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Abstract

We apply a generative probabilistic model of noisy crowdsourced coding to overlapping relevance
judgments for documents in several topics (queries). We demonstrate the model’s utility for Task 2 of
the 2011 TREC Crowdsourcing Track (Karzai and Lease 2011).

Our model extends Dawid and Skene’s (1979) approach to inferring gold standards from noisy coding
in several ways: we add a hierarchical model of prevalence of relevant documents in multiple topics
(queries), semi-supervision using known gold labels, and hierarchically modeled priors for coder sensitivity
and specificity. We also replace Dawid and Skene’s maximum likelihood point estimates with full Bayesian
inference using Gibbs sampling and generalize their full-panel design in which every coder labels every
document to a fully ad hoc design in which a coder may label each document zero, one or more times.

1 The Data

The training data consists of overlapping crowdsourced relevance judgments for pairs of queries and
documents along with a seed set of known gold-standard labels. The underlying data was collected by
Wei and Lease (2011) using Amazon’s Mechanical Turk with gold-standard labels provided by NIST.
The data that was annotated is a subset of document/topic pairs for which the documents were judged
relevant by systems in the the 2010 TREC Relevance Feedback track.

Although originally collected on a three-point scale (highly relevant, relevant and irrelevant), the two
relevant categories were collapsed for this evaluation.

The data revolves around 100 different structured queries, which are called “topics” in TREC eval-
uations. The topics themselves are not part of the data for the evaluation in the sense that the only
information we have about a topic is an identification number.

A total of 19,033 topic/document pairs were annotated by workers. The documents themselves are
not part of the data for the evaluation, being available only as identification numbers.

A total of 762 workers participated in coding the data, each annotating differeing sized subset of the
topic/document pairs. Like the topics and documents, the only information we have about the workers
is an identification number.

Gold-standard judgments (as labeled by NIST) are provided for a total of 2275 topic/document pairs.
An additional 1000 gold-standard judgments on topic/document pairs were held out and will be used for
evaluation.

An additional 16,758 topic/document pairs are provided with no gold-standard judgment, bringing
the total to 19,033 topic/document pairs.

For the 2275 topic/document pairs with gold labels, there are an additional 13,749 worker-supplied
labels. For the 16,758 topic/document pairs without gold-standard labels, there are 75,875 worker-
supplied labels.
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2 The Evaluation

There are two subtasks making up Task 2 of the TREC 2011 Crowdsourcing Track.
The first subtask is to provide categorical relevance judgments for each topic/document pair (0 for

irrelevant and 1 for relevant). These judgments may be fractions between 0 and 1.
Evaluation for the first task is with the traditional IR measures of precision (TP/[TP+FP]) and

recall/sensitivity (TP/[TP+FN]). Because precision and recall ignore true negatives, we’ve been lobbying
to also have specificity (TN/[TN+FP]) evaluated.

Given these measures, we are skeptical about the utility of fractional judgments (see section 9.3).
The second subtask is to rank the documents by relevance for each topic. These will be scored by

standard TREC ranking evaluations.

3 Overview of Our Entries

We have entered three systems based on a semi-supervised model and an unsupervised model. For two
of these entries, we quantize results to 0 or 1. For one entry, we use a Bayesian estimator of relevance
probability. Specifically, we’re minimizing expected squared estimation error, which amounts to using
posterior averages for estimates. This is not a method that’s tuned to the evaluation.

For all entries, we rank based on our Bayesian estimates of relevance probability.

4 The Model

4.1 Constants

Data sizes are given by the following unmodeled constants.

• J > 0: number of coders

• T > 0: number of topics (i.e., queries)

• I > 0: number of document/topic pairs

• K > 0: number of judgments (i.e., labels)

In a complete panel design, every coder would judge each document/topic pair exactly once. Because of
the mixed design of the TREC data, it is convenient to use the following constant indexing arrays.

• tt[i] ∈ 1:T : topic for document/topic pair i ∈ 1:I

• jj[k] ∈ 1:J : worker for judgment k ∈ 1:K

• ii[k] ∈ 1:I: document/topic pair for judgment k ∈ 1:K

4.2 Variables

The lowest-level random variables in the model are discrete.

• z[i] ∈ {0, 1}: relevance of document/topic pair i ∈ 1:I

• y[k] ∈ {0, 1}: label provided by worker jj[k] for document/topic pair ii[k] for judgment k ∈ 1:K

The labels y are fully observed. In the unsupervised case the true relevances zi are unknown. In the
semi-supervised case, values of zi for are known for for some document/topic pairs i.

The labels and relevances are characterized by the following continuous parameters.

• π[t] ∈ [0, 1]: prevalence of relevant documents in topic t ∈ 1:T

• θ0[j] ∈ [0, 1]: specificity of worker j ∈ 1:J

• θ1[j] ∈ [0, 1]: sensitivity of worker j ∈ 1:J

The continuous parameters have priors, which characterize their distributions.

• φπ, φ0, φ1 ∈ (0, 1): prior mean for prevalence, specificity, and sensitivity

• κπ, κ0, κ1 ∈ (0,∞): prior count size for prevalence, specificity, and sensitivity

In our Bayesian hierarchical model, we also treat these as variable and provide one additional level of
hard coded priors for them. The sensitivity and specificity parameters characterize the population of
coders in terms of average accuracy, average bias, and the variation among coder accuracies and biases.
For the prevalence parameters, these priors characterize the mean and variation in the percentage of
relevant documents across topics.
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4.3 Probability Model

The full probability model defines the joint probability density over all of the variables. We define the
joint probability using sampling notation to represent a directed graphical model.

Working top down, the top-level prior means are sampled from a uniform Beta(1, 1) density.

• φπ, φ0, φ1 ∼ Beta(1, 1)

The precision parameters are sampled from a weakly informative Pareto (inverse polynomial) distribution
slightly favoring lower counts.

• κπ, κ0, κ1 ∼ Pareto(3/2)

The mid-level population parameters for prevalence are sampled based on their prior parameters κπ
and φπ, which characterize the prior mean and (inverse) variance respectively (we convert back to the
standard Beta-distribution parameterization in terms of prior success and failure counts).

• π[t] ∼ Beta(κπ × φπ, κπ × (1− φpi))
Sensitivity and specificty for annotators are sampled the same way from their own priors.

• θ0[j] ∼ Beta(κ0 × φ0, κ0 × (1− φ0))

• θ1[j] ∼ Beta(κ1 × φ1, κ1 × (1− φ1))

The lowest-level discrete parameters for relevance are generated according to prevalence for their
topic.

• z[i] ∼ Bern(π[tt[i]])

The most complex sampling formula is for the labels provided by the coders.

• y[k] ∼ Bern(z[ii[k]]× θ1[jj[k]] + (1− z[ii[k]])× (1− θ0[jj[k]]))

In this formula, ii[k] is the document/topic pair being coded and jj[k] is the coder. Thus θ1[jj[k]] is
the sensitivity of the coder (i.e., the coder’s accuracy on relevant document/topic pairs), and θ0[jj[k]]
the specificity (i.e., accuracy on irrelevant pairs). The value of z[ii[k]] is the binary relevance of the
document/topic pair being coded. If the relevance z[ii[k]] is 1 (relevant), the label is generated from
the coder’s sensitivity θ1[jj[k]]; if it is 0 (irrelevant), the label is generated from the 1 minus the coder’s
specificity θ0[jj[k]] (the inversion is because 0 is the correct answer for an irrelevant pair).

It’s now straightforward to read the entire joint probability density from the sampling notation by
converting indices to products.

p(φπ, φ0, φ1, κπ, κ0, κ1, π, θ0, θ1, y, z)

= Beta(φπ|1, 1)× Beta(φ0|1, 1)× Beta(φ1|1, 1)

× Pareto(κπ|1.5)× Pareto(κ0|1.5)× Pareto(κ1|1.5)

×
T∏
t=1

Beta(π[t]|φπ, κπ)

×
I∏
i=1

Bern(z[i]|π[tt[i]])

×
K∏
k=1

Bern(z[ii[k]]× θ1[jj[k]] + (1− z[ii[k]])× (1− θ0[jj[k]]))

The inference problem presented by the TREC 2011 challenge is to estimate the conditional prob-
ability of true labels given the observed labels from the coders, namely p(z|y). In the semi-supervised
case, we take z = z′, z′′, with z′ being unknown and z′′ being known. So the semi-supervised case, we
infer p(z′|y, z′′) and for the fully unsupervised case, we infer p(z′, z′′|y).

Given that we are also interested in the other parameters, we will draw N samples from the full
posterior, here shown for the semi-supervised case.

p(φπ, φ0, φ1, κπ, κ0, κ1, π, θ0, θ1, z
′|y, z′′)

In this formulation, it is clear that the only data observed are the labels y and in the semi-supervised
case, the subset z′′ of true labels.
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For inference, we draw from the posterior a sequence of samples,

φ(m)
π , φ

(m)
0 , φ

(m)
1 , κ(m)

π , κ
(m)
0 , κ

(m)
1 , π(m), θ

(m)
0 , θ

(m)
1 , z(m)

for m ∈ 1:M . This supports full Bayesian inference, as we describe in the next section.

5 Bayesian Inference

Let γ be the full set of parameters and y be the data, so that p(γ|y) is the marginal posterior of
parameters γ given observed data y. We are usually interested in expectations of functions f(γ) of the
parameters. Given samples γ(1), γ(2), . . . drawn from the posterior p(γ|y), we are able to approximate
posterior expectations using simple posterior averages,

E[f(γ)|y] =

∫
f(γ) p(γ|y) dγ ≈ 1

M

M∑
m=1

γ(m).

TREC requires point estimates ẑi of relevance for every document/topic pair i. The posterior mean
E[zi|y] (with y fixed and henceforth ellided) is a convenient estimator with two pleasant properties. First,
it is unbiased, so the expected error is zero, E[zi − ẑi] = 0. Second, it minimizes expected squared error,
E[(zi− ẑi)2]. Conveniently, the posterior mean can be estimated by averaging over the posterior samples

z
(m)
i ,

ẑi = E[zi] ≈
1

M

M∑
m=1

z
(m)
i .

In some submissions, we reduced these to binary estimates by setting the estimate to 1 if ẑi > 0.5 and
to 0 otherwise. If TREC were using log loss (see section 9.1), it would make sense to bound values away
from 0 or 1, which arise due to the limited precision of sampling (number of significant digits grows
proportionally to the square root of the number of samples).

We use these estimates ẑi for ranking documents within topics purely out of convenience.

6 Implementation

We use Gibbs sampling with three parallel chains with diffuse starting values for continuous values and
categorical assignments determined by voting (with coin flips for tied votes). We took 2000 samples in
each of three chains and discarded the first 1000. The second 1000 samples per chain mixed well, with
potential scale reduction statistics statistics R̂ all being near 1.

Given that we have a directed graphical model with standard parametric sampling distributions, we
are able to use JAGS 2.2.0 (Plummer 2010) for sampling. 64-bit JAGS is not very efficient, requiring
2.5 GB of memory to process the data, and requiring a few hours to gather the samples in both the
unsupervised and semi-supervised settings.

7 Posterior Fit

In this section, we provide several plots derived from posterior samples. Figure 1 shows the monotonic
relationship between voted relevance and estimated relevance in the semi-supervised model (the ends are
not extrapolated properly due to the nearest-neighbor trend curve fitting).

Figure 2 shows the broad range of sensitivities and specificities in evidence. Specificity is particularly
variable. Of particular interest is the number of coders with performance no better than chance or
slightly worse than chance (i.e., adversarial). On pleasant feature of our model is that it automatically
discounts coders with chance performance, as their responses are independent of the true category and
thus provide no information (see section 8).

Figure 3 breaks out 16 coders who provided different number of labels. We see that the coders with
very many labels have chance performance, with the two highest providing all zero (irrelevant) and all one
(relevant) responses respectively. This negative correlation between label quantity and quality is common
with Amazon’s Mechanical Turk; for instance, in the data collected by Snow, O’Connor, Jurafsky and Ng
(2008), nearly half the annotations were by spam annotators who consistently annotated large numbers
of examples.
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Estimated vs. Voted Relevance

voted relevance
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Figure 1: Voted versus Estimated Relevance: Each point represents a docu-
ment/topic pair. Position on the x axis represents the estimate of relevance through
equally-weighted voting. Position on the y axis represents the estimated relevance, which
adjusts votes based on estimated coder sensitivity and specificity and for the proportion of
relevant documents in the topic. While the trend is monotonic (other than for edge effects
of the estimator), it is highly non-linear, with estimated values being more extreme, repre-
senting higher model-based confidence in the estimates after adjusting for coder accuracies.

Sensitivity vs. Specificity (Estimated)
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Figure 2: Coder Sensivity vs. Specificity: Each point represents a single coder.
The position on the x axis is specificity (i.e., accuracy on irrelevant documents,
TN/[TN+FP]). The position on the y axis is sensitivity (i.e., accuracy on relevant docu-
ments, TP/[TP+FN]). The diagonal red line is chance performance, for which sensitivity
= 1 - specificity, θ1[j] = 1− θ0[j]. Below the diagonal represents adversarial performance,
though the estimates shown here below the line are likely due to sampling error rather than
adversarial coding.
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Figure 3: Sensitivity vs. Specificity by Coder: 300 Posterior samples of sensitivity
and specificity from the unsupervised model for 16 different coders, arranged in increasing
number of annotations. Certainty grows with the number N of annotations.

8 Discounting Spam Coders

A nice feature of the Dawid and Skene model is that a coder that returns random responses will have
no effect on posterior inferences for relevance. First not that a coder returns random responses if their
response does not depend on the category. This happens when sensitivity is one minus specificity, or in
symbols, θ1,j = 1− θ0,j .

With such a coder, there is no effect on posteriors. First note that the contribution to the posterior
of coder j for document/topic pair i given label yk is

p(yk|zi = 1)

p(yk|zi = 0)
=

θj,1
1− θj,0

= 1.

9 Probabilistic Scoring

9.1 Log Loss Scoring

The negation of log probability is known as “log loss” or (sample) cross-entropy. It provides a natural
approach to probabilistic scoring because it is the objective function maximized on the training data by
maximum likelihood estimates and combines with the prior for maximum a posterior (MAP) estimation.

Suppose the true answers are given in the vector y, with yn ∈ {0, 1} and the system repsonses are
continuous values ŷn ∈ [0, 1]. Then log probability of the truth y estimated by system responses ŷ is

L(y, ŷ) =

N∑
n=1

log(yn ? ŷn : (1− ŷn)),

where (y ?x : z) is the ternary operator that evaluates to x if y = 1 and z if y = 0. This is just the log
probability assigned to the true labels y by the model estimates ŷ.
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Figure 4: Posteriors for Hyperpriors: 200 Posterior samples of the hyperpriors for
coder specificity and sensitivity and prevalence of relevant documents. The horizontal axis
is the sample for φ and the vertical for κ. The precision of the specificity prior is much
lower than that of the sensitivity prior and prevalence prior. The prevalence is so high
because the corpus consists entirely of documents judged relevant by information retrieval
systems.

Of course, log probability scoring only makes sense for systems whose responses are interpretable as
probabilty estimates of relevance.

9.2 Square Error Scoring

Another popular method for scoring is based on squared error, which is just the second moment of the
residual. If expected error is zero, this is

Squared error is just the sum of the squared residuals, that is, the sum of the squared differences
between the true answer and system response,

SE =

N∑
n=1

(yn − ŷn)2.

It is often presented in terms of a sample mean, where mean square error is defined by

MSE =
1

N

N∑
n=1

(yn − ŷn)2.

To put the error back on the same scale as the data, the square root is often used, leading to root mean
square error,

RMSE =

√√√√ 1

N

N∑
n=1

(yn − ŷn)2.

Given our use of Bayesian estimates minimizing expected squared loss, our approach should do well under
this evaluation method.
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9.3 Confusion Matrix Scoring

The obvious way to extend the standard confusion matrix measures of precision, recall/sensitivity, and
specificity is to just count fractional responses as partly one response and partly another response. For
instance, if the system sets ŷn = 0.72, we treat that as if it was 0.72 responses of 1 and 0.28 responses of
0.

The problem with this approach is that it double-counts mistakes. Consider an example topic/document
pair with a 0.72 probability of being relevant. Now consider the scoring outcomes for a system that re-
turns 0.72. There’s a 72% chance the document/topic pair is relevant, yielding 0.72 TPs and 0.28 FNs,
and a 28% chance its irrelevant, yielding 0.28 TNs and 0.72 FPs. So the total expectation is for 0.5184
TPs, 0.2016 FPs, 0.2016 FNs, and 0.0784 TNs.

Contrast this with the scoring outcomes for a system that returns 1, which yields a total expectation
of 0.72 TPs and 0.28 FPs.

We ran a simulation in R that took uniform samples in [0,1] for probability estimate, then compared
returning the sampled value or rounding it to the closer of 0 or 1. We then randomly generated the true
label according to the estimate. Expected precision and recall were 0.75 in the quantized case and 0.66
in the probabilistic return case.

Even so, we’re going to submit unquantized results and hope the scoring is reasonable or that the
organizers also provide scores for quantized labels.

10 Previous Work

Models very much like ours were applied by Dawid and Skene (1979) to the problem of pooling the
clinical diagnoses of doctors and medical tests. Our model generalizes Dawid and Skene’s model as well
as their inference procedure. Other than the hierarchical model of topic relevance, these generalizations
were all introduced in (Carpenter 2008).

The first extension is to allow prevalence π[t] to vary by topic t. Dawid and Skene only considered
the case of a single topic (though they were looking at medical diagnoses, not relevance judgments).

The second extension is to allow an incomplete survey design. Specifically, not all topic/document
pairs need to be labeled by each worker. Also, a worker may label a single topic/document pair more
than once.

The third extension adds general priors for the binomial parameters for topic prevalence of relevant
documents π[t] and worker specificity θ0[j] and sensitivity θ1[j]. Dawid and Skene did not provide a full
Bayesian model, instead taking maximum likelihood estimates (MLE), which is equivalent to maximum
a posteriori (MAP) estimation in a full model with uniform priors.

On the inference side, we provide Bayesian estimates based on posterior averages rather than the
maximum likelihood estimates of Dawid and Skene. In simple hierarchical models, MLE and MAP
estimates are prone to degenerate, with likelihoods tending to infinity as prior variance parameters tend
to zero.

Snow et al. (2008) evaluated a fully supervised MAP estimate of Dawid and Skene’s model. Wei
and Lease (2010) evaluated MLE estimates of the Dawid and Skene model with some supervision. In
general, any directed graphical model may be fit using EM or Gibbs sampling with no supervision, some
supervision or full supervision; it’s just a matter of which parameters are known. This fact has been
widely exploited in the epidemiology models where all manner of partial supervision has been explored
(particularly, positive-only follow-up testing).

There have been several publications in the past two years that have reinvented similar models, some
with small representational twists. The only innovation of which we are aware beyond that reported in
the epidemiology literature is that of Raykar et al. (2010), who combined an estimated classifier with
human coders.

Also worth noting is Whitehill et al. (2009), estimated annotation difficulty per item in a binary task.
This approach is common in the epidemiology literature (e.g., Uebersax and Grove 1993). Carpenter
(2008) found the posteriors for item difficulty very uncertain given up to 10 labels per item, the problem
being too many degrees of freedom in the model.

A trend in the epidemiology literature (e.g, Qu, Tan and Kutner 1996; Tu, Kowalski and Jia 1999)
that has so far not surfaced in the machine learning, search and natural language processing literature
as far as we are aware is to use predictors based on the items being classified (e.g., their source, length,
language, etc.) or the annotators (e.g., their training, native language, etc.).
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11 Open Source Software

We’ve provided Java code for munging the basic data and R and JAGS code for marshaling data,
sampling, estimation and reporting. The complete set of code may be checked out of the LingPipe
sandbox using the following anonymous subversion checkout command:

If that link goes away, search for the LingPipe sandbox and use the project name trec2011.
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