
10 Weeks to TREC: STIRS
Sienaʼs Twitter Information Retrieval System

Sharon Gower Small, Darren Lim,
Karl Appel, Denis Kalic, Matthew Kemmer, David Purcell, Carl Tompkins, Chan Tran

The Siena College Institute for Artificial Intelligence
Siena College

Loudonville, NY 12211
{ssmall, dlim, km25appe, d30kali, me21kemm, da14purc, cl05tomp, cs05tran}@siena.edu

ABSTRACT
There has been an increasing interest, both of
the research community and federal funding
agencies in microblogs as a source of viable
information for a variety of tasks. NIST
(National Institute of Standards and
Technology) has added a microblog retrieval
track to TREC (Text REtrieval Conference)
for the first time in 2011. NIST has selected
Twitter as the source of microblog data.
Twitter is a dynamic social website that allows
users to post tweets which are short posts to
share news with friends and followers across
the world. While some tweets provide useful
information, this information is very limited
by the restriction on length to 140 characters
or less. Participating teams were provided with
the code necessary to download the Twitter
Corpus, consisting of 16,141,812 tweets from
a 2-week time period, January 24, 2011 to
February 8, 2011, inclusive. Teams were also
provided with a training set of 12 example
topics, and later the test set of 50 topics. In
this paper, we describe three modules designed
for this track, built within a system called
STIRS, Siena’s Twitter Information Retrieval
System. After submitting three user-defined
runs and a Lucene baseline run, the NIST
judging showed our best run to be at 30.83%
precision. The reported median from all runs
of all 58 participating teams was 25.9%. We
also describe our process of developing a new
and complete end-to-end system in just 10
weeks time with six undergraduate
researchers.

General Terms
Algorithms, Experimentation

Keywords
Twitter, TREC 2011, Microblog, Lucene, Weka

1. INTRODUCTION
In May 2011, members of the Siena College
community formed a group dedicated to working
on the TREC Microblog competition. The group
was lead by Sharon Small, a long-term researcher
in the field of Computational Linguistics as well
as a pervious participant in the TREC QA track.
The team was comprised of a fellow colleague of
hers, Darren Lim, and six undergraduate
researchers: Karl Appel, Denis Kalic, Matthew
Kemmer, David Purcell, Carl Tompkins and Chan
Tran. Starting in the middle of May, the group
began work on STIRS.

1.1 Information on TREC Microblog
The TREC microblog track is a new edition to the
TREC tracks for 2011. The corpus for this track
is a 16,141,812 tweet collection obtained from a
two week period, January 24, 2011 to February 8,
2011, inclusive. Queries on this corpus took on a
particular form, where “users” wanted to find up
to date and relevant information about a news
topic. In addition to a short stated topic of interest,
e.g. “State of the Union and social media,”1 each
query also contained a query time. Information
returned by the systems could not be older than
the moment of the query time or it would be
judged as irrelevant. For each of the 50 test topics
a system needed to return a time ordered set of
tweets; the NIST assessors would judge the first
30 tweets.
Each participating group was allowed to submit
up to four different runs, where each run consisted
of a set of ordered tweets for all 50 topics. One of
the runs was required to not utilize any outside

1 The xml format of the topic file used by NIST may be seen

in Appendix A.

information, i.e. future tweets, web mined
information, etc.
The corpus and example topics were released
May 20, 2011, with all runs from participating
teams due to NIST by August 11, 2011. Official
results were released in late September 2011.

1.2 The System
Our team utilized an 8-processor, 64-bit Dell
Precision 490 for downloading the corpus,
developing STIRS and executing various
experiments. Each processor is an Intel Xeon
3.00 GHz CPU, each having a two CPU core.
This server has 16 GB of memory and 2.25 TB of
hard drive space. It is running Redhat Linux
Enterprise Version 4.
1.3 Our 10-week Trek to TREC begins
The timeline of our ten weeks consisted of a kick-
off meeting between Dr. Small and the rest of the
team two weeks prior to the official start of the
student researchers’ work period. Soon after
Siena's classes ended, the team members
commenced work on STIRS. The team met on a
weekly basis (sometimes as many as three times
in a week) to discuss progress on the system.
Preliminary Week 1: May 15-21: Conceptual
system design of STIRS was completed during
our first preliminary week. We envisioned an
agile system that incorporated processing
modules, which could interact with each other or
by themselves, to support a variety of different
experiments on the microblog data.
In order for the group to proceed with the
development of STIRS, several organizational
issues needed to be addressed. Firstly, we
selected Lucene2 to index our tweets corpus, and
we successfully installed and configured Lucene
on our server. The undergraduate researchers
were then split into teams of two, formed for the
purposes of each generating an individual Twitter
Module (TM) that would potentially increase our
precision. Each module was required to work
completely standalone within the STIRS system,
or as input and/or output modules to other TMs as
applicable.
On May 16, 2011, the downloadable materials
(tweet ids and scripts) of the microblog corpus

2 Apache Lucene™ is an open source high-performance, full-

featured text search engine.

were made available by the organizers. After
readying the scripts on our machine, the
download process3 was started on May 20th. Our
initial download speed of this single process was
extremely slow (1 .dat file4 pair processed every
twenty minutes), which would have taken us far
past our initial deadlines. We quickly ran some
experiments to determine how many parallel
processes we could spawn on our server before
degradation in performance occurred. These
experiments showed that four processes could
successfully be run in parallel to speed up our
download process without any degradation in
performance. We began to modify our code to
spawn multiple processes to download the entire
corpus without repetition.
Preliminary Week 2: May 22-28: We established
our communication resources, including shared
work directories on our server, a Google
sites/calendar location and a temporary "course"
on our school's Blackboard server. This facilitated
our resource organization.
In the meantime, other parts of STIRS were being
developed. Code that would process TREC
queries into input queries for Lucene was
developed at this time, as well as code that would
take Lucene output and generate TREC-format
results for submission purposes. Also during this
week git5, a version control system was installed
on our server.
Week 1: May 29-Jun 4: The 4-process download
module was ready and started on May 29th. The
downloading of the corpus was completed on
June 2nd, and Lucene indexing immediately
commenced. During this time, the module teams
continued to propose and refine ideas for their
modules. Additionally, the Query processor and
TREC formatter modules were completed. Other
parts of our system were also being developed,
such as a textese component, which would
transform Twitter slang into its full English
counterpart. Given the 140 character length
restriction per individual tweets, a great deal of

3 Teams were only supplied with Tweet ids, not the actual

text of the tweet. Teams were required to mine Twitter to
obtain the actual text of the tweets in the corpus.

4 NIST provided 1673 .dat files, each containing a block of
tweets ids to be downloaded

5 git is a free and open source, distributed version control
system.

textese, i.e.: g2g = got to go, is used by tweeters.
The same textese was not used in the example
topics and therefore we needed a conversion
module.
Week 2: Jun 5-Jun 11: According to the
microblog guidelines only English tweets would
be judged as relevant by NIST assessors.
Therefore, we developed a simple foreign
language filter. This filter reduced our ~16
million tweets corpus to 5,448,156. On week 2,
we met our deadline of having a complete
indexed Twitter corpus by the first half of June.
We then developed a simple script to query the
Lucene index directly in a terminal window; this
allowed for quicker prototyping of ideas and
strategies for modules.
On this second week, teams also finalized their
ideas for their Twitter modules. Section 2, 3, & 4
below will give a detailed description of each of
the three TMs. Section 5 of this paper will give a
high level overview of the entire STIRS system.
Finally, we will report on our team’s NIST
results.

2. TM 1: Scraping URLs
2.1 TM1 Motivation
According to the micro-blog guidelines, NIST
assessors would be allowed to follow urls within a
tweet and utilize the subsequent web page content
to judge whether a tweet was relevant or not.
Given this, student researcher Team One
proposed to use information from the URL links
present in a tweet to determine whether a
particular tweet was relevant. Throughout the
course of this research, we utilized the 5.5 million
English tweet corpus. Of these 5.5 million tweets,
we automatically detected that approximately 1.3
million contained hyperlinks. Of those hyperlinks,
1.1 million hyperlink pages were able to be
downloaded using web scrapers called Jericho(1)
and Jsoup(2). After completing the download, we
utilized Lucene to index and then search the
content from the retrieved hyperlink pages. Each
tweet could then be ranked based on how well
their hyperlink page scored. This first approach
only ranked tweets that actually contained a URL.
2.2 TM1 Expansion
After error analysis on the initial results, we
attempted two modifications to further improve

the precision of our retrieved tweets. The first was
to give a penalty to content that did not contain all
the query terms or associated synonyms. The
second was to penalize web pages with fewer
words and to give a bonus to those with a higher
word count. These modifications were inspired by
results retrieved from the initial run of the query
examples on our corpus. For example, the first
result for “Australia natural disasters” was for the
ten word home page of a natural body building
site in Australia, or when searching for the terms
“Chavez expropriate property” we got an
adequate number of results dealing with people
who had the last name of Chavez but nothing
associated with Hugo Chavez. From our error
analysis of this initial run we determined that in
general, content with a higher word count were
typically more reliable pages. This first approach
only ranked tweets that contained a URL.
A separate approach to improve results was the
consideration of both tweets with URLs and
tweets without URLs. To begin the process, two
additional Lucene searches were performed on
two different indices. The first index was built
using the text of the tweets themselves. The
second index was built using the text from the
web pages linked in the tweets. Each of these
searches created a ranked list of tweet results. We
attempted to improve results by merging these
two lists into a single list by using a process we
refer to as a "ranked join." The first step in the
merge was to normalize the scores of both lists.
All unique tweets were then taken from both lists
and put into a single list in no particular order.
Each tweet in the new list was then processed and
assigned a new score. We experimented with
several scoring modifiers:

• If a tweet contained multiple URLs, its
score was increased by the sum of its
URL scores.

• If a tweet occurred in both of the original
lists, its score was increased by an
intersection bonus value.

• If a tweet contained no URL its score was
decreased by a penalty value.

Most of the development of this approach was
focused on adjusting the scoring modifiers
through iterative testing

2.3 TM1 Future Work
We were limited in our time, just 10 short weeks,
as well as the lack of a judged corpus. We plan to
train our module for improved performance
utilizing the newly released TREC judged micro-
blog corpus. This corpus will allow us to train for
a variety of weights and thresholds: i.e. ideal
penalty scores, determine the best formula for
combining the Lucene tweet results and the
Lucene web page results, etc. Additionally, as this
module utilizes linked URLs, we believe we may
be able to further increase precision by utilizing
some reliability metrics for the web pages linked
to, e.g. news article on cnn.com may be more
reliable than those on a blogging site.

3. TM 2: Feature Modeling with WEKA
3.1 TM2 Motivation
The motivation for this module came about while
examining the corpus. Without any example
topics, Team Two searched for names of
politicians, such as Ron Paul and Hillary Clinton.
Looking at the results, we noticed a trend that the
good Tweets tended to be longer and contain
URLs linking to a news article. This lead us to
question what other “traits” of tweets could make
them relevant, which eventually lead to the idea
of machine learning utilizing tweet attributes.

3.2 TM2 Method
The majority of time spent implementing TM2
dealt with the Twitter API to download data about
the users in our corpus. Earlier in week 3, we
registered STIRS on Twitter in order to be
allowed to use the Twitter API. Ultimately, the
package used for implementation was Twitter4J, a
Java library for the Twitter API.
Through trial and error and a review of relevant
research, several attributes were chosen to be the
ones used for feature modeling. They were as
follows:

• Tweet length – the number of characters
in the tweet

• URL existence – whether a tweet contains
a URL or not

• Follower Count – the number of
followers a user has

• Friend Count – the number of other users
a particular user follows

• List Count – the number of Lists6 on
Twitter a user appears on

The first two attributes were computed for each
Tweet in the corpus, while the next three were
downloaded from the Twitter API for each user in
the corpus. The download consisted of 2,237,031
users who both posted in English and had active
accounts at the time of download. The process ran
between July 2nd and July 5th, having to abide by
Twitter’s cap of 350 API requests per hour. The
means for accessing the API is a simple
registration process to receive authorization
codes, which then must be presented when
making API requests. To receive this particular
information, all that’s needed is the desired
username, and all of their information which is
publicly accessible on Twitter.com may be
downloaded.
It wasn’t until the final weeks that we were ready
to utilize Weka, an open source machine learning
package developed at the University of Waikato,
New Zealand. Weka provides many options for
aggregating and viewing data, as well as
predicting results for new data given a learning
set and selection of a learning model. The final
stages of implementation revolved around trying
different learning models, i.e. Naïve Bayes,
Linear Regression, Decision Trees, etc. and
automating the entire process.
The verification process alternated between
judging our results as to whether we felt that they
were relevant or not, and generating new machine
learning models from our test data. 10-fold cross-
validation was used for training and testing
purposes. Through our testing process, some
attributes, such as expert ratings (calculated by
using data from the site Listorius.com), did not
prove to be useful. Judgments were made by all
team members and were done on a relevant/non-
relevant basis for each graded tweet. Our results
proved to be moderately successful, though not as
good as we had hoped.

3.3 TM2 Future Work
While the initial results showed an improvement
over the baseline results, the combinations with
other modules consistently produced better results

6 Specifically, a List on Twitter is a sub-group of followers

that may be further categorized to allow for easier viewing.

than this module on its own. We feel we were
severely limited by the size of our training corpus.
Given our time restrictions we were only able to
generate judgments for our 33 example topics,
100 tweets each. We plan to utilize the much
larger TREC judged corpus to train our system
and hopefully achieve an improved precision.

4. TM 3: Query Expansion
4.1 TM3 Introduction
Initially, Team Three approached their module
design with query expansion in mind. We
examined query expansion by traditional
successful techniques, i.e. looking for the
synonyms of the query words. They used
Princeton’s WordNet, which allows the user to
find synonyms, antonyms, and hyponyms of
words. For each query, they used WordNet to
expand the query by adding its synonyms. A
second approach utilized Wikipedia search
capabilities to find relevant articles for each
word/phrase within the query. Once our program
found a Wikipedia article, it used the first page it
found to find the most commonly occurring
words within the page. By using this
methodology, the most commonly occurring
words and phrases (after eliminating stop words)
were utilized for query expansion terms.
When testing TM3, we experimented with four
configurations: WordNet only, Wikipedia only,
WordNet & Wikipedia, and Wikipedia &
WordNet. We combined Wikipedia and WordNet
in a linear fashion: we first expanded our query
using either Wikipedia or WordNet, we then took
that expanded query and sent it to the opposite
query expander, expanding further on the query.
4.2 TM3 a New Approach
After our results for Wikipedia and WordNet, we
decided to quickly change our approach to the
query expansion problem. At first, we attempted
to use Google News7 for query expansion. We
decided to experiment with Google News because
the test topics supplied by NIST were primarily
related to current news stories of interest.
However, we quickly found that due to the limit
on the Google news archive, we could not find
many stories that were relevant to the query.

7 http://news.google.com/

However, for the results that Google News did
find, the articles were very relevant to the topic,
including exact phrase matching in some cases.
This discovery illustrated the power of using
Google search results for query expansion. We
quickly switched to Google for query expansion
and found that, on average, the top four results
produced the most pertinent pages. We decided to
fetch these pages, unless the URL contained the
word “video” or “youtube.com” as we found
those pages typically did not offer relevant terms.
Our module then detected the most common
words/phrases in the text. By comparing this list
of words between all of the pages, we retained the
four most reoccurring words/phrases and added
these to the query. We chose to use four words
since the fifth word tended to pick up more tweets
that were irrelevant when experimenting with the
NIST supplied test topics.
We found our Google module results to be much
better than WordNet and Wikipedia results. Five
of our queries came out unusable in which the
html code of the website was being returned was
mistakenly added to the query. This expanded our
query with irrelevant information that did not help
our results. Even so, the results were not affected
heavily by this bad query. Thirty-four of our
results were changed and expanded while eleven
remained unchanged. The expanded queries
showed moderate improvements to the results.

4.3 TM3 Future Work
From this research, we found that query
expansion through Google saw a greater increase
in precision than our WordNet and Wikipedia
classes. Though there were flaws such as HTML
code being returned in some queries, our Google
query expansion module worked far better than
utilizing the synonyms of WordNet or common
words of Wikipedia. We have illustrated that
query expansion utilizing Google can improve the
precision of our Twitter results. We plan to run
additional experiments with the NIST judged
microblog corpus to verify and/or improve our
module: e.g. is 4 pages the best depth? what is the
best number of words/phrases to add to our
expanded query, could these thresholds be topical
or related to the types of pages being returned,
etc.

Figure 1: STIRS System Architecture Diagram

5. STIRS
We incorporated all three of our twitter modules
with other necessary modules, i.e. Query
Processor, Lucene Processor, TREC formatter
etc., into a fully automated end-to-end STIRS
system, Figure 1. Our Query Processor module
converted the TREC XML formatted queries
into Lucene format. Our Lucene processor
module returned a Ranked List of Tweets (RLT)
for a given input query. The TREC formatter
converted our RLTs into the standard TREC
format. STIRS was developed such that any
given module could be easily turned on or off to
allow for multiple combinations of experiments,
i.e. TM3 -> TM1: run the query expansion
module followed by the URL ranking module.

6. End-to-End STIRS Experiments
Once each team felt they had the best version of
their module given the allowed time, full end-to-
end system experiments began.
We experimented with all possible combination
of our TM modules on the example topics, in
order to select the 3 best combinations to send to
NIST for evaluation (one run sent would be our
baseline run to fulfill the requirement of no
outside resources utilized). Judgments were
made by all team members and were done on a
relevant/non-relevant basis for each tweet. We
scored the top 30 tweets for each of the 33
example topics8 where each tweet was scored by
at least two judges.

8 We expanded on the 12 example topic set supplied by

NIST for a total of 33 topics for testing purposes. See
section 9.2

Our highest performing modules were:
1) TM3 -> TM1; Query expansion followed by
our module that utilized urls within the tweets
2) TM1 alone
3) TM3 -> TM1-> TM2; Query expansion
followed by the url modules, followed by the
Weka module
We selected these three versions of the system to
run on the 50 test topics and return to NIST for
evaluation.

7. Official NIST Results
The judging showed our best run to be at
30.83% precision. The reported median from all
runs of all 58 participating teams was 25.9%.

8. STIRS Conclusions and Future Work
We were able to build a fully functional STIRS
system in just 10 short weeks that performed
well above the median reported for the
microblog track. We look forward to making
significant progress on our system, as described
in our module sections above, now that we have
the valuable NIST judged microblog corpus. We
plan to report improved results in our full TREC
proceedings paper.

9. APPENDIX

9.1 Sample Query
<top>
<num> Number: MB01 </num>
<title> Wael Ghonim </title>
<querytime> 25th February 2011 04:00:00 +0000
</querytime>
<querytweettime> 3857291841983981
</querytweettime>
</top>

9.2 Experiment One Test Topics
The first twelve were supplied by the TREC
organizers. The rest were developed by Dr. Lim
using back issues of the New York Times to find
“appropriate” news stories which were similar in
stature to previous queries.

• Chavez expropriate property
• Jintao visit US
• Saleh Yemen overthrow
• Sudan independence vote

• natural disasters Australia
• Kepler discovers new planets
• Texas school robot
• State of the Union and social media
• Cavaliers record
• Sian Massey comments
• Mets, Madoff victims lawsuit
• Bjorn Qatar Masters
• Groundhog Day Celebration
• Urban Meyer ESPN
• NHL Choosing Sides
• News of the World Hacking
• Columbia Coal Mine Deaths
• Kucinich lawsuit
• Nielsen IPO
• Oscar nomination snubs
• Chrysler quarterly loss
• Belgium Government protests
• Jack LaLanne death
• Loughner plea
• Russian Airport suicide bomber
• Connecticut donation return
• The Kennedys Reelz
• Ireland Russian diplomat
• Myanmar President Candidates
• Sabres sale agreement
• Hydrofracking diesel fuel
• Apple e-book purchases
• Fernando Torres Chelsea

10. ACKNOWLEDGMENTS
This research project was sponsored by the Siena College
Summer Scholars Fund.

11. REFERENCES
[1] http://jericho.htmlparser.net/docs/index.html
[2] http://jsoup.org/
[3] http://lucene.apache.org/
[4] http://www.wikipedia.org/
[5] http://twitter4j.org/en/index.html

[6] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, Ian H. Witten (2009);
The WEKA Data Mining Software: An Update;
SIGKDD Explorations, Volume 11, Issue 1.

[7] George A. Miller (1995); WordNet: A Lexical
Database for English. Communications of the ACM
Vol. 38, No. 11: 39-41.

