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ABSTRACT 
There has been an increasing interest, both of 
the research community and federal funding 
agencies in microblogs as a source of viable 
information for a variety of tasks.  NIST 
(National Institute of Standards and 
Technology) has added a microblog retrieval 
track to TREC (Text REtrieval Conference) 
for the first time in 2011. NIST has selected 
Twitter as the source of microblog data. 
Twitter is a dynamic social website that allows 
users to post tweets which are short posts to 
share news with friends and followers across 
the world. While some tweets provide useful 
information, this information is very limited 
by the restriction on length to 140 characters 
or less. Participating teams were provided with 
the code necessary to download the Twitter 
Corpus, consisting of 16,141,812 tweets from 
a 2-week time period, January 24, 2011 to 
February 8, 2011, inclusive.  Teams were also 
provided with a training set of 12 example 
topics, and later the test set of 50 topics.  In 
this paper, we describe three modules designed 
for this track, built within a system called 
STIRS, Siena’s Twitter Information Retrieval 
System.  After submitting three user-defined 
runs and a Lucene baseline run, the NIST 
judging showed our best run to be at 30.83% 
precision. The reported median from all runs 
of all 58 participating teams was 25.9%. We 
also describe our process of developing a new 
and complete end-to-end system in just 10 
weeks time with six undergraduate 
researchers. 
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1. INTRODUCTION 
In May 2011, members of the Siena College 
community formed a group dedicated to working 
on the TREC Microblog competition.  The group 
was lead by Sharon Small, a long-term researcher 
in the field of Computational Linguistics as well 
as a pervious participant in the TREC QA track. 
The team was comprised of a fellow colleague of 
hers, Darren Lim, and six undergraduate 
researchers: Karl Appel, Denis Kalic, Matthew 
Kemmer, David Purcell, Carl Tompkins and Chan 
Tran.  Starting in the middle of May, the group 
began work on STIRS.    

1.1 Information on TREC Microblog 
The TREC microblog track is a new edition to the 
TREC tracks for 2011.  The corpus for this track 
is a 16,141,812 tweet collection obtained from a 
two week period, January 24, 2011 to February 8, 
2011, inclusive.   Queries on this corpus took on a 
particular form, where “users” wanted to find up 
to date and relevant information about a news 
topic. In addition to a short stated topic of interest, 
e.g. “State of the Union and social media,”1 each 
query also contained a query time.  Information 
returned by the systems could not be older than 
the moment of the query time or it would be 
judged as irrelevant. For each of the 50 test topics 
a system needed to return a time ordered set of 
tweets; the NIST assessors would judge the first 
30 tweets. 
Each participating group was allowed to submit 
up to four different runs, where each run consisted 
of a set of ordered tweets for all 50 topics. One of 
the runs was required to not utilize any outside 

                                                                    
1 The xml format of the topic file used by NIST may be seen 

in Appendix A. 



information, i.e. future tweets, web mined 
information, etc.    
The corpus and example topics were released 
May 20, 2011, with all runs from participating 
teams due to NIST by August 11, 2011.  Official 
results were released in late September 2011.  

1.2 The System 
Our team utilized an 8-processor, 64-bit Dell 
Precision 490 for downloading the corpus, 
developing STIRS and executing various 
experiments.  Each processor is an Intel Xeon 
3.00 GHz CPU, each having a two CPU core.  
This server has 16 GB of memory and 2.25 TB of 
hard drive space.  It is running Redhat Linux 
Enterprise Version 4.  
1.3 Our 10-week Trek to TREC begins 
The timeline of our ten weeks consisted of a kick-
off meeting between Dr. Small and the rest of the 
team two weeks prior to the official start of the 
student researchers’ work period.  Soon after 
Siena's classes ended, the team members 
commenced work on STIRS. The team met on a 
weekly basis (sometimes as many as three times 
in a week) to discuss progress on the system.    
Preliminary Week 1: May 15-21:  Conceptual 
system design of STIRS was completed during 
our first preliminary week.  We envisioned an 
agile system that incorporated processing 
modules, which could interact with each other or 
by themselves, to support a variety of different 
experiments on the microblog data. 
In order for the group to proceed with the 
development of STIRS, several organizational 
issues needed to be addressed.  Firstly, we 
selected Lucene2 to index our tweets corpus, and 
we successfully installed and configured Lucene 
on our server. The undergraduate researchers 
were then split into teams of two, formed for the 
purposes of each generating an individual Twitter 
Module (TM) that would potentially increase our 
precision.  Each module was required to work 
completely standalone within the STIRS system, 
or as input and/or output modules to other TMs as 
applicable. 
On May 16, 2011, the downloadable materials 
(tweet ids and scripts) of the microblog corpus 

                                                                    
2 Apache Lucene™ is an open source high-performance, full-

featured text search engine. 

were made available by the organizers.  After 
readying the scripts on our machine, the 
download process3 was started on May 20th. Our 
initial download speed of this single process was 
extremely slow (1 .dat file4 pair processed every 
twenty minutes), which would have taken us far 
past our initial deadlines.  We quickly ran some 
experiments to determine how many parallel 
processes we could spawn on our server before 
degradation in performance occurred. These 
experiments showed that four processes could 
successfully be run in parallel to speed up our 
download process without any degradation in 
performance. We began to modify our code to 
spawn multiple processes to download the entire 
corpus without repetition.  
Preliminary Week 2: May 22-28: We established 
our communication resources, including shared 
work directories on our server, a Google 
sites/calendar location and a temporary "course" 
on our school's Blackboard server. This facilitated 
our resource organization. 
In the meantime, other parts of STIRS were being 
developed. Code that would process TREC 
queries into input queries for Lucene was 
developed at this time, as well as code that would 
take Lucene output and generate TREC-format 
results for submission purposes.  Also during this 
week git5, a version control system was installed 
on our server. 
Week 1: May 29-Jun 4: The 4-process download 
module was ready and started on May 29th. The 
downloading of the corpus was completed on 
June 2nd, and Lucene indexing immediately 
commenced. During this time, the module teams 
continued to propose and refine ideas for their 
modules.  Additionally, the Query processor and 
TREC formatter modules were completed. Other 
parts of our system were also being developed, 
such as a textese component, which would 
transform Twitter slang into its full English 
counterpart. Given the 140 character length 
restriction per individual tweets, a great deal of 
                                                                    
3 Teams were only supplied with Tweet ids, not the actual 

text of the tweet.  Teams were required to mine Twitter to 
obtain the actual text of the tweets in the corpus. 

4 NIST provided 1673 .dat files, each containing a block of 
tweets ids to be downloaded 

5 git is a free and open source, distributed version control 
system. 



textese, i.e.: g2g = got to go, is used by tweeters.  
The same textese was not used in the example 
topics and therefore we needed a conversion 
module. 
Week 2: Jun 5-Jun 11: According to the 
microblog guidelines only English tweets would 
be judged as relevant by NIST assessors. 
Therefore, we developed a simple foreign 
language filter. This filter reduced our ~16 
million tweets corpus to 5,448,156.  On week 2, 
we met our deadline of having a complete 
indexed Twitter corpus by the first half of June. 
We then developed a simple script to query the 
Lucene index directly in a terminal window; this 
allowed for quicker prototyping of ideas and 
strategies for modules. 
On this second week, teams also finalized their 
ideas for their Twitter modules. Section 2, 3, & 4 
below will give a detailed description of each of 
the three TMs. Section 5 of this paper will give a 
high level overview of the entire STIRS system. 
Finally, we will report on our team’s NIST 
results. 
 

2. TM 1: Scraping URLs 
2.1  TM1 Motivation 
According to the micro-blog guidelines, NIST 
assessors would be allowed to follow urls within a 
tweet and utilize the subsequent web page content 
to judge whether a tweet was relevant or not. 
Given this, student researcher Team One 
proposed to use information from the URL links 
present in a tweet to determine whether a 
particular tweet was relevant.  Throughout the 
course of this research, we utilized the 5.5 million 
English tweet corpus. Of these 5.5 million tweets, 
we automatically detected that approximately 1.3 
million contained hyperlinks. Of those hyperlinks, 
1.1 million hyperlink pages were able to be 
downloaded using web scrapers called Jericho(1) 
and Jsoup(2).  After completing the download, we 
utilized Lucene to index and then search the 
content from the retrieved hyperlink pages. Each 
tweet could then be ranked based on how well 
their hyperlink page scored. This first approach 
only ranked tweets that actually contained a URL. 
2.2 TM1 Expansion 
After error analysis on the initial results, we 
attempted two modifications to further improve 

the precision of our retrieved tweets. The first was 
to give a penalty to content that did not contain all 
the query terms or associated synonyms. The 
second was to penalize web pages with fewer 
words and to give a bonus to those with a higher 
word count. These modifications were inspired by 
results retrieved from the initial run of the query 
examples on our corpus. For example, the first 
result for “Australia natural disasters” was for the 
ten word home page of a natural body building 
site in Australia, or when searching for the terms 
“Chavez expropriate property” we got an 
adequate number of results dealing with people 
who had the last name of Chavez but nothing 
associated with Hugo Chavez.  From our error 
analysis of this initial run we determined that in 
general, content with a higher word count were 
typically more reliable pages.  This first approach 
only ranked tweets that contained a URL. 
A separate approach to improve results was the 
consideration of both tweets with URLs and 
tweets without URLs.  To begin the process, two 
additional Lucene searches were performed on 
two different indices.  The first index was built 
using the text of the tweets themselves.  The 
second index was built using the text from the 
web pages linked in the tweets.  Each of these 
searches created a ranked list of tweet results.  We 
attempted to improve results by merging these 
two lists into a single list by using a process we 
refer to as a "ranked join."  The first step in the 
merge was to normalize the scores of both lists.   
All unique tweets were then taken from both lists 
and put into a single list in no particular order.  
Each tweet in the new list was then processed and 
assigned a new score.  We experimented with 
several scoring modifiers: 

• If a tweet contained multiple URLs, its 
score was increased by the sum of its 
URL scores. 

• If a tweet occurred in both of the original 
lists, its score was increased by an 
intersection bonus value. 

• If a tweet contained no URL its score was 
decreased by a penalty value.   

Most of the development of this approach was 
focused on adjusting the scoring modifiers 
through iterative testing 



2.3 TM1 Future Work 
We were limited in our time, just 10 short weeks, 
as well as the lack of a judged corpus. We plan to 
train our module for improved performance 
utilizing the newly released TREC judged micro-
blog corpus.  This corpus will allow us to train for 
a variety of weights and thresholds: i.e. ideal 
penalty scores, determine the best formula for 
combining the Lucene tweet results and the 
Lucene web page results, etc. Additionally, as this 
module utilizes linked URLs, we believe we may 
be able to further increase precision by utilizing 
some reliability metrics for the web pages linked 
to, e.g. news article on cnn.com may be more 
reliable than those on a blogging site.  
 

3. TM 2: Feature Modeling with WEKA 
3.1 TM2 Motivation 
The motivation for this module came about while 
examining the corpus. Without any example 
topics, Team Two searched for names of 
politicians, such as Ron Paul and Hillary Clinton. 
Looking at the results, we noticed a trend that the 
good Tweets tended to be longer and contain 
URLs linking to a news article. This lead us to 
question what other “traits” of tweets could make 
them relevant, which eventually lead to the idea 
of machine learning utilizing tweet attributes.  
  
3.2 TM2 Method 
The majority of time spent implementing TM2 
dealt with the Twitter API to download data about 
the users in our corpus. Earlier in week 3, we 
registered STIRS on Twitter in order to be 
allowed to use the Twitter API.  Ultimately, the 
package used for implementation was Twitter4J, a 
Java library for the Twitter API. 
Through trial and error and a review of relevant 
research, several attributes were chosen to be the 
ones used for feature modeling.  They were as 
follows: 

• Tweet length – the number of characters 
in the tweet 

• URL existence – whether a tweet contains 
a URL or not 

• Follower Count – the number of 
followers a user has 

• Friend Count – the number of other users 
a particular user follows 

• List Count – the number of Lists6 on 
Twitter a user appears on 

 
The first two attributes were computed for each 
Tweet in the corpus, while the next three were 
downloaded from the Twitter API for each user in 
the corpus.  The download consisted of 2,237,031 
users who both posted in English and had active 
accounts at the time of download. The process ran 
between July 2nd and July 5th, having to abide by 
Twitter’s cap of 350 API requests per hour. The 
means for accessing the API is a simple 
registration process to receive authorization 
codes, which then must be presented when 
making API requests. To receive this particular 
information, all that’s needed is the desired 
username, and all of their information which is 
publicly accessible on Twitter.com may be 
downloaded.     
It wasn’t until the final weeks that we were ready 
to utilize Weka, an open source machine learning 
package developed at the University of Waikato, 
New Zealand. Weka provides many options for 
aggregating and viewing data, as well as 
predicting results for new data given a learning 
set and selection of a learning model.  The final 
stages of implementation revolved around trying 
different learning models, i.e. Naïve Bayes, 
Linear Regression, Decision Trees, etc. and 
automating the entire process.  
The verification process alternated between 
judging our results as to whether we felt that they 
were relevant or not, and generating new machine 
learning models from our test data. 10-fold cross-
validation was used for training and testing 
purposes.  Through our testing process, some 
attributes, such as expert ratings (calculated by 
using data from the site Listorius.com), did not 
prove to be useful.  Judgments were made by all 
team members and were done on a relevant/non-
relevant basis for each graded tweet. Our results 
proved to be moderately successful, though not as 
good as we had hoped.  

3.3 TM2 Future Work 
While the initial results showed an improvement 
over the baseline results, the combinations with 
other modules consistently produced better results 
                                                                    
6 Specifically, a List on Twitter is a sub-group of followers 

that may be further categorized to allow for easier viewing. 



than this module on its own. We feel we were 
severely limited by the size of our training corpus.  
Given our time restrictions we were only able to 
generate judgments for our 33 example topics, 
100 tweets each. We plan to utilize the much 
larger TREC judged corpus to train our system 
and hopefully achieve an improved precision.  
 

4. TM 3: Query Expansion 
4.1 TM3 Introduction 
Initially, Team Three approached their module 
design with query expansion in mind. We 
examined query expansion by traditional 
successful techniques, i.e. looking for the 
synonyms of the query words. They used 
Princeton’s WordNet, which allows the user to 
find synonyms, antonyms, and hyponyms of 
words. For each query, they used WordNet to 
expand the query by adding its synonyms. A 
second approach utilized Wikipedia search 
capabilities to find relevant articles for each 
word/phrase within the query. Once our program 
found a Wikipedia article, it used the first page it 
found to find the most commonly occurring 
words within the page. By using this 
methodology, the most commonly occurring 
words and phrases (after eliminating stop words) 
were utilized for query expansion terms.   
When testing TM3, we experimented with four 
configurations: WordNet only, Wikipedia only, 
WordNet & Wikipedia, and Wikipedia & 
WordNet. We combined Wikipedia and WordNet 
in a linear fashion: we first expanded our query 
using either Wikipedia or WordNet, we then took 
that expanded query and sent it to the opposite 
query expander, expanding further on the query.  
4.2 TM3 a New Approach 
After our results for Wikipedia and WordNet, we 
decided to quickly change our approach to the 
query expansion problem. At first, we attempted 
to use Google News7 for query expansion. We 
decided to experiment with Google News because 
the test topics supplied by NIST were primarily 
related to current news stories of interest. 
However, we quickly found that due to the limit 
on the Google news archive, we could not find 
many stories that were relevant to the query. 

                                                                    
7 http://news.google.com/ 

However, for the results that Google News did 
find, the articles were very relevant to the topic, 
including exact phrase matching in some cases. 
This discovery illustrated the power of using 
Google search results for query expansion. We 
quickly switched to Google for query expansion 
and found that, on average, the top four results 
produced the most pertinent pages. We decided to 
fetch these pages, unless the URL contained the 
word “video” or “youtube.com” as we found 
those pages typically did not offer relevant terms. 
Our module then detected the most common 
words/phrases in the text. By comparing this list 
of words between all of the pages, we retained the 
four most reoccurring words/phrases and added 
these to the query. We chose to use four words 
since the fifth word tended to pick up more tweets 
that were irrelevant when experimenting with the 
NIST supplied test topics.   
We found our Google module results to be much 
better than WordNet and Wikipedia results. Five 
of our queries came out unusable in which the 
html code of the website was being returned was 
mistakenly added to the query. This expanded our 
query with irrelevant information that did not help 
our results. Even so, the results were not affected 
heavily by this bad query. Thirty-four of our 
results were changed and expanded while eleven 
remained unchanged. The expanded queries 
showed moderate improvements to the results.    
 

4.3 TM3 Future Work 
From this research, we found that query 
expansion through Google saw a greater increase 
in precision than our WordNet and Wikipedia 
classes. Though there were flaws such as HTML 
code being returned in some queries, our Google 
query expansion module worked far better than 
utilizing the synonyms of WordNet or common 
words of Wikipedia. We have illustrated that 
query expansion utilizing Google can improve the 
precision of our Twitter results.  We plan to run 
additional experiments with the NIST judged 
microblog corpus to verify and/or improve our 
module: e.g. is 4 pages the best depth? what is the 
best number of words/phrases to add to our 
expanded query, could these thresholds be topical 
or related to the types of pages being returned, 
etc. 



 

Figure 1: STIRS System Architecture Diagram 
 

5. STIRS 
We incorporated all three of our twitter modules 
with other necessary modules, i.e. Query 
Processor, Lucene Processor, TREC formatter 
etc., into a fully automated end-to-end STIRS 
system, Figure 1.  Our Query Processor module 
converted the TREC XML formatted queries 
into Lucene format.  Our Lucene processor 
module returned a Ranked List of Tweets (RLT) 
for a given input query.  The TREC formatter 
converted our RLTs into the standard TREC 
format.  STIRS was developed such that any 
given module could be easily turned on or off to 
allow for multiple combinations of experiments, 
i.e. TM3 -> TM1: run the query expansion 
module followed by the URL ranking module. 

6. End-to-End STIRS Experiments 
Once each team felt they had the best version of 
their module given the allowed time, full end-to-
end system experiments began.  
We experimented with all possible combination 
of our TM modules on the example topics, in 
order to select the 3 best combinations to send to 
NIST for evaluation (one run sent would be our 
baseline run to fulfill the requirement of no 
outside resources utilized). Judgments were 
made by all team members and were done on a 
relevant/non-relevant basis for each tweet. We 
scored the top 30 tweets for each of the 33 
example topics8 where each tweet was scored by 
at least two judges.  

                                                                    
8 We expanded on the 12 example topic set supplied by 

NIST for a total of 33 topics for testing purposes. See 
section 9.2 



Our highest performing modules were: 
1) TM3 -> TM1; Query expansion followed by 
our module that utilized urls within the tweets 
2) TM1 alone 
3) TM3 -> TM1-> TM2; Query expansion 
followed by the url modules, followed by the 
Weka module 
We selected these three versions of the system to 
run on the 50 test topics and return to NIST for 
evaluation. 
 

7. Official NIST Results 
The judging showed our best run to be at 
30.83% precision. The reported median from all 
runs of all 58 participating teams was 25.9%.  
 

8. STIRS Conclusions and Future Work 
We were able to build a fully functional STIRS 
system in just 10 short weeks that performed 
well above the median reported for the 
microblog track.  We look forward to making 
significant progress on our system, as described 
in our module sections above, now that we have 
the valuable NIST judged microblog corpus. We 
plan to report improved results in our full TREC 
proceedings paper. 
 

9. APPENDIX 

9.1 Sample Query 
<top> 
<num> Number: MB01 </num> 
<title> Wael Ghonim </title> 
<querytime> 25th February 2011 04:00:00 +0000 
</querytime> 
<querytweettime> 3857291841983981 
</querytweettime> 
</top> 
 

9.2 Experiment One Test Topics 
The first twelve were supplied by the TREC 
organizers.  The rest were developed by Dr. Lim 
using back issues of the New York Times to find 
“appropriate” news stories which were similar in 
stature to previous queries.  

• Chavez expropriate property 
• Jintao visit US 
• Saleh Yemen overthrow 
• Sudan independence vote   

• natural disasters Australia  
• Kepler discovers new planets  
• Texas school robot  
• State of the Union and social media  
• Cavaliers record  
• Sian Massey comments   
• Mets, Madoff victims lawsuit  
• Bjorn Qatar Masters  
• Groundhog Day Celebration  
• Urban Meyer ESPN  
• NHL Choosing Sides  
• News of the World Hacking  
• Columbia Coal Mine Deaths  
• Kucinich lawsuit  
• Nielsen IPO  
• Oscar nomination snubs  
• Chrysler quarterly loss  
• Belgium Government protests  
• Jack LaLanne death  
• Loughner plea  
• Russian Airport suicide bomber  
• Connecticut donation return  
• The Kennedys Reelz  
• Ireland Russian diplomat  
• Myanmar President Candidates 
• Sabres sale agreement  
• Hydrofracking diesel fuel  
• Apple e-book purchases 
• Fernando Torres Chelsea 
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