance (as measured by ERR@20 and NDCG@20) was demonstrated by all
signals except: PageRank; BM25 scores for URL, keywords, and description. Yet,
very few improvements were statistically significant. Furthermore, if the Bonferroni
adjustment for multiple pairwise comparisons were made [Rice 1989], even fewer
results would remain significant.

· 9

Except for the two proximity scores, none of the other relevance signals sig-
nificantly improved over BM25 according to the following performance metrics:
ERR@20, NDCG@20, and MAP. Do the low-impact signals in Table III actually
improve the performance of our retrieval system? To answer this question, let us
examine the results for the second set of queries, which comprises 2011 queries and
MQ-Track queries. As we noted in Section 3.1, MQ-Track relevance judgements
are sparse. However, we compare very similar systems with largely overlapping re-
sult sets and similar ranking functions.10 Therefore, we believe that the pruning of
judgments in MQ-Track queries did not significantly affect our conclusions about
relative contributions of relevance signals.11 That said, we consider the results
of comparisons that involve MQ-Track data only as a clue about performance of
relevance signals.

It can be seen that for the mix of 2011 and MQ-Track queries, many more results
were significant. Most of these results would remain valid even after the Bonferroni
adjustment. Another observation is that results for both sets of queries were very
similar. In particular, we can see that both proximity scores as well as the anchor
text provided strong relevance signals. Furthermore, taking into account text of
keywords and description considerably decreased performance in both cases. This
aligns well with the common knowledge that these fields are abused by spammers
and, consequently, many search engines ignore them.

Note the results of the three minor relevance signals – BM25 scores of stop
pairs, Wikipedia scores, and morphology – for the mix of 2011 and MQ-Track
queries. All of them increased ERR@20, but only the application of the Wikipedia
scores resulted in a statistically significant improvement. At the same time, the
run obtained by combining these signals resulted in a significant improvement of
performance with respect to all performance metrics. Most likely, all three signals
can be used to improve retrieval quality, but we cannot verify this fact using only
500 queries.

Note especially the spam rankings. In 2010 experiments, enhancing BM25 with
spam rankings increased the value of ERR@20 by 43%. The significance test, how-
ever, showed that the respective p-value was 0.031, which was borderline high and
would not remain significant after the Bonferroni correction. In 2011 experiments,
there was only a 10% improvement in ERR@20 and this improvement was not sta-
tistically significant. In experiments with the mix of 2011 queries and MQ-track
queries, the use spam rankings slightly decreased ERR@20 (although not signifi-
cantly).

Apparently, the effect of spam rankings is not stable and additional experiments
are required to confirm the usefulness of this signal. This example also demonstrates
the importance of large-scale test collections as well the necessity for multiple-
comparison adjustments.

10Specifically, there is at least a 70% overlap among the sets of top-k documents returned by
BM25 and any BM25 modification tested in this experiment (for k = 10 and k = 100).
11Our conjecture was confirmed by a series of simulations in which we randomly eliminated entries
from the 2011 qrel file (to mimic the average number of judgments per query in the mix of 2011
and MQ-Track queries). In a majority of simulations, the relative performance of methods with
respect to BM25 matched that in Table III, which also conforms with previous research [Bompada
et al. 2007].

10 ·

Fig. 1: Grid search over the coefficients for the following features: classic proximity, close pairs,
spam ranking.

2010

2011

To conclude this section, we note that PageRank (at least in our implementation)
was not a strong signal either. Perhaps, this was not a coincidence. Upstill et al.
[2003] argued that PageRank was not significantly better than a number of incoming
links and could be gamed by spammers. The Microsoft team that used PageRank in
2009 abandoned it in 2010 [Craswell et al. 2010]. There is also anecdotal evidence
that even in Google PageRank was “. . . largely supplanted over time” [Edwards
2011, p. 315].

3.3 Failure Analysis

3.4 2011: Learning-to-Rank failure

The attempt to apply learning-to-rank methods was not successful: the ERR@20
of the best learning-to-rank run was the same as that of the baseline method. The
best result was achieved by using the random forests and MQ-Track relevance judge-
ments for training. The very same method trained using 2010 relevance judgments
produced one of the worst runs. This failure does not appear to be solely due to
the small size of the training set. The random forests trained using a small subset
of MQ-Track data (see Table II), which was three times smaller than 2010 training
set, performed much better (with ERR@20 of the latter being 50% larger).

As noted by Chapelle et al. [2011] most discriminative learning methods use
a surrogate loss function (mostly the squared loss) that is unrelated to the target
ranking metric such as ERR@20. Perhaps, this means that performance of learning-
to-rank methods might be unpredictable unless the training set is very large.

· 11

3.5 2011: Possible Underfitting of the Baseline Formula

Because we manually tuned our baseline ranking formula (described in Section 2.4),
we suspect that it might have been underfitted. Was it possible to obtain better
results through a more exhaustive search in a parameter space? To answer this
question, we conducted a grid search using parameters that control contribution
of the three most effective relevance features – the classic proximity score, the
close-pair score, and spam rankings – in our baseline method.

The graphs in the first row of Figure 1 contain results for 2010 queries and the
graphs in the second row contain results for 2011 queries. Each figure depicts a
projection of a 4-dimensional graph. A color of points gradually changes from red
to black: red points are the closest and black points are the farthest. Blue planes
represent reference values of ERR@20 (achieved by the bug-fixed baseline method).

Note the first graph in the first row. It represents the dependency of ERR@20 on
parameters for the classic proximity score and the close-pair score for 2010 queries.
All points that have same values of these two parameters are connected by a vertical
line segment. Points with high values of ERR@20 are mostly red and correspond
to the values of the close-pair parameter from 0.1 to 1 (logarithms of the parameter
fall in the range from -1 to 0). This can also be seen from the second graph in the
first row. From the second graph in the second row, it follows that for 2011 queries
high values of ERR@20 are achieved when close-pair coefficients fall in the range
from 1 to 10.

In general, maximum values of ERR@20 for 2011 queries are achieved for some-
what larger values of all three parameters than those that result in high values of
ERR@20 for 2010 queries. Apparently, these datasets are different and there is no
common set of optimal parameter values.

3.6 2010: The Case of “To Be Or Not To Be”

The 2010 query number 70 (“to be or not to be that is the question”) was partic-
ularly challenging. The ultimate goal was to find pages with one of the following:

—information on the famous Hamlet soliloquy;

—the text of the soliloquy;

—the full text of play “Hamlet”;

—the play’s critical analysis;

—quotes from Shakespeare’s plays.

This task was very difficult, because the query had essentially only stop words,
while most participants did not index stop words themselves, let alone their posi-
tions. Because our 2011 baseline method does index stop words and their positions,
we expected that it would perform well for this query. Yet, this method found only
a single relevant document (present in 2010 qrel-file).

Our investigation showed that the category B 2010 qrel-file “knew” only four
relevant documents. Furthermore, one of them (clueweb09-enwp01-96-18148) was
a hodge-podge of user comments on various Wikipedia pages requiring peer review.
It is very surprising that this page was marked as “somewhat relevant”.

12 ·

Fig. 2: Query 70: Relevant
Documents

(1) clueweb09-en0000-07-07458

(2) clueweb09-en0000-24-22960

(3) clueweb09-en0007-84-36482

(4) clueweb09-en0009-68-23332

(5) clueweb09-en0011-78-11392

(6) clueweb09-enwp00-93-09674

(7) clueweb09-enwp01-86-02832

(8) clueweb09-enwp02-22-13980

(9) clueweb09-enwp02-25-00811

(10) clueweb09-enwp03-20-03393

On the other hand, our 2011 method man-
aged to find ten documents that, in our opin-
ion, satisfied the above relevance criteria (see
Figure 2). Documents 1-6 do not duplicate
each other, but only one of them (clueweb09-
en0009-68-23332) is present in the official 2010
qrel-file.12

The example of query 70 indicates that in-
dexing of stop pairs can help to improve the
citation-like queries that contain a lot of stop-
words. Our analysis in Section 3.2 confirmed
that stop pairs could improve retrieval perfor-
mance of other types of queries as well. Yet,
the observed improvement was small and not
statistically significant in our experiments.

4. CONCLUSIONS

Our team experimented with several learning-to-rank methods to improve our
TREC standing. We observed that learning-to-rank methods were very sensitive
to the quality and volume of training data. They did not result in substantial
improvements over the baseline hand-tuned formula. In addition, there was little
information available to verify whether a given low-impact relevance signal signifi-
cantly improved performance.

It was previously demonstrated that 50 queries (which is typical in a TREC
setting) were sufficient to reliably distinguish among several systems [Zobel 1998;
Sanderson and Zobel 2005]. However, our experiments showed that, if differences
among the systems were small, it might take assessments for hundreds of queries
to achieve this goal.

We conclude our analysis with the following observations:

—The Waterloo spam rankings that worked quite well in 2010, had a much smaller
positive effect in 2011. This effect was not statistically significant with respect
to ERR@20 in 2011 and was borderline significant in 2010. We suppose that
additional experiments are required to confirm the usefulness of Waterloo spam
rankings.

—The close-pair proximity score that employs a rectangular kernel function was as
good as the proximity score that employed the classic proximity function. This
finding agrees well with our last year observations [Boytsov and Belova 2010] as
well as with the results of He et al. [2011], who conclude that “. . . given a rea-
sonable threshold of the window size, simply counting the number of windows
containing the n-gram terms is reliable enough for ad hoc retrieval.” It is note-
worthy, however, that He et al. [2011] achieved a much smaller improvement over
BM25 for the ClueWeb09 collection than we did (about 1% or less compared to

12It is not clear, however, if these pages were not assessed, because most stop words were not
indexed, or because they were never ranked sufficiently high and, therefore, did not contribute to
the pool of relevant documents.

· 13

6-12% in our setting).

—Based on our experiments in 2010 and 2011, we also concluded that indexing
of frequent close word pairs (including stop pairs) can speed up evaluation of
proximity scores. However, the resulting index can be rather large: 200-300% of
the text size (unless this index is pruned). It maybe infeasible to store a huge
bigram index in the main memory (during retrieval time). A better solution is
to rely on solid state drives, which are already capable of bulk read speeds in the
order of gigabytes per second.13

ACKNOWLEDGMENTS

We thank Evangelos Kanoulas for references and the discussion on robustness of
performance measures in the case of incomplete relevance judgements.

REFERENCES

Bompada, T., Chang, C.-C., Chen, J., Kumar, R., and Shenoy, R. 2007. On the robustness of
relevance measures with incomplete judgments. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval. SIGIR ’07.
ACM, New York, NY, USA, 359–366.

Boytsov, L. and Belova, A. 2010. Lessons learned from indexing close word pairs. In TREC-19:
Proceedings of the Nineteenth Text REtrieval Conference.

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems 30, 17, 107 – 117. Proceedings of the Seventh International
World Wide Web Conference.

Carterette, B., Pavluy, V., Fangz, H., and Kanoulas, E. 2009. Million query track 2009
overview. In TREC-18: Proceedings of the Eighteenth Text REtrieval Conference.

Chapelle, O. and Chang, Y. 2011. Yahoo! learning to rank challenge overview. In JMLR:
Workshop and Conference Proceedings. Vol. 14. 1–24.

Chapelle, O., Chang, Y., and Liu, T.-Y. 2011. Future directions in learning to rank. In JMLR:
Workshop and Conference Proceedings. Vol. 14. 91–100.

Chapelle, O., Metlzer, D., Zhang, Y., and Grinspan, P. 2009. Expected reciprocal rank for
graded relevance. In Proceeding of the 18th ACM conference on Information and knowledge
management. CIKM ’09. ACM, New York, NY, USA, 621–630.

Cormack, G. V., Smucker, M. D., and Clarke, C. L. A. 2010. Efficient and effective spam
filtering and re-ranking for large Web datasets. CoRR abs/1004.5168.

Craswell, N., Fetterly, D., and Najork, M. 2010. Microsoft research at TREC 2010
Web Track. In TREC-19: Proceedings of the Nineteenth Text REtrieval Conference.

Cummins, R. and O’Riordan, C. 2009. Learning in a pairwise term-term proximity framework
for information retrieval. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. SIGIR ’09. ACM, New York, NY, USA,
251–258.

Edwards, D. 2011. I’m Feeling Lucky: The Confessions of Google Employee Number 59 , None
ed. Houghton Mifflin Harcourt.

Elsayed, T., Asadi, N., Metzler, D., Wang, L., and Lin, J. 2010. UMD and USC/ISI: TREC
2010 Web Track experiments with Ivory. In TREC-19: Proceedings of the Nineteenth Text
REtrieval Conference.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. 2008. LIBLINEAR: A
library for large linear classification (machine learning open source software paper). Journal of
Machine Learning Research 9, 1871–1874.

13See, e.g., http://www.storagesearch.com/ssd-fastest.html

14 ·

He, B., Huang, J. X., and Zhou, X. 2011. Modeling term proximity for probabilistic information
retrieval models. Information Sciences 181, 14, 3017 – 3031.

Joachims, T. 2002. Optimizing search engines using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining. KDD
’02. ACM, New York, NY, USA, 133–142.

Joachims, T. 2006. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining. KDD ’06. ACM,
New York, NY, USA, 217–226.

Liu, T.-Y. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retr. 3, 225–331.

Metzler, D. and Croft, W. B. 2005. A markov random field model for term dependencies. In
Proceedings of the 28th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. SIGIR ’05. ACM, New York, NY, USA, 472–479.

Mohan, A., Chen, Z., and Weinberger, K. Q. 2011. Web-search ranking with initialized gradi-
ent boosted regression trees. Journal of Machine Learning Research, Workshop and Conference
Proceedings 14, 77–89.

Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43, 1, 223–225.

Robertson, S. 2004. Understanding inverse document frequency: On theoretical arguments for
IDF. Journal of Documentation 60, 503–520.

Sanderson, M. and Zobel, J. 2005. Information retrieval system evaluation: effort, sensitivity,
and reliability. In Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval. SIGIR ’05. ACM, New York, NY, USA,
162–169.

Smucker, M. D., Allan, J., and Carterette, B. 2007. A comparison of statistical significance
tests for information retrieval evaluation. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management. CIKM ’07. ACM, New York, NY,
USA, 623–632.

Tao, T. and Zhai, C. 2007. An exploration of proximity measures in information retrieval. In
SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, New York, NY, USA, 295–302.

Upstill, T., Craswell, N., and Hawking, D. 2003. Predicting fame and fortune: PageRank or
indegree? In Proceedings of the Australasian Document Computing Symposium, ADCS2003.
Canberra, Australia, 31–40.

Zobel, J. 1998. How reliable are the results of large-scale information retrieval experiments? In
Proceedings of the 21st annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. SIGIR ’98. ACM, New York, NY, USA, 307–314.

