
RMIT at TREC 2011 Microblog Track

Matthias Petri
RMIT University
School of CS&IT

matthias.petri@rmit.edu.au

J. Shane Culpepper
RMIT University
School of CS&IT

shane.culpepper@rmit.edu.au

Falk Scholer
RMIT University
School of CS&IT

falk.scholer@rmit.edu.au

Abstract—This paper describes our submission to the
TREC 2011 microblog task. For the experiments, we use
our new self-index search engine, NeWT, to support ranked
search in the Twitter document corpus. We use a combina-
tion of phrase queries and degrading conjunctive Boolean
intersection to improve retrieval effectiveness.

Keywords-self-index; full-text search, phrases, threshold;
intersection

I. INTRODUCTION

Twitter is a relatively new medium. Tweets, the doc-
ument unit of Twitter, are restricted by length to 140
characters, but can contain hyperlinks to specific topics
or users. Communication using tweets is similar to text
communication over mobile phones, which became popular
at the turn of the century. Messages contain abbreviations,
small talk, and conversational text. Additionally, Twitter
has become a global phenomenon whereby users from
around the world communicate with each other, leading to
a truly multilingual collection. These aspects make search-
ing using traditional search methods difficult. Normalizing
multilingual conversational text mixed SMS text-speak is
particularly problematic.

In our microblog submission, we mitigate these prob-
lems by using our character-aligned self-index, NeWT,
for storage and retrieval. Self-indexes are traditionally
used to provide full-text search in the bioinformatics
domain. In this work, we use NeWT to perform Boolean
conjunctive phrase queries over the multilingual Twitter
corpus, without the need to create an English language
specific index. The phrase queries are created automatically
or manually for the given topics, and were submitted as
individual runs.

The paper is structured as follows: First, we give a
brief introduction to self-indexes. We then discuss the
preprocessing steps for the queries and the collection. Next,
we describe our different approaches, and evaluate our
submissions using the baseline provided by the TREC
organizers, as well as the median score over all participants
for each topic.

II. SELF-INDEXES

A suffix array stores positions of suffixes of a given
text T of size n in lexicographical order, and can be
used to find all occurrences of pattern P of length m
in time proportional to m. Unfortunately, suffix arrays
require 4n bytes of space in addition to the space required
to store T . In contrast, a self-index can provide the

same search functionality as a suffix array while only
requiring space roughly equal to the size of the compressed
representation of T , and do not require the text T to be
stored explicitly [1].

Muthukrishnan first proposed the use of a suffix array to
support document level retrieval [2]. Recently, self-indexes
have been augmented to provide document level retrieval as
well as simple TF·IDF relevance ranking [3]. In addition to
relevance ranking, other techniques such as set intersection
or top-k ranked retrieval can be efficiently performed using
a self-index [4]. For more information on self-indexes, refer
to the surveys by Navarro and Mäkinen [5] and Ferragina
et al. [6].

III. PREPROCESSING

In this section we discuss preprocessing of both the
collection and the query set for our submitted runs.

A. Collection

When constructing an inverted index, each document
is parsed into tokens and then represented as a sequence
of terms. Normalization usually includes techniques such
as downcasing, stemming and stopping. Determining the
terms that are added to the dictionary becomes even more
complicated in a multilingual environment such as Twitter.
Morphological parsing is often language specific, and the
problem can be exacerbated by mixing languages and SMS
text-speak is a single collection.

Alternatively, self-indexes are character based. There-
fore, extracting terms from each document is not required.
To simplify query processing, the only preprocessing
necessary is to downcase Latin symbols. No additional
preprocessing steps to support multilingual queries are
necessary as linguistic choices can be made at query time.

B. Queries

Self-indexes are not term based, and the time required
to process a query depends only on the total query length.
This implies that, in practice, the cost to process a phrase
query is the same as the cost of processing a bag of words
query. Therefore, we focus mainly on different approaches
to query processing for each of our run submissions.
We use one automatic and three manual approaches to
extract phrases from the given query terms. The different
approaches are described below:
RMITAR (automatic): No phrases were extracted
from the given query terms. Query terms with only 3



or less symbols were enclosed using space symbols to
prevent substring matches within words. For example,
’nsa’ becomes ’ nsa ’ so ’unsafe’ is not matched.
RMITM/RMITMR/RMITMRR (manual): Similar to
the automatic approach, we again enclose words with
potential substring matches in unrelated words with
spaces. Additionally, phrase queries were created for:
1. Proper names. For example “oprah winfrey”.
2. Combination of terms to disambiguate meaning. For

example “birth certificate”.
3. Combination of query terms. E.g. “moscow airport“ and

“moscow airport bomb”
In addition to creating phrases we also manually stemmed
query terms to match derived forms of a query term. E.g.
“recovery” becomes “recover”.

IV. QUERY PROCESSING

Document relevance is determined threshold based
intersection. For each topic, we perform multiple Boolean
conjunctive queries until a predefined number of docu-
ments t is retrieved, or we process all query terms. Note a
query term may be a single English word or a short phrase,
depending on the query method used.

For a topic with k query terms, we intersect the results
of each query with an intersection threshold of k. This
is a classic conjunctive Boolean query where all terms
must occur in a returned document. Next, we perform the
same intersection with an intersection threshold of k − 1,
adding all “new” documents to the result set. The order
of each document in the final result list is determined by
the threshold k with which it was retrieved in first. We
continue the intersection up to a threshold of k = 2. If
the result set contains less than t documents, we search
the collection for each individual query term in ascending
order of their frequency in the collection until we retrieve
t documents or all query terms have been processed.

After retrieving up to t relevant documents we reorder
based on query time and discard all “future” tweets. We
further filter matching non English tweets using an English
word dictionary. We used a standard dictionary and the
training queries to remove words that occur in non-English
tweets. To filter tweets, we require 50% of the words in
a tweet to exist in the dictionary. The threshold for the
automatic run (RMITAR) and RMITMRR was set to t =
200. For RMITM and RMITMR the threshold was t = 30
and t = 500 respectively.

V. EXTERNAL AND FUTURE RESOURCES

During query processing we reorder query terms based
on their frequency in the collection. This frequency is
based on the frequency of the term in the complete
collection and not just before query time. The English
word dictionary to filter non-English tweets is an external
resource.

VI. EVALUATION

We first compare our different approaches before com-
paring against the baseline provided by the TREC orga-
nizers, and the median performance of all participants. We

then briefly discuss topic specific performance issues we
encountered during our evaluation.

A. Run comparison

High All

Runs MAP R-prec P@30 MAP R-prec P@30

RMITAR 0.1672 0.1728 0.0788 0.2382 0.2946 0.2211
RMITM 0.1619 0.1778 0.0970 0.2430 0.3046 0.2721

RMITMR 0.1649 0.1728 0.0727 0.2320 0.2842 0.2041
RMITMRR 0.1716 0.1904 0.0980 0.2345 0.2830 0.3163

Table I
AVERAGE MAP, R-PREC AND P@30 SCORES OVER ALL SUBMITTED

RUNS FOR HIGHLY RELEVANT (HIGH) AND ALL RELEVANT (ALL)
TWEETS.

Table I lists average MAP,R-prec and P@30 for our
submitted runs. Note that the manual runs perform best
for all metrics. The automatic run performs close to all
manual runs. Indeed there is no statistically significant
difference (paired t-test, p > 0.1) between the best manual
run (RMITMRR) and the automatic run (RMITAR).

Manual construction of phrase query terms appears to
add only a marginal gain in overall effectiveness in our
experimental results. Each individual document is very
short. Therefore, conjunctive queries have a similar effect
on the returned documents as phrase queries. Note that
we do not use any relevance ranking metric (e.g. BM25).
We also do not normalize by document length as IDL has
little impact on the Twitter corpus where all documents
are of roughly equal length.

B. Baseline comparison

High All

Runs MAP R-prec P@30 MAP R-prec P@30

DISJ-BASE N/A N/A N/A 0.1411 0.1827 0.0986
MED-AVG 0.1649 0.1728 0.0727 0.1433 0.6149 N/A
RMITMRR 0.1716 0.1904 0.0980 0.2345 0.2830 0.3163

Table II
AVERAGE MAP, R-PREC AND P@30 SCORES OVER ALL SUBMITTED

RUNS FOR HIGHLY RELEVANT (HIGH) AND ALL RELEVANT (ALL)
TWEETS.

We now compare our best run (RMITMRR) to the
disjunctive baseline run provided by the TREC organizers,
as well as the median reported scores. In Table II,
RMITMRR outperforms both the provided baseline, as
well as the median score over all participants. Overall we
significantly outperformed both the provided baseline (p-
value = 0.0433) and the median average score submitted
by all participants (p-value = 0.0425). The results were
obtained using a paired t-test.

C. Topic evaluation

We now evaluate each topic individually. Figure 1
shows a topic level comparison of our RMITMRR run
to the provided disjunctive baseline, and the median score



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Baseline vs RMITMRR

topics

M
A

P
Sc

or
e

RMIT
median
baseline

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Median vs RMITMRR

topics

M
A

P
Sc

or
e

Figure 1. Topic level evaluation by comparing RMITMRR to both the
provided baseline and the median scores over all participants. In both
graphs the topics are sorted in increasing order of MAP score of the run
as compared to RMITMRR.

reported by all participants. In both graphs, the topics
are sorted in increasing order of MAP score of the run
as compared to RMITMRR. In 15 out of 49 topics, we
perform worse than the median score achieved by all
participants. For 12 out of 49 topics, we perform worse
than the provided disjunctive baseline. The problematic
topics are listed in Table III. Most of the problems can be
attributed to the following:

1. Substring matching in non-relevant words. Some query
words match substrings in unrelated words. For exam-
ple: “nist” matched “minister”. This could have been
avoided if all query terms were encapsulated in spaces
as described above.

2. Intersection does not return enough results. If the
degrading threshold based intersection does not return
t results, each query word is processed individually
based on frequency in the collection. This leads to non-
relevant tweets close the query-time being included in
the result set.

3. Retweets. We did consider approaches to filter manual
retweets.

4. Matching of query terms in unrelated hashtags or
usernames. Unencapsulated query terms also matched

Topic Query

MB004 mexico , drug war
MB005 nist, computer, security
MB008 phone hacking, british
MB010 egyptian, protester, attack, museum
MB013 oprah winfrey, oprah, half-sister
MB017 white stripe, breakup
MB019 cuomo, budget cut
MB020 taco bell, filling, lawsuit
MB021 emanuel, residency ,court , ruling
MB037 gifford, recover
MB038 protest, jordan
MB044 white house , spokesman , replace
MB049 carbon monoxide , law , carbon

Table III
PROBLEMATIC TOPICS FOR SIMPLE SELF-INDEXING APPROACHES.

substrings in hashtags or usernames which are not
related to the query topic. If the matched hashtag or
username occurs often in the collection, the result set
is polluted with false matches.

VII. CONCLUSION

We show that self-indexes are a promising approach for
microblog retrieval tasks. The submitted runs outperform
the provided baseline and the median participant score
significantly. Our approach requires little or no linguistic
preprocessing at index time, and offers greater flexibility
for query-time processing. However, leveraging query
processing in self-indexes to improve retrieval effectiveness
by combining phrase and bag-of-word queries remains a
topic of future work.

REFERENCES

[1] P. Ferragina and G. Manzini, “Opportunistic data structures
with applications.” in Proceedings of the 41st IEEE Annual
Symposium on Foundatations of Computer Science (FOCS
2000). IEEE Computer Society Press, November 2000, pp.
390–398.

[2] S. Muthukrishnan, “Efficient algorithms for document
retrieval problems,” in Proceedings of the 13th ACM-
SIAM symposium on Discrete algorithms (SODA 2002).
ACM/SIAM, January 2002, pp. 657–666.

[3] K. Sadakane, “Succinct data structures for flexible text
retrieval systems.” Journal of Discrete Algorithms, vol. 5,
no. 1, pp. 12–22, March 2007.

[4] J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin,
“Top-k ranked document search in general text databases.”
in Proceedings of the 18th Annual European Symposium on
Algorithms (ESA 2010), Part II, ser. LNCS, M. de Berg and
U. Meyer, Eds., vol. 6347. Springer, 2010, pp. 194–205.

[5] G. Navarro and V. Mäkinen, “Compressed full-text indexes.”
ACM Computing Surveys, vol. 39, no. 1, pp. 2–1 – 2–61,
2007.

[6] P. Ferragina, R. González, G. Navarro, and R. Venturini,
“Compressed text indexes: from theory to practice,” Journal
of Experimental Algorithmics, vol. 13, pp. 1.12–1.31, 2009.


