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1 Introduction

The growth of patient data stored in Electronic Med-
ical Records (EMR) has greatly expanded the po-
tential for the evidence-based improvement of clin-
ical practice. The proper re-use of this clinical in-
formation, however, does not replace basic research
techniques — it augments them. The Text REtrieval
Conference 2011 Medical Records Track explored how
information retrieval may support clinical research by
providing an efficient means to identify cohorts for
clinical studies.

Mayo Clinic NLP’s submission to the TREC Med-
ical Records track attempts information retrieval at
a semantic level, combining two disparate means
of computing clinical semantics. Substantial effort
has gone into the development of precise semantic
specification of concepts in medical ontologies and
terminologies[1, ?]. But human clinicians do not gen-
erate clinical text by referring to such resources, and
ontology creators do not base their terminology de-
sign on clinical text — so the distribution of ontology
concepts in actual clinical texts may differ greatly.

Therefore, in representing clinical reports for co-
hort identification, we advocate for a model that
makes use of expert knowledge, is empirically vali-
dated, and considers context. This is accomplished
through a new framework: empirical ontologies. Pa-
tient cohort identification is thus a practical use case
for the techniques in our recent work on clinical con-
cept frequency comparisons[2, 3].

The rest of this paper describes the TREC 2011
Medical Records task, describes Mayo Clinic’s run
submissions, and reports evaluation results with sub-
sequent discussion.

2 Background

The inaugural TREC 2011 Medical Records track
was arranged as follows. The data to be retrieved
lay in the University of Pittsburgh’s BLU repository,
which includes only the free text portions of medical
records. Each patient at the University of Pittsburgh
would have one or more medical records (documents)

associated with him or herself. Each record was given
in XML format, and included both structured data
and the unstructured text.

<?xml version=’’1.0’’ encoding=’’UTF-8’’

standalone=’’no’’?>

<report>

<checksum>20060201ER-Fs2xiJYPXwVE-848-1341620775

</checksum>

<subtype>EVAL</subtype>

<type>ER</type>

<chief complaint>DENTAL

PAIN</chief complaint>

<admit diagnosis>521.00</admit diagnosis>

<discharge diagnosis>525.9,E917.9,

</discharge diagnosis>

<year>2007</year>

<downlaod time>2008-02-06</downlaod time>

<update time/>

<deid>v.6.22.06.0</deid>

<report text>[Report de-identified

(Safe-harbor compliant) by De-ID

v.6.22.06.0]

.

.

.

</report text> </report>

Records are uniquely identified by their checksum.
Note that each record contains a note type

and subtype; in the example, the note comes
from an Emergency Room/Department. The
chief complaint section is a helpful textual sum-
mary of what the record is about from the patient’s
perspective, and is not present for every record. The
admit diagnosis and discharge diagnosis serve
a similar function but are also not always present.
They are given as ICD-9 codes, a medical terminol-
ogy frequently used for billing purposes. Finally, no-
tice that the notes were de-identified, so that any
protected health information has been replaced with
surrogates.
The records were grouped into visits — a physical

visit to the hospital. The unit of retrieval was defined
as a patient visit. In total, there were 95,702 records
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that corresponded to 17,198 visits. The largest visit
was 418 records, but the mean visit was 5.56 records.

Participants from 29 institutions were given a set
of 35 hypothetical topics developed by experts at the
Oregon Health Sciences University (OHSU). These
topics defined patient profiles that might be involved
in a clinical trial. For each topic, participants re-
trieved a list of patient visits in order of relevance to
the topic.

For evaluation and ranking, there were two evalu-
ation rounds. In the judged round, retrieved records
from participants’ runs were given to assessors at
OHSU. These assessors rendered relevance judgments
on a stratified pool of visits — the top 10 of each
submitted run, and decreasing percentages of lower-
ranked visits from each run.

Although there was a fairly consistent pool depth
(number of adjudged visits for each topic), the na-
ture of each topic and its correspondence with the
given dataset varied greatly. For example, topic 130
was discarded for purposes of evaluation because no
records were assessed as being relevant to the query
topic; on the other hand, other topics likely had many
relevant visits that were never assessed.

Thus, the primary evaluation metric chosen for
rankings was bpref, since it only penalizes systems for
placing irrelevant documents ahead of relevant doc-
uments. Other evaluation metrics such as P@10 will
be presented where they illustrate something about
the data, system outputs, or evaluation procedure.

In the unjudged round of evaluations, bpref and
other metrics were calculated based on the relevance
judgment pools from the first round. Thus, a metric
like P@10 for an unjudged round is an approximation,
unlike that for a judged round.

Mayo Clinic NLP submitted runs to both the
judged and unjudged rounds, but we report only the
latter (the former contained significant bugs).

3 Methods

In our empirical ontologies approach, each query is
predominantly represented at the semantic concept
level, rather than at a textual level. Similarly, each
document is represented as a set of semantic concepts.
Query concepts and document concepts are weighted,
aggregated, and compared to produce a ranking of
the most similar topic–visit pairs.

Below, we describe Mayo Clinic’s baseline un-
judged run and then detail the innovations intro-
duced in the other runs.

3.1 Baseline

Each topic query is given in a form such as

Number: 108
Patients treated for vascular claudication
surgically

From the text of this query, we manually assigned
semantic concepts to important semantic concepts.
As a baseline configuration (outside the dotted line
of Figure 1), the weights for each query were speci-
fied manually. Three medical experts were asked the
following questions:

1. What are essential concepts in the query?

2. What procedures, medication, or surgeries treat
this (if not in the topic description)?

3. What distinction is being drawn (things that are
NOT wanted)?

4. What is a typical patient with this condition
like? Common comorbidities?

5. What types of notes will this be found in? NOT
found in? (e.g., discharge diagnosis, operative
note)

6. Are there other terms that express what they are
looking for better?

The answers to these questions were at first manually
written as term lists by the experts. We normalized
these terms to concept unique identifiers (CUIs) from
the the Unified Medical Language System (UMLS)
Metathesaurus[1] via the UMLS Terminology Ser-
vices. We augmented these CUIs with pseudo-CUIs
for age and gender terms, as well as terms from the
last question that might be in text but might not be
capturable by dictionary lookup algorithms.
Weights for each of the concepts were given a

weight according to which question they were answer-
ing: 1.0, 0.75, 0.5, and 0.25 for the first 4 questions,
respectively. CUIs for item 3 were marked as negated.
The second-to-last question was unused for the base-
line method, but, for use in later methods, weights
were given to note types for each topic. Beyond the
questions we asked experts, weights were also given to
sections within a medical record upon analysis of the
topics; these were also unused in the baseline method.
We then view each topic query as a vector, where

each index indicates the weight of a concepts. For
the baseline model, the query processing ends here,
and we have produced a query ‘mask.’
Figure 2 shows the methodology for processing and

retrieving reports, where again, the baseline method



Figure 1: Block diagram for query expansion. Dotted line separates baseline and other techniques.

Figure 2: Block diagram for visit summarization. Dotted line separates baseline and other techniques.

is outside the dotted line. First, we automatically ex-
tract concepts from reports in the Pittsburgh repos-
itory using standard clinical NLP tools. In the
baseline method, this mapping from text to UMLS
concepts was accomplished with an Aho-Corasick[4]
dictionary lookup on normalized tokens, using the
UMLS 2011AA as the dictionary.

For report-side processing, we again had a few spe-
cial cases, where we automatically assigned CUIs ac-
cording to rules. ICD-9 diagnosis codes were trans-
lated into CUIs via the Metathesaurus, and were in-
cluded. Special pseudo-CUIs were created for age and
gender groups. Also, the same pseudo-CUIs from the
query side (age, gender, terms from the last question)
were included.

For each report, we count the frequency of all con-
cepts (CUIs) that are present. Our previous work
shows that this is relatively similar to tf-idf in the
medical domain[3]. Then, for each hospital visit,
weights are summed across reports to obtain a vec-
torial representation. This allows us to represent the
patient’s visit in vectorial form, just as we had rep-
resented the query.

We can then rank query–visit pairs by comparing
the vectors. The simplest method for doing this, co-
sine similarity, was used as our baseline. The 1,000
visits closest to each query topic vector were ranked
and retained as our run submission.

3.2 Propagation

The idea of empirical ontologies, while present in the
baseline system, is implemented most fully with the
idea of propagation. Because we are viewing each
query and each report as a collection of weighted se-
mantic concepts, we can make additional inferences
at a semantic level. These are illustrated in Figure 3.

Ontological propagation. The UMLS Metathe-
saurus contains CUIs that arise from source on-
tologies, which maintain hierarchical relation-
ships between concepts. For example, an “colon
structure” (CUI: C0009368) has an ‘isa’ relation-
ship with its ontological parent, “large intestine
structure” (CUI: C1709915). Ontological propa-
gation takes a set of weighted concepts (i.e., di-
rectly from the queries, or from frequency counts
in the reports) and propagates those weights to
hierarchically related concepts.

If a concept “colon structure” is mentioned, the
presence of its parent “large intestine structure”
is entailed. Thus, we propagate weights from
a concept to its parents (see Figure 3 for the
corresponding example). However, if a con-
cept “colonoscopy” is negated “no colonoscopy,”
it does not imply that no procedures were
done. However, it may imply that “no virtual
colonoscopy” was done. Therefore, for negated
concepts, we propagate weights from a concept
to its children.



Figure 3: Left: Hierarchically-arranged concepts with weights represented by circle sizes. ‘x’ denotes a
missing concept. Right: Propagation of a concept (“colon structure”) to hierarchically related concepts
(“large intestine structure”) and co-occurrence related concepts (“colonoscopy”). The red (shaded) circles
indicate weights added by the propagation. The strength of co-occurrence relationships are shown as the
size of red arrows.

Of course, it is not always meaningful to exe-
cute this kind of propagation fully. For example,
it is may not be helpful to say that there is an
instance of a “anatomical site” when the con-
cept “colon structure” is discovered. Therefore,
we implement two kinds of decay and allow an
optional cutoff. First, we included a constant
multiplier (less than 1) to make any propagated
concept count less than an originally-discovered
concept. Second, we implement a geometric de-
cay based on path distance (number of hierarchi-
cal nodes separating the original weighted con-
cept and the concept that will receive additional
weighting). Finally, we give the option to cut off
upwards or downwards propagation at defined
path distances.

Figures 1 and 2 show where Ontological propa-
gation takes place in our system.

Co-occurrence propagation. Ontological seman-
tic relationships, as coded by experts, sometimes
ignore the empirical realities of how concepts are
distributed. We also investigated distributional
relationships between concepts, so that concepts
occurring in the same document would have re-
lationships between them with some weight de-
fined by how many times they co-occurred. This
is shown on the right of Figure 3 by the size
of the arrows between “colon structure” and
“colonoscopy” and between “colon structure”
and “ascending colon structure.”

We created two large tables storing the frequency
of CUI occurrences in each document, based on a

random sample of 50 million Mayo Clinic clinical
notes. The smaller had 79,597,219 relationships,
and the larger had 282,712,288. These tables ex-
cluded the most common concepts in the clini-
cal documents due to computational constraints.
The intuition was that common concepts are un-
likely to be highly discriminative, since previous
work shows they are fairly general terms[3].

These tables were queried in SQL to retrieve co-
occurrences, as follows:

SELECT a.cui,b.cui,COUNT(*)

FROM doccuifreq a, doccuifreq

b WHERE a.cui=$incui AND

a.doc=b.doc AND a.cui<>b.cui

GROUP BY b.cui HAVING

count(*)>cutoff

where cutoff was the fewest co-occurrences that
would be reported as a valid relationship. Be-
cause searching for the co-occurrences of a con-
cept is time-consuming, we limited this search
to only the query expansion section, i.e., to con-
cepts that were present in the query.

3.3 Variants

Mayo Clinic NLP submitted 4 system configurations:

1. mayo2noprop (Section 3.1): Baseline config-
uration with manually-assigned query concepts
and weights; report weights are based on Aho-
Corasick string matching.



2. mayolbrst (Section 3.3.1): Includes the addi-
tional processing from the dotted boxes of Fig-
ures 1 and 2.

3. mayolbra (Section 3.3.2): Replaces
mayo2noprop’s maual query weights with
automatic weights from Aho-Corasick string
matching on the text of the query.

4. mayoubr (Section 3.3.3): Uses cTAKES instead
of Aho-Corasick for Dictionary Lookup on re-
ports.

3.3.1 Expansion and weighting (mayolbrst)

The configuration of the mayolbrst run is as fol-
lows:

• Query-side ontological propagation. Weights of
query concepts are extended to UMLS ‘isa’ re-
lationships (ontological neighbors). The initial
downweighting of ontologically propagated con-
cepts was set at 0.9 for positive concepts and
0.7 for negative concepts. The geometric decay
parameter based on the path was set at 0.125.

• Query-side co-occurrence propagation. Weights
of query concepts are extended to co-occurring
concepts from Mayo’s NLP-processed corpus of
50 million-plus clinical notes.

• Report-side ontological propagation. Weights of
report concepts are extended to UMLS ‘isa’ re-
lationships (ontological neighbors). The same
decay parameters were used as the query-side
ontological propagation above, but additionally
cut off propagation towards parents at a path
distance of 3, and towards children at a path
distance of 2.

• Type weights. A multiplier is included on the
report side for what type of note each concept
is from, since a visit may have reports of dif-
ferent types. For example, for Topic 108 (see
Section 3.1), concepts found in Operative notes
were deemed 1.5× more useful than those found
in other note types.

• Section weights. A multiplier is included on the
report side for what section of a note each con-
cept is from, e.g., DIAGNOSIS might be higher
weighted than FAMILY HISTORY. Sections are
automatically tagged using SecTagger, as per
Figure 2.

3.3.2 Automatic query-side concept extrac-
tion (mayolbra)

This run, mayolbra, differed from the other 3 in the
means by which it interpreted the query topic. The
others used manual CUI assignments and weights,
whereas mayolbra assigned these CUIs and weights
automatically. The same baseline dictionary lookup
procedure (based on the Aho-Corasick algorithm)
that was used on the reports was also used on the
raw text of the query.
This implied that query processing had no special

weighting, since the concept extraction had method-
ology used frequency, and the concept frequency in
the queries was not necessarily tied to importance.
However, this also meant that the same CUI(s) would
be found from both the queries and the reports for a
given text string.
The propagation configuration of this run was iden-

tical to that of mayolbrst. No type weights or sec-
tion weights were used.

3.3.3 UIMA-based report-side concept ex-
traction (mayoubr)

This run, mayoubr, differed from the other 3 in
the means by which concepts were found in the re-
ports. Report processing was carried out using Mayo
Clinic’s clinical Text Analysis and Knowledge Extrac-
tion System, cTAKES[5]. The query-side processing
was manual, consistent with the baseline. This al-
ternative report-processing pipeline was used out-of-
the-box, and no tuning was added for age, gender,
special terms, or ICD-9 diagnostic codes.
The propagation configuration of this run was

again identical to that of mayolbrst. No type
weights or section weights were used.

3.4 Development Evaluation

During development, we evaluated which of our algo-
rithms might be useful by performing case-insensitive
string matching of terms from each query, and then
examining the top N reports. We then counted
the percentage of records that contained matches.
This metric was averaged across queries for each of
our submitted runs, yielding a % accuracy measure
similar to P@N that tests our methods against un-
weighted string matching. It is a rough measure,
since there is no test to ensure that all the condi-
tions of the query are met. The accuracy for the top
10, 20, 50, and 100 reports are:

1. mayo2noprop: 90.29, 88.86, 87.26, 85.51

2. mayolbrst: 90.57, 89.57, 87.26, 84.83



3. mayolbra: 68.85, 68.57, 66.40, 64.65

4. mayoubr: 80.57, 79.42, 76.97, 75.00

The 4 runs were chosen based on the development
evaluations. Preliminary results showed that expand-
ing queries and reports based on ontologies and co-
occurrences did not make a significant difference in
the accuracy. This is not unexpected; extending the
weights to related concepts would not necessarily in-
crease the number of exact string matches (which
were used to define the metric). The official results
showed that this was not the case on a real relevance
judgment task.

Other variations were tested, but unsubmitted for
final runs. Using the developmental evaluation, we
made a few additional observations. First, we var-
ied the size of co-occurrence tables used. Recall that
we stored to tables from which we calculated co-
occurrence relationships; the smaller co-occurrence
corpus surprisingly did not impact accuracy greatly.
Additionally, we manually tested a few parameter set-
tings for coefficient, decay, and cutoff in the propa-
gation steps. The final configuration submitted in
mayolbrst, mayolbra, and mayoubr performed
the best on the development evaluation task.

4 Evaluation

Official TREC results on the baseline and variants
are as follows:

bpref R-prec P@10

mayo2noprop 0.3930 0.1709 0.2353
mayolbrst 0.4260 0.2203 0.2794
mayolbra 0.4527 0.2222 0.2794
mayoubr 0.2503 0.1059 0.1824

Ranked according to bpref, this places mayolbra

in 13th place out of 29 participating institutions at
TREC 2011.

5 Discussion

It is evident that there was a significant effect of in-
cluding the more sophisticated query expansion fea-
tures. Interestingly, the automatic system receieved
the best score on all metrics. This is especially in-
teresting because our accuracy metric used for devel-
opment did found the opposite result. This is likely
due to the fact that when the query was processed
with the same dictionary lookup algorithm as the re-
ports, and the exact same CUIs were used for both,

but this did not necessarily correspond to exact string
matches in the development metric.
It is also clear from comparing mayoubr to may-

olbrst that what goes into the report processing
makes a significant difference, though the fact that
metadata was unused in mayoubr makes the result
inconclusive for the UIMA-based concept extraction
approaches in general. Future versions with cTAKES
could increase in accuracy considerably.
It should be noted that these were in the “un-

judged” competition, and a large proportion of the
returned reports were therefore unjudged. Some of
the metrics (especially P@10) are dominated by the
fact that these were unjudged runs. In each of the
4 systems, less than 50% of the top 10 visits were
judged. Thus, the reported values of P@10 were close
to the lowest possible values (if all the unjudged visits
turned out to be irrelevant). This metric is particu-
larly susceptible to the lack of judged visits; indeed,
a meta-analysis of all submitted TREC runs showed
that the P@10 for our systems were abnormally low
compared to others with similar bpref scores.

6 Conclusion

The TREC 2011 Medical Records track competi-
tion provided an opportunity to use the semantically-
oriented empirical ontologies for a practical informa-
tion retrieval task, cohort identification. We obtained
competitive results that illustrated the usefulness of
advanced features like propagating weights between
related concepts. Additionally, we found that the
match between query-side and report-side algorithms
had the most significant effect on performance.
Future work includes viewing the information re-

trieval task from a text-centric perspective without
losing some of the gains that are possible from se-
mantic reasoning.
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