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Abstract

This paper discusses the work done by a team at the University of Florida
for the TREC 2011 Microblog Track. To build a real-time microblog search
engine we rely on topic modeling for our search. To facilitate our algorithms
we bundle similar tweets together in what we call supertweet generation. We
perform online inference and offline inference depending on the time frame of
the topical query. In this paper we discuss our techniques, challenges, future
work, but not the evaluation of our results.

1 Introduction

In this paper, we discuss the task of real-time microblog search. Given a topic (a
time-stamped query) our goal is to find the interesting and relevant microblog entries
(tweets) in the data set. This is difficult for many reasons. First, each microblog
entry is short, this means we don’t have as much context as in most text documents.
Second, many communications do not provide any useful information or are spam.
Adding the scale of the data set and real-time operation to the equation creates an
amalgam of difficulties.

Our system uses a topic modeling framework for querying in the large corpus
(document collection) of tweets. Topic models represent documents as bags of words
without considering word order as being of any importance. These models have the
ability to represent large document collections with lower dimensional topics, which
represent clusters of similarly behaving words. In addition, the document words
are assumed to be generated from topic specific multinomials and the topic for a
particular word is chosen from a document topic mixture. These topics are assumed
to be generated over the corpus vocabulary from a Dirichlet distribution. Blei et al.
gives a detailed description of this generative process and its assumptions [2].

Topic models have a natural way to encode assumptions about observed data.
Their analysis is dependent upon exploring the posterior distribution of model
parameters and hidden variables conditioned on observed words. The model pa-
rameters are corpus-level topics or concepts—sets of words with corresponding
probabilities—and document-level topic mixtures.



Figure 1: System Architecture

In our approach, we use topic models to discover topics in the tweets and compare
them with the estimated topics from the online query. The estimated topics are
further used to rank relevant tweets in the corpus. We use both online and offline
topic modeling to facilitate real-time search. If one considers the tweets as elements
of a stream, we capture hourly batches of tweets and perform topic modeling on each
batch independently. We perform online topic modeling for recent time intervals
that have not yet been included in a batch.

Instead of looking at each tweet individually, we collect tweets into buckets of
other similar tweet in a process called supertweet generation. We construct these
large supertweet documents to help get around the problems associated with analysis
of numerous small documents.

Given a query topic (a small set of search terms) and a time stamp we find
the query topic distribution with respect to the documents before last hourly break
point, and then the topic distribution for all the previous hourly tweet batches. We
can then provide rankings for individual supertweets using Kullback-Leibler (KL)
divergence of the topic distributions.

In the following sections we describe the supertweet generation process, inference
techniques, and ranking procedures. Then we will discuss the approaches we take.

2 Supertweet generation

One of the problems with considering tweets as documents is that they contain
a very small number of words being restricted to 140 characters. To tackle this
problem we form supertweets from individual, similar tweets and use them for our



Feature Weight

hashtag 1.5

web links 1

retweets 0.9

usernames 0.8

bigrams 0.7

Table 1: Features and weights

analysis. Each supertweet can be a collection of tweets or a single tweet aggregated
based on a group of similarity features.

2.1 Similarity features

To group tweets into supertweets, we defined several similarity measures based on
tweets’ textual content after removing stop words. Our stop words list includes
typical Internet stop words, foreign words and swear words.

We identified a set of features found in tweets and associated each feature with
a positive non-zero weight in order to prioritize them.

The weights for each feature were selected experimentally. The limited time
period for this experiment precluded the development of a more principled approach
to feature selection. Table 2.1 lists the features and their weights.

The highest priority is assigned to hashtags as they represent tweets that humans
have deemed to have common topics. Prior work supports the use of hash tags as
a basis for aggregating tweets [10]. Web links are also used for tweet aggregation
on the basis that identical links should have similar content. If a tweet is a retweet,
a lower weight is assigned because we deem them as not being original. Bigrams
(consecutive word pairs) are given the lowest rank as there is a high chance of getting
a matching bigram sequence as compared to other features.

Based on the above five features, we define the similarity between two tweets t1
and t2 as:

F (t1, t2) =
5∑
i=1

Wi ∗Ni(t1, t2) (1)

where Wi is the weight for feature i, and Ni is the number of occurrences of
common features between two tweets t1 and t2.

We can also use this measure to find the similarity between a supertweet and
tweet. In this case, using the average F value for the tweet with each of the tweets
in the supertweet.



2.2 Supertweet Generation

The supertweet generation process aggregates tweets that are similar to the tweets
currently associated with a supertweet. We use a threshold on the similarity measure
to decide whether a new tweet can be added to a supertweet.

Since there are many tweets, we cannot consider the whole corpus for forming
supertweets. Instead, we use a sliding window approach in which we represent
a sliding window as a priority queue Q. Q is a fixed length queue and contains
supertweets in the order of their recency of formation. Whenever Q is full, we
remove the oldest supertweet and insert a newly formed supertweet. The removed
supertweet would be added to our final list of supertweets that we maintain in the
database. Algorithm 1 describes our method for supertweet generation.

Algorithm 1 Supertweet Generation
for each tweet Ti in the corpus do

if Q is empty then
Ti is inserted into Q

else
Find the best supertweet ST in Q with which Ti has highest non-zero similarity measure
greater than threshold
if there exists a supertweet ST then

Merge Ti in ST
else

Create a new supertweet with Ti
if Q is full then

Remove oldest supertweet from Q and add to list of supertweets
Insert the newly created supertweet in Q

else
Insert in Q

end if
end if

end if
end for
Copy remaining supertweets in Q to list of supertweets

3 Topic Modeling and Inference

3.1 Topic modeling and document analysis

Topic models such as latent Dirichlet allocation (LDA) [3] and hierarchical LDA
[11] are well-known for exploratory and predictive analysis of text. They define
topics as distributions over the words in a vocabulary and documents as being gen-
erated by mixtures of these topics. The words of individual documents are drawn
independently from document topic mixtures (mixtures of topic multinomials) [3].
Topic models represent document (message) words in a bag-of-words format without
considering word order to be of any particular importance. These models support



powerful methods for dimensionality reduction of large, unstructured document col-
lections. In addition, we can use the document posteriors for information retrieval
and classification.

Topic models are conventionally designed for fixed [3] or varying numbers of
topics [11] usually on discrete-time document collections. In the case of twitter
conversations, the number of possible topics or concepts is unbounded. We can also
assume that the topics associated with tweets emerge, evolve, and disappear over
time. For this reason, we used the hierarchical Dirichlet process based LDA [11] to
extract topics from the offline data store (which contains tweets from a two week
time period).

3.2 Batch topic learning

Topic models provide a natural way to encode assumptions about observed data and
their analysis is dependent on exploring the posterior distribution of model parame-
ters and hidden variables conditioned on observed words. The model parameters are
corpus-level topics or concepts, i.e., sets of words with corresponding probabilities,
and document-level topic mixtures. Our twitter data analysis is largely based on
these parameters. Performing maximum a-posteriori (MAP) estimation on the LDA
model is intractable [3, 11]. Thus, people typically use relatively efficient sampling
approaches and optimization approaches for inference. Sampling approaches are
usually based on Markov Chain Monte Carlo (MCMC) methods, in which we define
a Markov chain whose stationary distribution is the posterior of interest [7]. Most
common optimization approaches for topic modeling are based on variational Bayes
(VB), which optimizes a simplified parametric distribution close to the posterior
on Kullback-Leibler divergence [3]. Variational Bayes estimation of the posterior
usually introduces bias, where as MCMC-based Gibbs samplers generate indepen-
dent samples from the posterior [8]. In this project, we used a Gibbs sampling
based MCMC to estimate the parameters of the hierarchical LDA [11]. We used the
hierarchical LDA package developed by Chong Wang1 in our batch topic learning.

Even though topic models are very useful in dimensionality reduction, clustering,
and analysis of large document collections [3, 1], their topic estimation process is
computationally expensive and is currently inconceivable for huge collections [13].
In this project, we have a data set of ∼ 16 million tweets. It is nearly impossible
to run topic inference for this entire data set in the time frame of our investigation.
Our approach was to split the data set into the batches of tweets drawn from one-
hour time periods and perform hierarchical LDA on the individual batches. Also,
we deleted those extracted topics that did not have a minimum threshold of word
associations in the whole document collection.

There are some natural limitations that prevent us from directly applying topic
modeling to the twitter data available. First, twitter messages are usually small

1http://www.cs.princeton.edu/ chongw/resource.html



(being restricted to 140 characters), which is substantially different from conven-
tional information text retrieval and mining problems. Second, within this short
text people communicate rich meanings. For example, for long URLs we use URL
shortening services, and for specific events or topics we define # tags. We found that
the restricted lengths of tweets prevents us from exploiting their full potential in a
topic-modeling setting. Our experiments showed that aggregating tweets (section
2) to train the topic model can obtain an improved set of topics. The research work
of Hong et al. [9] discusses similar observations on a different Twitter dataset. In
addition, we consider special tags (e.g. #, @) and URLs as if they are individual
words, allowing them to group into different topical clusters.

3.3 Online document inference

In this project, we used tweets’ and super tweets’ topic mixtures to find tweet
similarities. By online document inference, we mean inferring topic mixtures during
query time. Conventional topic learning algorithms [3, 11] are designed to run on
collections of documents (i.e., in batch mode). In our recent work, we developed
a system [5, 6] that can infer topic structure for newly encountered documents
without retraining the estimated topic model. This model is based on a fast hybrid
Metropolis search [6] and can use the learned models from any batch topic modeling
algorithms.

To enable online processing for a given query, we first find out the corresponding
hour batch to which it belongs by consulting its time stamp. Second, at query
processing time we infer topic distributions for the tweets that belong to the query’s
batch and have time stamps earlier than the query time stamp, using the hierarchical
LDA. Finally, we calculate the query topic mixtures based on all the batches’ pre-
computed topic distributions using the hybrid Metropolis topic search. Once we
have the query topic mixtures, we run our query matching algorithms that are
explained in the next section to display relevant tweets to the end user.

4 Ranking

Our ranking method is a straightforward filtering method. For a query q we infer
topic mixtures using the online document inference. We compute the top-k super-
tweets in each batch using the KL-divergence between the query topic distribution
for the specific batch and each supertweet in the batch. Next, for each tweet we
compute a weighted distribution over several parameters to calculate F (Eq. 1).
These parameters all contribute to the idea of interestingness.

Supertweet score We keep the tweet’s supertweet divergence. A high score here
means there is some contextual relevance between the query and this tweet
neighborhood.



Recency We give an exponential back-off score so that we reward more recent
tweets. The recency is given by 1000/|t1 − t2|, where t1 is the time associated
with the query and t2 is the timestamp associated with the tweet.

Word Length We say a helpful tweet is one with about 20 words. We create a
Gaussian function to give the most weight to tweets around this value. The

word length function is given by 1√
2πσ2

e−
(x−µ)2

2σ2 where x is the number of

tokens in the tweet, µ is 20, and σ is 5.

Important Words This function assigns higher weights to longer matching words
in the candidate tweet.

Jaccard similarity coefficient We calculate the simple term matching methods.

Fuzzy Wuzzy Measure We implemented a string similarity metric developed by
seat geek for matching short snippets of text 2. This algorithm is similar to
the well known Jaro-Winkler algorithm.

These ranking function were implemented in Scala version 2.9.1 and were paral-
lelized using the parallel collection libraries.

5 Discussion

We spent about two-thirds of our time obtaining and cleaning the dataset. The
size of the dataset gave us trouble when attempting to download tweets across the
network. We were finally able to obtain the full data set using the twitter-corpus-
tools3. Next, we removed all foreign language tweets from the data set. Because
we used the HTML scrape of the data set, the language specified from the HTML
document webpage could not be trusted. So, we created two Bloom filters to help
us filter languages. We filled the first Bloom filter with with dictionaries of several
different languages. We filled the second Bloom filter with terms from English and
SMS short codes (e.g. LOL). Then we went through all tweets and removed any
tweet that contained a word that was both in the foreign language bloom filter and
not in the English Bloom filter (with the confidence of a particular threshold). We
found this technique to be fast and accurate with a low number of false positives.

We faced several problems when testing our method on the evaluation queries.
First, we found that the number of terms in each the evaluation query was too small
to generate a statistically interesting topic distribution (e.g. Toyota Recall). This
prevented us from effectively exploiting similarity based on topic distributions with
some queries. Our method was more successful with longer queries containing more
diverse search terms.

2https://github.com/seatgeek/fuzzywuzzy
3https://github.com/lintool/twitter-corpus-tools



Second, during the preprocessing step, we removed infrequently occurring words
from the dataset. Our dataset pruning can remove search terms needed to satisfy
queries associated with infrequently mentioned topics. In addition, we did not per-
form any stemming, lemmatization, or other type of dictionary-based preprocessing
on the tweets or queries. Our operating principle was that similar meaning words
would be clustered together by LDA during topic modeling based retrieval. This
assumption may not hold for infrequently occurring words and word forms even if
synonyms or alternate forms appear frequently.

6 Conclusion and Future Work

We presented a method to perform real-time search for the TREC 2011 Microblog
Track. We used topic modeling to extract and rank tweets from a large dataset.
Our method for this problem is novel but it will require further refinement to be
effective.

Our first goal for future work is evaluation of the results and techniques. Our
initial results were somewhat dissappointing but have led us to a better understand
of some of the limitations of topic modeling. The topic multinomials we identified
appeared to be quite reasonable. The choices we were forced to make in supertweet
formation and feature weighting need to be considered more carefully. Second, we
will look into evolving topics across time-varying batches. Other researchers have
tracked topic over time [12]. Third, our features for ranking are few. In the future we
will look into adding soft tf-idf scores and other parameters to increase accuracy [4].
To offset our shortcomings, we believe query expansion techniques will be helpful
for matching queries. Finally, we plan to create a simulator so we can test our code
in a real-time environment.
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