
TREC 2011 Microblog Track Experiments
at Kobe University

Taiki Miyanishi Naoto Okamura Xiaoxi Liu Kazuhiro Seki Kuniaki Uehara

Graduate School of System Informatics
Kobe University

miyanishi@ai.cs.kobe-u.ac.jp

Abstract: This paper describes our approach to real-time microblog search that returns tweets
for a given query in reverse chronological order. The approach utilizes a learning-to-rank (L2R)
algorithm that has been increasingly used for information retrieval (IR). Generally, L2R algorithms
require features which represent the associations between a user query and a document (tweet in
this case). However, it is more difficult for microblog search to obtain rich features than traditional
document search because the contents of microblog are too short: limited to only 140 characters. In
addition, there is no standard, publicly available training data for learning to rank microblogs. To
solve these problems, we generate new features by clustering large microblog data (the Tweets2011
corpus). The features are defined for triplets ⟨user query, tweet, cluster⟩ and represent the relevance
of the tweet with respect to both the query and its topic (cluster). An L2R model is learned using
the generated features as well as other features on labeled training data manually created by
our research group. The effectiveness of the proposed approach is demonstrated by comparative
experiments.

1 Introduction

Microblog, most notably Twitter1, is becoming in-
creasingly popular and has been used world-wide, where
real-time search is an important function to have a
grasp of latest development or others’ thoughts of a
topic in which a user is interested. Such informa-
tion play an important role in the field of event de-
tection [10], real-time web search [4], or even safety
information mining [9]. The difference between gen-
eral web search and real-time search is that the former
would return the results ranked by topical relevance
to a user query, while the latter considers time se-
quence as well and presents relevant results in reverse
chronological order (i.e., from the latest to the earli-
est).

The first year of the Microblog track addresses
the real-time adhoc task. The following is the excerpt
defining the task from the Microblog track guideline:

In the first run of the Microblog track, we
will be addressing a search task whereby
a user’s information need will be repre-
sented by a query at a specific time. In
particular, we address a real-time search
task, where the user wishes to see the most
recent but relevant information to the query.
Hence, the system should answer a query
by providing a list of relevant tweets or-
dered from newest to oldest, starting from
the time the query was issued. When se-
lecting tweets to include in the list, sys-

1http://twitter.com

tems should favor “interesting” but “newer”
relevant tweets. Interestingness is subjec-
tive, but the issuer of a query might inter-
pret it as providing somehow added value
with respect to the query topic. For this
year, the “novelty” between tweets will
not be considered.

Our approach to this task consists of three steps:
initial search, reranking, and filtering described in
Figure 1. First, we index tweets and search them
using the Indri search engine [8]. Second, in order to
remove irrelevant tweets to this task, we filter them
by http status codes and their languages according
to the track guideline in this year. After filtering,
we collect features for the retrieved tweets. Also,
we generate another type of features, called seman-
tic features, based on user clusters identified in the
tweets corpus. Using these features, we train a Rank-
ing SVM which was used for reranking the initial set
of retrieved tweets to produce the final tweet list. In-
side our system, we mainly focus on a feature gener-
ation for a learning to rank (L2R) algorithm which
exploits tweet contents and authority features follow-
ing the related work. Note that, it is important to
have good features to be effective for L2R and, un-
like other targets such as web pages, it is difficult to
define such features from the contents of microblogs
(tweets) as each post is limited to only 140 characters.
We tackle this problem by generating new content-
based features to represent the relevance of a tweet
to a given query. To do this, we first cluster a large
tweet corpus (Tweets2011) and then calculate a trig-
onal area for each triplet ⟨query, tweet, cluster⟩ in a

1

System Architecture

Retrieval Message User Semantic

Features :

Clusters

SVD + K-means

Ranking SVM

Hu Jintao visit fails to thaw US-Chinese relations
http://tinyurl.com/4g6f2v6 - North Korea1.

Hu Jintao Meets with Obama: U.S.-China
Relations from 1979 to Today (Time.com)

http://goo.gl/fb/MUpA
2.

U.S., China diplomats to meet in Beijing: Less
than a week after Chinese President Hu Jintao

visited Washington,... http://bit.ly/fAz91q
3.

Egyptian general ends US visit, US urges
restraint (Reuters) http://bit.ly/h3StZq

#Africa #Africa
4.

Jintao ロック大好き5.

...

Final Tweet List

Indri Search Engine

off-line on-line

Tweets Corpus

Filtering

Query (e.g. Jintao visits US)

Retrieved Tweets

Figure 1: Overall system architecture

latent semantic space. In this representation, the rel-
evance of a tweet to a given query is represented via
each topically formed cluster. In addition, to learn a
L2R model, small training data are manually created
using the 12 example topics that the track organizers
assembled and provided to the participants.

The rest of this paper is organized as follows: Sec-
tion 2 describes how we collected our data, includ-
ing Tweets2011, to be used in this work. Section 3
presents the detail of our approach. We report on our
experiments and the results in Section 4. Finally, Sec-
tion 5 concludes this paper with a summary of findings
and possible future directions.

2 Tweet Corpus, Indexing, and
Initial Search

We built the Tweets2011 corpus using the twitter-
corpus-tools2 based on the 16,141,812 tweet seeds pro-
vided by the track organizers. Table 1 shows the dis-
tribution of the HTTP status codes of the results.
These tweets were posted by 5,356,842 distinct users
in total, of which 5,194,623 (97.0%) correspond to the
status codes 200 (OK) or 302 (Found). Unlike tra-
ditional test collections, each participant’s corpus is
slightly different from the other participants due to
the self-archiving process. It is not clear how it af-
fects the final results but supposedly negligible.

Table 1: Number of fetched tweets
Status code # of tweets (%)

200 (OK) 14,230,073 (88.1)
302 (Found) 1,131,329 (7.00)
403 (Forbidden) 207,373 (1.28)
404 (Not Found) 573,034 (3.54)

We created the following two types of indices based
on the resulting HTML files using the Indri retrieval
engine3 with default settings. Neither stemming nor
stop-word removal was employed.

1. Index containing entire corpus (I1).

2https://github.com/lintool/twitter-corpus-tools
3http://lemurproject.org/indri/

Learning to Rank for Tweets [Duan 2010]

(q1, t1)
(q1, t2)

...

(q1, tN1)

...

(qM, t1)
(qM, t2)

...

(qM, tNM)

training data

Ranking SVM
feature

label
(rank score)

(qi, t1)
(qi, t2)

...

(qi, tNi)

test data

f(qi, t1)
f(qi, t2)

...f(qi, tNi)

rank score

feature

Tweet Corpus

Figure 2: Ranking SVM

2. Index containing only the tweets posted before
the specific time associated with each topic (I2).
This index was created for each topic, resulting
in 50 different indices.

The former index I1 used the entire corpus disregard-
ing the timestamp associated with each query. In
other words, this index contains future tweets that did
not exist when a query was issued. Strictly speaking,
this is not appropriate for real-time search because
using this index means we are using future informa-
tion for term weights, such as IDF values. Conversely,
the latter index I2 was created to simulate a realistic
real-time search setting, where no future information
is available when a query is issued. We made the same
number of indices as the number of queries having dif-
ferent timestamps, separately.

Using these indices, we obtained three different
initial search results Texample, Ttopic1, and Ttopic2 as
follows:

1. Texample: Queried the 12 example topics against
I1 and retained top 300 tweets posted before the
given topic time.

2. Ttopic1: Queried the 50 test topics against I1
and retained top 1000 tweets posted before the
given topic time.

3. Ttopic2: Queried the 50 test topics against I2 and
retained top 1000 tweets (tweets posted before
the given topic time do not exist).

The aforementioned 12 example topics (summarized
in Table 2) were distributed in advance by the track
organizers. For tweets contained in Texample and Ttopic1,
we additionally obtained their JSON files as auxiliary
data.

3 Proposed Approach

Our approach uses an L2R algorithm and is similar
to Duan et al. [5] except that we employ filtering and
propose semantic feature generation. L2R model re-
quires training data which consists of a set of queries
(q’s) and, for each query, a list of tweets (t’s) from the
tweet corpus manually judged in relevance order. We
trained Ranking SVM as an L2R model and ranked

Table 2: Example queries.

Number Querytime Title Querytweettime

Example001 Thu Feb 03 22:06:42 2011 Chavez expropriate property 33285274087723010
Example002 Mon Feb 07 19:29:22 2011 Jintao visit US 34695232985645056
Example003 Fri Feb 04 20:03:25 2011 Saleh Yemen overthrow 33616636950880256
Example004 Mon Feb 07 13:53:01 2011 Sudan independence vote 34610585857433600
Example005 Mon Feb 07 17:37:44 2011 natural disasters Australia 34667136454631424
Example006 Wed Feb 02 22:09:28 2011 Kepler discovers new planets 32923583248338944
Example007 Wed Feb 02 15:47:04 2011 Texas school robot 32827348227198976
Example008 Wed Jan 26 03:25:35 2011 State of the Union and social media 30104034627031041
Example009 Tue Jan 25 03:05:55 2011 Cavaliers record 29736694160826368
Example010 Mon Jan 24 00:40:20 2011 Sian Massey comments 29337669070749696
Example011 Fri Jan 28 22:55:25 2011 Mets, Madoff victims lawsuit 31123207859740672
Example012 Sun Feb 06 14:13:31 2011 Bjorn Qatar Masters 34253356427911168

Semantic Features

1

Cluster1
Cluster2

Cluster3

TweetQuery

K-means

Latent Space

TweetQuery

User_3

Normal Space

User_2User_1 User_N

SVD

Feature : area among query, tweet, cluster

(q, t) = {0.7, 0.5, 0.2}

... User_3User_2User_1 User_N...

Figure 3: Feature generation system

a set of tweets in estimated relevance order. These
learning and reranking of tweet steps are illustrated
in Figure 2. Finally, three type filters are applied after
reranking. The following sections describe the main
components of our approach.

3.1 Feature Definitions

For L2R, it is quite important to choose good fea-
tures. Considering the related work, we arbitrarily
chose four types (called scopes) of features as shown
in Table 3 for tweet representation. These scope types
are: “Retrieval” being search scores produced by dif-
ferent IR models, “Message” concerning tweet itself,
such as the number of characters or words and the
number of URLs in the contents, “User” concerning
user who posted a tweet, such as the number of follow-
ers and friends, and “Semantic” indicating the con-
ceptual difference among a query, a tweet and a user
cluster. These scopes, except for the last scope, were
used for judgment of tweet credibility [2].

For binary features (i.e., true or false), their values
are represented as 1 and 0. For numerical features,
they are converted to z-scores. Missing values are
filled with the mean of the normalized values of the
other features in the same scope.

3.2 Feature Generation

Generally, L2R requires features representing the re-
lationship between a user query and a tweet to gener-
alize the model to unseen queries. A commonly used

feature in this regard is to specify whether the query
appears in a document (tweet). However, since each
tweet is limited to 140 characters and there may be
synonyms and polysemous words, simply looking at
surface matches may not be sufficient to generate a
reliable feature. For these reasons, we use K-means
to identify semantic clusters representing topics such
as politics, sport, science, etc. and calculate the se-
mantic similarity among query, tweet, and a semantic
cluster to create semantic features. To calculate the
similarity between query and tweet in a latent concept
space by the word vector projection, we use the view
of Latent Semantic Indexing (LSI) [3]. As the latent
semantic space divides multiple topics into respective
clusters, we can calculate semantic similarities corre-
sponding to each topic. An example of the semantic
feature generation is shown in Figure3.

As the first step of making semantic clusters, we
build a user-word matrix with the tf.idf4 term weight-
ing [7] using the entire Tweets2011 corpus. We remove
infrequent words (less than three) and non-ASCII char-
acters and apply stemming by Snowball5. The result-
ing matrix has n=4,654,678 rows (users) andm=879,192
columns (words). We apply singular value decompo-
sition (SVD) to perform dimensionality reduction and
noise reduction on the high-dimensional user-word ma-
trix. Specifically, we use redsvd6 to perform SVD to
reduce it to p dimensional space.

For clustering, we use the mini-batch K-means [11]
implemented as sofia-kmeans7 using the reduced user-
topic matrix Un×p as input. Specifically, we initialize
the matrix by K-means++ [1] with mini-batches of
size 1000 and 10000 iterations and cluster the data
into k clusters. The centroid of each cluster c⃗p can
be seen as a representative vector for the cluster. We
call this centroid a topic vector.

Thus, we calculate a trigonal area among the topic
vector c⃗p determined by clustering tweets, the query

vector q⃗p and the tweet vector t⃗p (the latter two are
obtained by projecting their original word vectors on

4A user is regarded as a document d in terms of idf.
5http://snowball.tartarus.org/
6http://code.google.com/p/redsvd/
7http://code.google.com/p/sofia-ml/wiki/SofiaKMeans

Table 3: Five scopes of features representing a tweet.

Scope Feature
Retrieval Cosine similarity between query and topic

TFIDF
Okapi
Language Model with Dirichlet Smoothing
Language Model with Jelinek-Mercer Smoothing

Message Length of the text of the tweet in characters
Length of the text of the tweet in number of words
Contains a question mark “?” or exclamation mark “!”
Contains a personal pronoun in 1st, 2nd, or 3rd person. (Three features)
Fraction of capital letters in the tweet
Number of URLs contained on the tweet
Tweet contains “RT”
Day of the week in which this tweet was written

User Time passed since the author registered his/her account in days
Number of people following this author at posting time
Number of people this author is following at posting time
Whether or not the author has a verified account at posting time
Whether or not the author has a non-empty bio at posting time
Whether or not the author has a non-empty homepage URL at posting time
Fraction of tweets containing more than 30% of characters in uppercase

Semantic Area among query, tweet, and cluster in a semantic space

Table 4: Examples of the manually created training data.

Query Relevance Interestingness Tweet
Chavez expropriate property 3 3 Venezuela’s Chavez threatens to seize

bank:/EFE)President Hugo Chavez threat-
ened to expropriate the Venezuelan...
http://bit.ly/dQJFZT

1 2 INTERVIEW - Venezuela’s ”sweetheart” champi-
ons Chavez: Venezuelan President Hugo Chavez
speaks during a meeting

Jintao visit US 3 3 U.S., China diplomats to meet in Beijing: Less
than a week after Chinese President Hu Jintao
visited Washington,... http://bit.ly/fAz91q

1 3 Has China really saved American con-
sumers $600 billion, as Hu Jintao claims?
http://econ.st/hMCeCb

the latent semantic space). The resulting area repre-
sents the relevance of the tweet with respect to both
the query and its topic (cluster), and is used as a fea-
ture. The area is computed by Heron’s formula shown
as follow:

S =
√

s(s− a)(s− b)(s− c) (1)

where a = ||q⃗p− c⃗p||, b = ||⃗tp− c⃗p||, c = ||q⃗p− t⃗p||, and
s is defined as 1/2(a+ b+ c). This area is computed
for each topic cluster, resulting in k different features.

3.3 Filtering

For the real-time adhoc task, non-English tweets are
not considered relevant even if they contain relevant
information in foreign languages. Retweets are not
considered relevant, either. Thus, it is expected to
improve search performance, specifically precision, to

filter out all non-English tweets or retweets. In addi-
tion, low-ranked tweets are removed because the offi-
cial performance metric is precision at 30 (P@30) and
retrieved tweets are ordered in reverse chronological
order, where it is important to retain only (deemed)
highly relevant tweets. To this end, we apply the fil-
tering procedure as follows:

1. Remove all the tweets starting with “RT” or
those with the HTTP status code 302.

2. Remove all the tweets containing non-ASCII char-
acters more than 15 percentages of their length.

3. Remove all the tweets whose lang element, ex-
tracted from their JSON format, is non-en &
which are determined as non-English by Google
Language Detection API8

8http://code.google.com/apis/language/translate/v2/
getting started.html

4. Remove low-ranked tweets.

3.4 Relevance Assessment

After defining features for L2R, we need training data
to train a learning to rank model. As there was no
available training data we could find, we created a
small amount of training data by ourselves using the
12 example topics distributed by the track organizers.
For each example topic, we obtained top 300 tweets
from Texample (see Section 2) retrieved by Indri with
default settings.

Then, a non-native English speaker annotated all
retrieved tweets according to two criteria: relevance
and interestingness each on a scale of 1 to 3 corre-
sponding to ’bad’, ’neutral’, and ’good’, respectively.
More relevant/interesting tweets were assigned higher
scores. Table 4 shows some example tweets and their
scores (labels).

We defined relevance as containing user query words
or their synonyms in a tweet, and interestingness as
containing informative information (which is subjec-
tive). The final tweet score was defined as a product
of these scores. With the training data, a ranking
model was learned using Ranking SVM.

4 Experiments and Results

4.1 Experimental Setup

To learn a ranking function (ranker) which provides
tweets’ ranking in relevance order, we prepared the
training data based on the features as described in
Sections 3.1 and 3.2. We use SVMrank as a ranker, an
implementation of Ranking SVM [6]. No kernel was
used in order to speed up the learning process and
to reduce the number of parameters to be optimized.
After learning, we performed the leave-one-out cross-
validation on the 12 example topics to determine the
optimum parameter C of Ranking SVM, which con-
trols the trade-off between empirical loss and regu-
larization. We tested 0.001, 0.003, 0.005, 0.008, and
0.01.

With the optimum parameters (C = 0.001), we
reranked both search results Ttopic1 and Ttopic2 for the
50 test queries. As the output, we considered only top
30 tweets after reranking.

4.2 Evaluation

The assessors at NIST judged the relevance of pooled
tweets from the 184 runs submitted by the total of 58
participating groups. Among the 50 test topics, it was
reported that the 50th topic had no relevant tweets.
Among the rest, 33 topics was reported to have highly
relevant tweets. We separately report their results in
Table 5, where “all” are results for the 49 topics, and
“high” for the 33 topics.

The primary evaluation measure for this task is
the average of Precision at 30 (P@30). R-Precision
(R-prec) and Mean Average Precision (MAP) are also

shown in the table for reference. The run names in the
first column corresponds to particular experimental
setting as follows:

• Lucene-10009: Top 1000 ranked results by a dis-
junctive baseline run using Lucene10 provided
by the organizers.

• Lucene-30: Top 30 ranked results of Lucene-
1000.

• Indri1-1000: Top 1000 ranked results retrieved
by Indri search with index I1 (i.e., Ttopic1).

• Indri2-1000: Top 1000 ranked results retrieved
by Indri search with index I2 (i.e., Ttopic2).

• Indri2-1000-rt: Top 1000 tweets of Ttopic2 after
retweet filtering (see Section 3.3).

• Indri2-1000-rtlang: Top 1000 tweets of Ttopic2

after retweet and language filtering.

• Indri2-30: An official run submitted as “nor-
mal”. Top 30 tweets of Ttopic2.

• Indri1-30-rtlang: Top 30 tweets of Ttopic1 after
retweet and language filtering.

• Indri1-30-lr-rtlang: Another official run submit-
ted as “ri”. Top 30 of Ttopic1 after reranking and
filtering. In this case, we set reduced dimension
with p = 100 due to the restriction of computa-
tional resources and the number of clusters with
k = 12 because the 12 example topics exist.

We used the two types of indexes I1 and I2 to ob-
tain the results Indri1-1000 and Indri2-1000, respec-
tively. Both results were obtained from Indri search
engine and were evaluated for the top 1000 tweets
against the official relevance judgment. Indri1-1000
is the results for the index using the entire corpus,
and Indri2-1000 is for the indexes built for individ-
ual topics. Our expectation was that the index for
the entire corpus would produce better results as it
contains more information but clearly it did not in
this case. Individual indexes were found to be better
despite of less information. This result means that
future information distorted statistics such as term
weights, resulting in the inferior performance for real-
time search.

Comparing Indri2-1000 to Indri2-1000-rt, Indri2-
1000-rtlang, and Indri2-30, we can see how much im-
provement we gained through the three filters (i.e.
retweet, non-English, and low-ranked filters). In P@30,
retweet filter and non-English filter improved the per-
formance by 26% and 33%, respectively. Also, fil-
tering low-ranked tweets, Indri2-30, dramatically im-
proved the performance by 227%. The same result
holds for a different search engine, Lucene. Lucene-30
(the top 30 tweets taken from Lucene-1000) improved
the performance by 225% comparing to Lucene-1000.

9http://trec.nist.gov/act part/tracks.new11.html
10http://lucene.apache.org/

Table 5: Results comparing different settings.

Run P@30 (all) R-prec (all) MAP (all) P@30 (high) R-prec (high) MAP (high)
Lucene-1000 0.0986 0.1486 0.1411 - - -
Lucene-30 0.3204 0.2130 0.1645 - - -
Indri1-1000 0.0728 0.0710 0.0723 - - -
Indri2-1000 0.0959 0.1505 0.1403 - - -
Indri2-1000-rt 0.1204 0.1784 0.1620 - - -
Indri2-1000-rtlang 0.1272 0.1907 0.1699 - - -
Indri2-30 (normal) 0.3136 0.2123 0.1608 0.0869 0.1767 0.1582
Indri1-30-rtlang 0.3871 0.1950 0.1526 - - -
Indri1-30-lr-rtlang (ri) 0.4265 0.2635 0.2227 0.1303 0.2232 0.2079

This result suggests that topical relevance of tweets
is much more important than when they were posted,
which is counter-intuitive for real-time search. The
improvement is presumably due to the fact that the
corpus contains tweets only for 17 days from Jan. 23
to Feb. 7, 2011. As a whole, these filters are simple
but essential on this year’s rule.

Lastly, the result of the proposed approach (fil-
tering after reranking), indri1-30-lr-rtlang, performed
better than indri2-30-rtlang. Reranking further im-
proved P@30 by about 7%, and this is the best result
among our official submissions.

We summarize the results of our experiments as
follows:

1. Different indexes resulted in different results; fu-
ture statistics of word distribution had harmful
effects for IR precision.

2. Simple retweet and non-English filters signifi-
cantly improved retrieval performance. This re-
sult also indicates that there are many retweets
and some non-English tweets in search results.

3. Focusing on highly ranked tweets resulted in a
striking boost in performance, suggesting that
temporal closeness between a query and them
seems to play an unimportant role in the Tweets2011
corpus.

4. The learning to rank model is effective for im-
proving the performance for real-time twitter
search.

5 Conclusion and Future work

Through the real-time adhoc task of TREC 2011 Mi-
croblog track, we developed a two-step approach: rerank-
ing and filtering. Filtering step identifies and removes
retweets and non-English tweets, which was found
crucial for this task. After filtering, we reranked tweets
based on an L2R model learned using five types of
features. The reranking step further improved the
search performance, achieving the best overall result.
For future work, we plan to analyze effective features
for learning to rank and develop a feature selection
method suited for real-time search. Besides, we will
use query expansion based on time-sensitive features
and algorithm to improve IR performance.

Reference

[1] D. Arthur and S. Vassilvitskii. k-means++: The
advantages of careful seeding. In Proceedings of
the 18th annual ACM-SIAM symposium on dis-
crete algorithms, pages 1027–1035, 2007.

[2] C. Castillo, M. Mendoza, and B. Poblete. Infor-
mation credibility on twitter. In Proceedings of
the 20th international conference on World Wide
Web, pages 675–684, 2011.

[3] S. Deerwester, S. Dumais, G. Furnas, T. Lan-
dauer, and R. Harshman. Indexing by latent se-
mantic analysis. Journal of the American society
for information science, 41(6):391–407, 1990.

[4] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz,
Y. Chang, Z. Zheng, and H. Zha. Time is of the
essence: improving recency ranking using Twit-
ter data. In Proceedings of the 19th international
conference on World Wide Web, pages 331–340,
2010.

[5] Y. Duan, L. Jiang, T. Qin, M. Zhou, and
H. Shum. An empirical study on learning to
rank of tweets. In Proceedings of the 23rd; inter-
national conference on computational linguistics,
pages 295–303, 2010.

[6] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the 8th ACM
SIGKDD international conference on knowledge
discovery and data mining, pages 133–142, 2002.

[7] K. Jones. A statistical interpretation of term
specificity and its application in retrieval. Jour-
nal of documentation, 28(1):11–21, 1972.

[8] D. Metzler and W. Croft. Combining the lan-
guage model and inference network approaches
to retrieval. Information processing & manage-
ment, 40(5):735–750, 2004.

[9] G. Neubig, Y. Matsubayashi, M. Hagiwara, and
K. Murakami. Safety information mining - what
can NLP do in a disaster -. In Proceedings of the
5th international joint conference on natural lan-
guage processing (IJCNLP), pages 965–973, Nov
2011.

[10] T. Sakaki, M. Okazaki, and Y. Matsuo. Earth-
quake shakes twitter users: real-time event detec-
tion by social sensors. In Proceedings of the 19th
international conference on World Wide Web,
pages 851–860, 2010.

[11] D. Sculley. Web-scale k-means clustering. In Pro-
ceedings of the 19th international conference on
World Wide Web, pages 1177–1178, 2010.

