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Abstract. This paper describes the participation of the IRIT lab, university of Toulouse,
France, to the Microblog Track of TREC 2011. Two different approaches were experi-
mented by our team, which are described in the two main parts of the paper.

1 Introduction

Microblogging consists in sharing short messages (microblogs) through a social network plat-
form. Twitter, the most popular microblogging service to date, has experienced exponential
growth in recent years. Launched in October 2006, Twitter’s number of users has increased
from 94,0001 in April 2007 to 200 millions in 20102. It takes now one week for users to send
a billion of tweets3. Having this important microblogging activity, users are overwhelmed by
the enormous quantity of new tweets and difficulty accessing to their interesting topics. A new
retrieval task consisting on tweet search is therefore necessary. This task is triggered by social
and timely motivations in addition to the topically motivations characterizing the traditional
Web search. Users are searching over microblogs for short, concise and real-time information
which is not already indexed by Web search engines.

Among the works having addressed tweet search task, we identify two categories of ap-
proaches. The first one considers various topically, microblogging and social indicators as
input parameters for machine-learned ranking system, one can fo example cite the approach
in [1]. The second category of model-based approaches defines relevance as a multidimensional
component and represents the different relevance factors into an integrated model [2–4]. In
this paper, we present two model-based approaches to rank tweets given a topic: the first
approach use three factors to evaluate relevance. Each factor is computed through a set of
feature scores. These factors are named content features, Twitter features and author features.
The second approach proposes a Bayesian network model that integrates textual similarity,
the influence of microblogger in the network and the time magnitude of the tweet.

The remainder of this paper is organized as follows: the first approach and relative results
are described in section 2, while the second approach and relative results are given in section 3.

2 Combining specific features for microblog search

2.1 Method

TREC Microblog Track organizers defined external evidence as evidence outside the Tweets
2011 corpus. Future evidence are information that would not have been available to the system

1 http://www.usatoday.com/tech/webguide/2007-05-28-social-sites N.html
2 http://www.bbc.co.uk/news/business-12889048
3 http://blog.Twitter.com/2011/03/numbers.html



at the time the query was submited. They decided that runs created using external or future
evidence will be ranked separately from runs that do not. Besides future evidence, we believe
that a system using external evidence runs in strict real-time sense: concretely, there is no
meaning for future evidence. Moreover, external resources are commonly used in IR. For this
reason, we tried to avoid future evidences in our approach.

2.1.1 Design of our approach

The first step in our approach is to index and retrieve the top-N relevant tweets for each topic
using an usual plain-text search engine. The second step consists in processing these results
to evaluate the feature scores (i.e., content, Twitter and author features). The final score is
computed by combining the search engine score with the set of the feature scores. The top
tweets are then sorted in a reverse chronological order. Before displaying results, we processed
the resulting tweets with a language filter so as only those tweets written in English would
be considered (see figure 1).

Our approach is designed to handle multiple search options: first of all, we had the choice
between either indexing all the collection or making an index for each topic. The tweets
indexed in the second case are only those published before the topic’s timestamp. As we did
not want to use future evidence, we only worked with this second version of index.

We also had the possibility to choose between using the topic as it was given by Track
organizers, or adding keywords from our topic expansion module (formulate topic in the
figure). Then, when calculating the score, we had the possibility to use only the search engine
score, or to combine it with feature scores. Finally, we designed a set of refinement parameters:

– MIN: minimum score of the tweets to be displayed in the results.
– MT: the number of terms added to the topic.
– MN: supplies parameter (i.e., the number of results returned by the search engine that

will be processed by the features module) since the feature processing of 1500 tweets took
too much time on our platform (more than 30 min on a dual core machine at 2,8 GHz).

Fig. 1. UML activity diagram summing up of our approach

2.1.2 Indexing and topic search

We choose to use the Lucene platform4 in our approach. This open source software is a high-
performance, full-featured text search engine library written entirely in Java. In addition,

4 http://lucene.apache.org/java/docs



it provides access to powerful term boosting, indexing and predefined searching features.
The tokenizer was modified by organizers to preserve hashtags and mentions (i.e., words
starting with the specific characters of Twitter: #,@). Nevertheless, they specified a field
in the index for the HTTPSTATUSCODE of the tweets. The reason behind doing that is
to be able to specify which type of tweets would be retrieved. Since it was announced that
retweets will not be considered as relevant this year, we retained only the original tweets
with HTTPSTATUSCODE equals to 200. Thus, we dropped out all other type of tweets
(HTTPSTATUSCODE equals to 302, 403, and 404). However, we did not process the data
to remove the implicit retweets (HTTPSTATUSCODE equals to 202 and starting with RT)
since they could contain extra information.

Besides using the configuration aforementioned, we used term-boosting for expanding
topics with keywords. We exploited it to give more importance to the topic terms and to
avoid losing the initial purpose of the topic.

In the rest of the paper, the relevance score obtained by the Lucene search engine for a
tweet t and a query q is denoted by Lucene(t, q). The corpus of top-N relevant tweets obtained
by the Lucene search engine regarding a topic q is denoted by Tq . Finally, Cq denotes the
corpus of all tweets published before timestamp of a topic q. (Tq ⊆ Cq).

Finally, apart from indexing and retrieving, we used the Lucene search engine to calculate
some feature scores. We address this in more details when explaining features in the next
section.

2.1.3 Factor descriptions

In the context of microblog search, there is a set of new criteria of the new media that are
imposed into the issue of retrieval. Relevance surely depends on which task the user is trying
to complete. Considering that, it seems crucial to us to find and add new factors such as
authority, quality, informativeness, temporality, and so on.

In our approach, we use three factors: the content factor, the Twitter factor and the author
factor. Each factor is computed through a set of associated feature scores.

Content features. We used 3 content-specific features which are relative to some microblogs
specificities: the wide variety of topics discussed by authors (1), the shortness of microblogs
(2), and the wide variety of expressions used by authors (3).

- Tweet popularity: this feature estimates the popularity of a current tweet in Tq. We made
the assumption that a tweet is popular if we find the same content in many other tweets.
The similarity between a pair of tweets is calculated using the Lucene content-based
similarity sim(ti, tj). We denote the current tweet by ti. The resulting formula to evaluate
this feature is:

f1(ti, q) =

∑

tj∈Tq,i6=j sim(ti, tj)

|Tq| − 1
(1)

- Tweet length: instinctively, the lengthier a sentence is, the more information it contains.
We calculate this feature by counting the number of words it contains. We denote l(ti) as
the number of words a tweet ti in Tq contains. This feature is defined as:

f2(ti, q) =
l(ti)

maxtj∈Tq
l(tj)

(2)

- Exact term matching: this feature is used to promote tweets that contain terms of the topic
q. nb(ti, q) denotes the number of times a term of the tweet ti exist in the topic q:

f3(ti, q) =
nb(ti, q)

maxtj∈Tq
nb(tj , q)

(3)



Twitter features. We consider 3 additional Twitter-specific features that may indicate the
quality of the information shared through tweets.

- URL presence: by sharing an URL, an author would confirm the information published in
his/her tweet or draw the attention of his/her followers to contents on the web. Thus, we
believe that it could indicate informativeness. It is a binary feature:

f4(ti, q) =

{

1 if ti contains url
0 if not

(4)

- URL frequency: this feature aims to calculate how popular the URLs published in a tweet
in the corpus Cq. frq(url) denotes the number of time the url appear in the corpus Cq.

f5(ti) =
∑

url∈ti

frq(url) (5)

- Hashtag: The # symbol, called a hashtag, is used to mark keyword or topic in a Tweet.
Any Twitter user can categorize or follow topics with hashtags. It gives information to
link tweets describing the same event or place to a group. freq(h) denotes the frequency
of a hashtag in the corpus Cq:

f6(ti) =
∑

h∈ti

frq(url) (6)

Author features. To include the authority of the tweet author in the score function, we
consider two author-specific features:

- Number of tweets: The purpose of this feature is to promote tweets published by active
authors compared to tweets published by someone less active. a(ti) denotes the author of
the tweet ti. N(a(ti)) is the number of tweets published by the author of the tweet ti in
the corpus Cq.

f7(ti) = N(a(ti)) (7)

- Mention: the more an author has been mentioned, the more popular he/she is.M(a(ti))
denotes how many time the author of the tweet ti has been mentioned in the corpus Cq.

f8(ti) = M(a(ti)) (8)

2.1.4 Formulate topics

Since microblogs are too short to express clearly their subjects, and queries are too simple to
give the best representation of the information need, we found the idea of expanding topics a
good solution to improve our chances of retrieving relevant tweets while containing different
words from the topic.

The idea is to extract keywords from news articles published before the timestamps of
a given topic. To do that, we used two APIs in which we could specify the topic and time
period of the articles to extract: NYTimes API 5 and Guardian API 6. Since the articles are
chronologically retrieved by the APIs, for each topic we took the 2 first articles from each
source to produce a mega-document [5]. Then we used the Alchemy API 7 to extract the top-5
keywords. Alchemy API uses deep linguistic parsing, statistical natural language processing,
and machine learning to analyze the content and extract semantic metadata.

5 http://developer.nytimes.com
6 http://www.guardian.co.uk/open-platform
7 http://www.alchemyapi.com



2.1.5 Scoring

Our scoring function is evaluated in two steps. The first step consists in evaluating the score
of each feature (9) and the second step involves the computation of the final score (10). All
the feature scores are normalized to lie between 0 and 1. We adopted a linear function for

features(ti, q) = f1(ti, q) + f2(ti, q) + f3(ti, q) + f4(ti) + f5(ti) + f6(ti) + f7(ti) + f8(ti) (9)

After normalizing the feature scores, the final score is calculated as:

score(ti, q) = lucene(ti, q) + features(ti, q) (10)

with score(ti, q) ∈ [0, 2]

2.2 Results

We submitted 2 runs to TREC Microblog Track 2011: iritfd1 and iritfd2. The only difference
between our two runs is that in iritfd1 we expanded topics with keywords from news articles,
while in iritfd2 we did not. Thus, Run iritfd2 is thus without future or external evidence,
contrary to run irifd1 that is with external but not future evidence. The same function (10)
was used to evaluate the score of tweets in both runs.

To assess the contribution of the features used in our approach, we also created a post-hoc
baseline run (iritfd0) where relevance is based only on scores obtained by the Lucene search
engine.

For iritfd1 and iritfd2, we set our parameters as follows:

– MIN (minimum score of the tweets): 0.7;
– T (the number of terms added to the topic in iritfd1): 5;
– N (the number of results returned by the search engine that will be processed by the

features module): 1,500.

For each topic, the system provides a chronologically ranked list of tweets (up to 1,000).
The number of proposed topics was 50 but only 49 were judged. Two types of relevance
judgments were calculated by organizers: allrel and highrel. The difference between them
is that in highrel only the highly relevant tweets have been considered. Consequently, the
number of topics in this case was only 33.

Table 1 summarizes our results. We present scores of MAP and P@30 for the both types of
relevance judgements (i.e., allrel and highrel), the improvement of iritfd2 compared to iritfd0
(improvement iritfd2/iritfd0), and the improvement of iritfd1 compared to iritfd2 (improve-
ment iritfd1/iritfd2).

We recall that iritfd2 uses features scores and thus can be directly compared with iritfd0
which did not, and that iritfd1 uses query expansion as well as features scores and thus can
be directly compared to iritfd2.

Regarding the evaluation of iritfd0 and iritfd2, features clearly help to retrieve relevant
tweets: the P@30 is improved by 90,49% and the MAP by 24,51% (difference statistically
significant for the two cases).

Compared to iritfd2, The MAP of iritfd1 has improved by 10,20% in allrel and 19,29%
in highrel. However we could not justify this improvement with the topic expansion since
the difference between the two runs was not statistically significant (i.e., p > 0.05 with
a paired Students t-test). More experiments are needed to fully understand the effect of
expansion. Note that the degradation of the P@30 in highrel judgments compared to allrel
judgments is more important than the MAP degradation for the same considered judgments.



This observation is valuable for the majority of the systems (the average of median P@30 is
decreased from 0.2591 in allrel to 0.0686 in highrel). It could be explained by the fact that
MAP is less sensitive to the number of relevant documents than the P@n.

Compared with the median across all runs submitted by any team, iritfd1 outperformed
the P@30 for 27 out of 49 and the median AP for 38 out of 49 topics.

allrel highrel
P@30 MAP P@30 MAP

Iritfd0(baseline) 0,1346 0,1558 0,041 0,1179
Iritfd2 0,2564 0,1940 0,0960 0,1622
Improvement iritfd2/iritfd0 90,49% * 24,51% * 134,14% * 37,57% *
iritfd1(topic expansion) 0,2605 0,2138 0,0970 0,1935
Improvement iritfd1/iritfd2 1,59% 10,20% 1.04% 19,29%

Table 1. Summary of the results. * indicates a significant improvement (p ≤ 0.05 with a paired
two-tailed Students t-test)

2.3 Discussion and future works

We proposed in this section an approach that combines a set of features to rank real time
microblogs. The specificity of our work is that we calculate the tweet scores by keeping in
mind 3 important factors which are content features, Twitter features, and author features.
These factors were calculated by combining a set of features linearly. We also proposed a topic
expansion approach. However, we could not conclude about its effectiveness. There is still a
lot of room for improvement. We need to evaluate the influence of each feature independently.
We will test the effect of the number of keywords added to the topic, which may be detected
with a more suitable topic expansion approach.

3 A Bayesian network retrieval model for tweet search

We present in this section a second tweet search approach based on Bayesian networks that
integrates several relevance features namely hashtags, tweet time magnitude, tweet length
and the social influence of microbloggers.

3.1 Tweet Search Model

We propose to model tweets using Bayesian networks. Such representation allows to model
influenceable sources of evidence though conditional probabilities. We present in what follows
the Bayesian network topology then we focus on query evaluation precess.

3.1.1 Network topology

The Bayesian network for tweet search is represented by a graph G = (X,E), where nodes
X = Q∪K∪T ∪U corresponds to the set of random variables and the set of edges E = X×X

represents conditional dependencies between them. Q, K, T and U correspond respectively
to the sets of queries, terms, tweets and microbloggers.
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Fig. 2. The Bayesian network of tweet search

Information nodes. Bayesian network nodes are classified into 4 layers. Figure 2 presents
information nodes and relationships between them.

- The query layer Q includes the query node q which is associated to a binary random vari-
able q ∈ {0, 1}. The short representation of q = 1 is noted q and denotes “the query q

is observed”. Conversely, q = 0 is noted q̄ and denotes “the query q is not observed”.
We notice that the same notation q is used to refer to the query, the associated random
variable and the query node. The same notation is used for other nodes in the network.

- The terms layer K includes nodes of terms present in the tweet index. A binary random
variable ki ∈ {0, 1} is associated to each term ki.

- The tweets layer T includes tweet nodes. A binary random variable tj ∈ {0, 1} is associated
to each tweet tj .

- The microbloggers layer U includes microblogger nodes. A binary random variable uk ∈
{0, 1} is associated to each microblogger uk.

Information edges. Each edge in the network express a conditional dependency between
nodes. Edges connecting the query q ∈ Q with parent terms ki ∈ K represent the chance of
generating the query from connected term. Each term ki is connected to parent tweets tj ∈ T
that it indexes. Edges from tweets to terms express that the event of observing a particular
tweet impacts the observation of the connected term. Finally, a tweet node ti ∈ is connected
to a single parent node corresponding to the microblogger uk ∈ U having published tj . This
edge shows that the event of observing a tweet tj depends on the observation event of the
corresponding microblogger uk. To avoid cycles in the graph, we assume that tweets and
microbloggers are mutually independent between each other.

3.2 Query evaluation

The relevance of a tweet tj considering a query q is assimilated to the joint probability that
both events tj = 1 and q = 1 appear. This probability is computed as:

P (q ∧ tj) =
∑

∀k

P (q|k)P (uk)
∏

∀i|on(i,k)=1

P (ki|tj)×
∏

∀i|on(i,k)=0

P (k̄i|tj) (11)

k is a query parent configurations defined by a vector of random variables k = (k1, k2, ..., km),
ki ∈ {0, 1}. Considering a query q = {k1, k2} composed of two terms k1 and k2, the set of
query parent configurations is represented by {(k1, k2), (k1, k̄2), (k̄1, k2), (k̄1, k̄2)}. on(i,k) = 1
if ki = 1 according to the query configuration k and on(i,k) = 0 if ki = 0.

Computing probability P (q|k). The probability P (q|k) of observing the query q having
the configuration k helps to weight the different combinations of the query terms as follows:

P (q|k) =
∏

∀i

on(i, k) (12)



Computing probability P (ki|tj). The probability P (ki|tj) of observing a term ki in the
tweet tj depends, on the one hand, on the term’s occurrence and on the other hand on the
tweet properties. This probability is computed using the term frequency F (ki, tj), the hashtag
presence H (ki, tj), the time magnitude T (ki, tj) and the tweet length L(tj):

P (ki|tj) = (1− µ)F (ki, tj) H (ki, tj) + µ T (ki, tj) L(tj) (13)

P (k̄i|tj) = 1− P (ki|tj) (14)

with µ ∈ [0..1] is a smoothing parameter.

- Term frequency F (ki, tj) replaces the common tf measure with a graduated function F (ki, tj)
that map high frequencies into a small interval:

F (ki, tj)

{

1− a
tfki,tj

, if ki is present in tj

0, otherwise
(15)

with a ∈ [0..1] and tfki,tj is the frequency of the term ki in the tweet tj .
- Hashtag score H (ki, tj) leverages the importance of hashtagged terms as follows:

H (ki, tj)

{

1− b
tf#ki,tj

, if #ki is present in tj

b, otherwise
(16)

b ∈ [0..0.5] is the default hashtag score. tf#ki,tj is the frequency of the hashtag #ki in tj .
- Time magnitude T (ki, tj) of tweet tj depends on its submission time. This probability

would be more important when term ki is frequently used at tweet submission period.
The time magnitude is estimated as follows:

T (ki, tj) =
dfki,Γj

|Γj |
(17)

Γj =
{

tk, |θtj − θtk | ≤ ∆t
}

is the set of temporal neighbors of tj within the 2∆t time
window. dfki,Γj

is the number of tweets in Γj containing ki.
- Tweet length L(tj) score highlights tweets closer to the average tweets length avgtl. The

tweet length score of a tweet tj with a length tltj is computed as follows:

L(tj) =
1

1 +
∣

∣avgtl − tltj
∣

∣

(18)

Computing probability P (tj |uk). The probability P (tj |uk) of observing a tweet tj knowing
the corresponding microblogger uk is computed as follows:

P (tj |uk) =
1

|Tuk
|

(19)

Tuk
is the set of tweets published by the microblogger uk

Computing probability P (uk). The probability P (uk) is interpreted as the influence of
microblogger uk on the retweet social network. This network is modeled by a graph G = (U,R)
where U is the set of microbloggers having published at least one tweet that contains a query
term and R = U×U denotes the set of retweet relationships. A retweet relationship (ui, uj) ∈
R is defined from ui to uj if ui retweeted a tweet of uj . The influence of a microblogger ui is
estimated by applying PageRank algorithm on the retweet network as follows:

Infp(ui) =
d

|U |
+ (1− d)

∑

uj∈U,uj→ui

wi,j

Infp−1(uj)

O(uj)
(20)

O(uj) is the outdegree of node uj . d is the random walk parameter.



3.3 Corpus indexing and tweet filtering

Tweets are indexed using NESTOR microblogging retrieval platform developed by our team.
Indexing process separates URLS from tweet message and indexes only textual content. This
system supports multi-language tokenisation and uses the Porter stemming algorithm for rec-
ognized English text. Moreover, the tweeting features such as retweets, mentions and hashtags
are extracted and integrated as meta-data. Finally, conventional retweets starting with “RT

@username” are detected and used in addition to Twitter native retweets.
The retrieval process is conducted with respect to the requirements of the realtime adhoc

task. In fact, posterior tweets to query time are discarded by applying a time constraint when
extracting tweet from inverted-index. We note also that the social retweet network is built
from posterior tweets and no future information is used in the query evaluation process. avgtl,
Γj and T (uk) consider only posterior tweets to the query time. After computing relevance
score P (q ∧ tj), the tweet results is filtered as follows:

– We remove all retweets
– We remove non English tweets expect mixed-language tweets where English is the princi-

pal language. Tweet language is detected using the text processing library MorphAdorner8.

– We remove tweet including less than |q|
2 terms. |q| is the query length. This helps to reduce

noise in the final result set ranked by tweeting time.

3.4 Results and discussion

Tables 2 compares results obtained by different configurations of our model:

– Nestor: Proposed model with all features included.
– Nestor-S: Proposed model with social feature disabled P (u) = 1.
– Nestor-T: Proposed model with temporal feature disabled T (ki, tj) = 1.
– Nestor-L: Proposed model with tweet length feature is disable L(u) = tj .

Experiments are conducted with the next parameters values: µ = 0.25,a = 0.25, b = 0.4,
∆t = 1h and d = 0.15.

Ranked by time Ranked by score
All rel High rel All rel

p@30 MAP p@30 MAP p@30 MAP

Nestor* 0.2027 0.1305 0.0838 0.1287 0.2218 0.1384
Nestor-S* 0.2027 0.1305 0.0838 0.1286 0.2184 0.1360

Nestor-T 0.2082 0.1343 0.0585 0.0912 0.1912 0.1196
Nestor-L 0.2048 0.1306 0.0565 0.0867 0.2293 0.1426

TREC median 0.2592 0.1433 0.2646 0.1381

Table 2. Comparison of model configurations. * Official run

Comparing overall results, the proposed model shows low performances compared to
TREC median. However, we can draw some primary conclusion form obtained results. In
comparison to the similar p@30 values shown by Nestor and Nestor-S models with tweet

8 http://morphadorner.northwestern.edu/



time ranking, we note a slight decline of Nestor-S, where social feature is disabled, compared
to Nestor model in the case where tweets are ranked by score. We conclude that the so-
cial context impacts the tweet relevance. Moreover, we note through the decline of Nestor-T
performances observed with score ranking, that the time feature can improve the retrieval
effectiveness. However, opposite behavior observed with time ranking shows that the time
magnitude may affect top list ranking with some irrelevant tweets. Finally, best p@30 val-
ues presented by Nestor-L allow to conclude that average tweet length is not an appropriate
feature for tweet search.

3.5 Conclusion and future work

We proposed in this work a tweet search model that integrates several features within a
Bayesian network model namely the time magnitude, hashtags, tweet length and the social
influence of microbloggers. Obtained results show that some features are useful for tweet
search. Other ones show promising performances that need to be improved. In future work,
we plan to conduct extended experiments analyzing the impact of each feature and also to
model the temporal aspects of tweets within the Bayesian network.
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