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Abstract: We describe the participation of Team
COMMIT in this year’s Microblog and Entity
track.

1 Introduction

Team COMMIT participated in two tracks this year: the Mi-
croblog track and the Entity track.

In our participation in the Microblog track, we used a
feature-based approach. Specifically, we pursued a preci-
sion oriented recency-aware retrieval approach for tweets.
Amongst others we used various types of external data. In
particular, we examined the potential of link retrieval on a
corpus of crawled content pages and we use semantic query
expansion using Wikipedia. We also deployed pre-filtering
based on query-dependent and query-independent features.
Our main finding is that cutting-off the result list is difficult
and crucial for good results. We also found that using exter-
nal data helps with recall and precision.

For our participation in this year’s Entity track we focused
on the Entity List Completion (ELC) task. We experimented
with a text-based and a link-based approach to retrieving
entities from Linked Data (LD). Additionally, we experi-
mented with selecting candidate entities from a web corpus.
Our hypothesis is that entities occurring on pages with many
of the example entities are more likely to be good candidates
than entities that do not. Due to the absence of evaluation
results at the time of writing, we have no preliminary con-
clusions yet.

The remainder of the paper consists of two largely inde-
pendent sections, one for each of the tracks in which we par-
ticipated, plus a conclusion.

2 Microblog Track

Our approach to the Microblog track assembles a list of fea-
ture values for each tweet and uses learning to rank to com-
bine them.

2.1 Features
We have two classes of features: query-dependent and
query-independent features. Query-dependent features aim
at capturing different aspects of relevancy of the tweet to
the query. Query-independent features target at encoding the
usefulness of a tweet in the information seeking process, and
can be thought as information quality indicators.

2.1.1 Query-dependent features.

We consider the following six query-dependent features:
temporal query modeling, semantic query expansion, link
retrieval, HITS scores, boolean, and Indri retrieval scores.
We look at each feature in turn.

Our first feature, temporal query modeling, aims at cap-
turing the dynamics of topics in Twitter [3]; the probability
of a term given a query, P(t|θQ), is given by the weighted
mixture of the original query Q and the expanded query
Q̂, controlled by parameter α. To construct the expanded
query, we rank terms according to Eq. 1, and select the top k

terms. This model tries to take into account the dynamic na-
ture of microblogging platforms: while a topic evolves, the
language usage around it is expected to evolve as well. Con-
sequently, selecting terms temporally closer to query time
could result in terms that are more relevant for that point in
time. Term scoring becomes a function of time:

score(t,Q) = (1)

log
�

|Nc|
|{d : t ∈ d,d ∈ Nc}|

�
· ∑
{d∈Nc:q∈Q and t,q∈d}

e
−β(c−cd),

where c is query submission time, cd is post d’s publica-
tion time, Nc is the set of posts that are posted before time
c and q. The parameter β controls the contribution of each
post to the score of term t based on their posted time. We se-
lect only those terms as candidate expansion terms, that oc-
cur in more than ϕ posts. In our experiments we set k = 10,
β = 0.01, ϕ = 10. The feature value is the retrieval score
score(t,Q).

As a second query modeling feature, we use semantic
query modeling (SQM) [? ]. SQM leverages the anchor texts
of incoming hyperlinks to Wikipedia articles, including not
only “normal” hyperlinks, but also redirects, and alternative
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titles of pages. It does so in two steps. First, the anchor texts
are used to identify, and score relevant Wikipedia articles
for all possible term n-grams in a query. Then, for each of
these articles, we again use the incoming anchor texts. In this
step, however, we use them to determine the parameters of
a language model for each article. The language models are
subsequently combined for all n-grams in the query, yielding
as end result a semantically-informed language model of the
query, i.e., a semantic query model. The feature value is the
retrieval score for the expanded query and the tweet.

Our third feature is link retrieval. We extracted, and
crawled all links from the tweets after resolving the link’s
original URL if it was shortened. Some links were not ac-
cessible either due to URL “unshortening” services blocking
pages with doubtful content, or because the link was simply
broken. For those links we ended up having content for, we
indexed them using Indri. We use language modeling and
SQM to model queries, and fire them against this link index.
The retrieved links are mapped back to the tweets that con-
tain them, producing a ranking of tweets. The feature value
score for a tweet is the retrieval score for the link.

We also consider the retrieval scores of different rankers,
such as strict boolean matching of the query terms, and In-
dri’s retrieval model.

Our sixth, and final, query-dependent feature is based on
HITS scores. We start with retrieving a set of tweets for a
query, using standard language modeling. Then, we create a
weighted directed graph, with the nodes being the authors of
the retrieved tweets. The edges denote the number of times a
user retweeted another user’s tweet. Based on this graph, we
calculate the HITS authority and hub scores for every user
in the graph.

2.1.2 Query-independent features.

Next we discuss our query-independent features: textual fea-

tures and Twitter-specific features.
We use textual features to decide the potential interesting-

ness of a tweet [4]. Following [5], we believe that the ratio
of capital to lowercase letters in a tweet is important: tweets
with only capital letters (shouting) and all lowercased tweets
indicate a different author profile than tweets with correct
casing. Another measure of interestingness can be the lan-
guage density in a tweet, namely, the sum of tf · idf values of
non-stopwords, divided by the number of stopwords they are
apart, squared [2]. We trained a spam classifier using semi-
manually selected spam tweets (making use of the @spam
hashtag) and assigned each tweet a spam value. We also in-
cluded features that encode whether a tweet is a question or
an exclamation, and the number of links in the tweet.

Our second set of query-independent features is Twitter-

specific features. Some inherent characteristics of tweets
include the use of hashtags, the mention of usernames in
a tweet and the possibility to retweet a tweet. We encode
these characteristics into features, such as whether a tweet

is a direct message, the number of hashtags, and the number
of usernames in a tweet. We also exploit Twitter’s network
properties. In particular, we set up a graph similar to the
HITS graph mentioned above using all tweets in the collec-
tion. We compute the PageRank scores of the nodes (au-
thors) and use them as a feature for tweets. These scores
denote the importance of a user by their likelihood of being
retweeted. Other network features we take into account in-
clude the number of friends and followers, and the number
of tweets a user uttered before the current tweet.

2.1.3 Combination of features.

Query dependent features (except for the HITS feature) were
combined together using a learning to rank (LR) method,
trained on an in-house developed set; see below. The query
independent features (including the HITS feature) were used
for learning over a set of relevant tweets, useful for filtering
out low quality tweets before retrieval. Here, we used the
relevance assessments for our training set to create a set of
tweets that were labeled as relevant and non-relevant. Based
on that, we trained a Random Forest classifier, and kept only
the tweets in the collection classified as relevant. Given each
ranked result list of tweets, we calculated the z-score of the
scores. All tweets with a z-score greater than ζ were in the
final result set.

2.2 Runs
We submitted four runs, as listed in Table 1. For all runs, we
use language identification [? ] to identify, and keep only the
English language tweets in the collection. Duplicate tweets
are removed, and the oldest tweet in the set of duplicates
is kept. Retweets are also removed, however, we store the
retweet information. In ambiguous cases, e.g. where com-
ments were added to a retweet, the tweet is kept. Hashtags
remain in the tweet as simple words, i.e. we simply removed
the leading hashtag. Finally, we performed punctuation and
stop word removal, based on a collection based stop word
list. To prevent future information from leaking into our col-
lection, we created separate indexes for every query.

For training we developed an in-house dataset capturing
the period January 1st, 2011 to March 15, 2011. The dataset
consists of 39 queries, with their timestamps for a dataset
of 12.7 million tweets. For each query, we selected tweets
published before the timestamp of the query. Each query
had 100 annotated tweets. To prevent leaking information,
the sizes of the training sets vary between 2,363 and 1,422
tweets, depending query time .

Our baseline (COMMITbase) uses temporal query expan-
sion and returns only tweets that contain a link. The sec-
ond run (COMMITexp) uses learning to rank with all query-
dependent features, except for the link mapping: temporal
query expansion, semantic query modeling, boolean match-
ing, and language modeling. The third run (COMMITlinks)
uses the same features as in COMMITexp, however it in-



Name Description External data

COMMITbase TQM, no links No
COMMITexp LR with query dependent, no links and HITS Yes
COMMITlinks LR with query dependent, no HITS Yes
COMMITfilter Query independent and HITS filtering, then COMMITlinks Yes

Table 1: Overview of our Microblog runs.
cludes the link mapping using SQM, and a standard lan-
guage model on the link corpus. In our final run (COM-
MITfilter) we applied pre-filtering. The ranked lists from all
runs are further curated. We normalize the retrieval scores
using z-scoring, and discard tweets with low z-score. Based
on manual inspection of the outcomes of our preliminary ex-
periments on our training queries, we set ζ = 0.6. All runs
except the baseline use external data.

While P@30 is the official metric, we also look at other
metrics to better understand the performance of our systems.
We report on MAP and precision at 5 (P@5) and 30 (P@30).
We use the Student’s t-test to evaluate statistical significance,
and denote statistically significant increase in performance
with �and �(p < 0.01 and p < 0.05 respectively). Likewise,
�and �denote a statistically significant decrease.

2.3 Results
In this section, we report on the performance of our runs, and
we discuss two main points of interest for our participation
in the Microblog track: a) whether retrieving links of a tweet
as a feature increases performance, and b) the effect of pre-
filtering of tweets.

Table 2 lists the results for our four runs, for two rele-
vant sets: a) all relevant, and b) highly relevant. A general
comment is that COMMITexp, COMMITlinks, and COM-
MITfilter show similar performance in all metrics. Com-
pared to the baseline (COMMITbase) all show marginally
higher P@5 (not statistically significant), and lower P@30
and MAP (statistically significant). Looking at the reasons
of this performance differences, we find that all runs return
on average less tweets than the baseline (20 vs. 135). By
cutting off very early, we do not retrieve enough tweets. Es-
sentially, with the scores of the runs other than the baseline
are clustered around the mean and do not have such a high
variance. In future work, we aim at defining ζ as a function
of the scores shape distribution.

Looking at the results of our three runs, we find that in
very tight cut-off thresholds, using more corpora has no ef-
fect on P@5, but query expansion such as SQM, does not de-
crease recall. COMMITfilter shows that filtering in tight cut-
off thresholds does has a negative effect in performance. In
some cases there are less that 5 tweets returned, and further
filtering on those small sets is likely to decrease P@5 and re-
call. We can however see a small improvement (though not
significant) from COMMITexp to COMMITlinks in MAP.
A possible explanation is the large number of tweets in the
evaluation set with at least one link (70% and 80% of rele-

vant and highly relevant tweets, respectively), which shows
to help increase recall. Retrieving highly relevant tweets is
more difficult. COMMITlinks has a higher precision than
the baseline, however not for two queries. Indeed, for those
two queries, we failed to retrieve the one or two relevant
tweets. Obviously, the cut-off procedure is too strict again:
returning more tweets would increase recall and thus MAP.
We believe P@30 may not be the right metric for the task,
given the small number of average highly relevant tweets
(11). Our runs show an increase in P@5 and P@10, stem-
ming from a strict cut-off criterion aiming at selecting highly
relevant tweets. Similar to retrieving all tweets, we have an
improvement using link mapping, indeed a higher percent-
age of highly relevant tweets in the ground truth have links
(∼80%).

3 Entity Track
In this year’s edition of the Entity Track we focus on the
Entity List Completion (ELC) task. In the ELC task the goal
is to find entities in structured data given a source entity,
relation, target type and example entities.

3.1 Entity List Completion Approach
The corpus consists of a new Linked Data (LD) crawl. To
process and index the data code was provided for two meth-
ods of indexing: entity centric (ED) and document centric
(DE). In our experiments we use the entity centric index.
The LD crawl consists of RDF triples, where an RDF triple
consists of a “subject,” “predicate” and an “object.” A sub-
ject is always a URI and represents a “thing” (in our case:
an entity). Subject URIs serve as unique identifiers for enti-
ties. An object is either a URI referring to another “thing” or
a string , holding a literal value. Predicates are also always
URIs and represent relations between subjects and objects.
The entity centric representation assumes an entity to be rep-
resented by the set of all triples that have the same URI as
subject.

Entity resolution. Another change this year is that the
URIs of the example entities are no longer provided in the
topics. Instead the homepage and the name of example en-
tities are given. To resolve entity names to URIs we use the
anchor text in Wikipedia. Given an entity name (e) we find
the set of all Wikipedia pages (WP) that have e as anchor



All relevant Highly relevant

Run P@30 MAP P@5 P@30 MAP P@5

COMMITbase 0.4279 0.2746 0.5551 0.0952 0.1422 0.1633
COMMITexp 0.3034� 0.1502� 0.5633 0.0626� 0.1071 0.1755
COMMITlinks 0.3082� 0.1519� 0.5633 0.0646� 0.1081 0.1755
COMMITfilter 0.2946� 0.1465� 0.5551 0.0592� 0.1035 0.1755

Table 2: Results for our runs.
text. We then pick the Wikipedia page that is most com-
monly referred to by a link with anchor text e:

argmax
wp∈WP

COMMONNESS(e,wp),

where COMMONNESS(e,wp) is defined as:

COMMONNESS(e,wp) =
|Le,wp|

∑wp� |Le,wp� |
,

and |Le,wp| indicates the number of times entity name e

is linked to Wikipedia page wp. To map the URL of a
Wikipedia page to a URI in the LD crawl we replace the
http://en.wikipedia.org/wiki/ part of the URL by
http://dbpedia.org/resource/. In the following we
only consider example or candidate entities that have been
successfully mapped to a DBpedia URI.

Text-based approach. The text-based approach follows
the intuition that entities with links to objects that have over-
lapping terms with the narrative and source entity should be
ranked higher than entities that do not. To represent entities
we use the terms present in the entity centric representation.
Entities are indexed based on the terms occurring in the liter-
als and URIs in each entity representation. We rank entities
according to the similarity between the entity’s textual rep-
resentation (ed) and a query (Q) containing the source entity
name (Etext ) and relation (R). The similarity is calculated us-
ing the vector space model with standard tf-idf term weight-
ing:

simtext(e,Q) =
�V (ed) ·�V (EtextR)

|�V (ed)| · |�V (EtextR)|
,

where the numerator is the dot product of the vectors, |�V | is
the length of �V and �V (EtextR) is the term vector containing
the terms from Etext and R.

We additionally filter entities retrieved by the text-based
approach on type. The type is given in the topic, e.g.,
Company. We construct a URI by appending the type to
http://dbpedia.org/ontology/. Only entities that have
this URI as an object in their representation are kept, other-
wise they are removed from the ranking.

Link-based approach. The link-based approach follows
the intuition that candidate entities that are more similar to
the example entities should be ranked higher than entities
that are less similar. In this setting we use the links in

the entity centric representation, i.e., an entity representa-
tion consists of all RDF triples which have the entity’s URI
as subject (i.e., outlinks) or object (i.e., inlinks). Together
these triples form the link-based representation of an entity
(el = {r1,. . . ,rm}, where ri is an RDF triple).

Under this representation, entities consist of sets of triples.
The set of example entities becomes a set of sets of triples
(X = {x1, . . . , xn} and xi = {r1,. . . ,rk}). We rank entities
according to the similarity between the entity’s link-based
representation el and a query (Q) containing the set of ex-
ample entities (X). The similarity is calculated according
to the weighted Jaccard similarity between the triples of an
entity and the triples of the example entities:

simlink(e,Q) =
∑r∈

�
x∈X (x∩el) w(r)

∑r∈
�

x∈X (x∪el) w(r)
,

where
�

x∈X (x∩ el) is the union of the triples that the exam-
ples in X and el have in common,

�
x∈X (x∪ el) is the union

of all the triples in X and el , and w(r) is a weight function
that determines the importance of a link. We set the weight
proportional to the number of times a triple occurs in the
representation of the example entities:

w(r) = max

�
1, ∑

x∈X

n(r,x)

�

Here n(r,x) is 1 if a triple r occurs in the representation of
example x and 0 otherwise.

Candidate selection from a web corpus. Both the text
and link-based approaches consider all entities in the LD
crawl as candidate entities and rank them either based on
the textual representation or overlap with the example enti-
ties. Given the sparse nature of LD, differentiating between
candidates becomes more difficult when the number of can-
didates increases. To limit the set of candidates we propose
to only consider entities that occur on webpages associated
with the source entity.

To find webpages associated with the source entity we
look at three types of pages: pages that are part of the home-
page of the source entity (HP); Wikipedia pages that link
to the homepage of the source entity (WPl); and Wikipedia
pages that are relevant to a query (WPq), where the query
consists of the source entity (Etext) and the relation (R).

To obtain candidate entities we apply a named entity rec-
ognizer to these pages. To further limit the set of candidate
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entities we rank each page in the HP and WPl set based on
the number of example entities that occur on the page:

rank(page) = |{e : e ∈Cpage ∩ e ∈ Xnames}|,

where Xnames is the set of names of the example entities and
Cpage is the set of entities that occur on page. To rank the
WPq pages we use the query likelihood, i.e., the probability
that the query q (Etext and R) is generated by a Wikipedia
page:

P(q|θwp) = ∏
t∈q

P(t|θwp)
n(t,q),

where θwp is the language model representation of wp, and
n(t,q) is the number of times t occurs in q. We chose the top
5 highest ranked pages from each source and use the entities
in those pages as candidates.

3.2 Runs and Results
We submitted the following four runs:

ilpsTextFilt This run is created using the text-based method
to find entities, i.e., querying the entity centered index
with the relation and source entity. Entities are filtered
based on the DBpedia type specified in the topics.

ilpslinkcand This run is created using the link-based
method; entities are ranked based on the link overlap
with the example entities.

ilpslinkOL This run also uses the link-based method to
rank entities. Candidate entities are harvested from 3
sources: the homepage domain of the source entity,
pages linking to the source entity homepage domain,
and DBpedia pages relevant to the narrative and source
entity.

ilpsPMIcMNZ Our final run combines the ranked lists from
the text and the link based runs. Instead of using stan-
dard COMBMNZ we weigh candidates found by each
of the methods by co-occurrence in the homepage.

At the time of writing of these working notes no evaluation
results are available yet for the ELC runs.

4 Conclusion
In this paper we reported on our participation in the Mi-
croblog and Entity tracks. For the Microblog track we found
that a simple cut-off based on the z-score is not sufficient:
for differently distributed scores, this can decrease recall.
A well set cut-off parameter can however significantly in-
crease precision, especially if there are few highly relevant
tweets. Filtering based on query-independent filtering does
not help for already small result list. With a high occur-
rence of links in relevant tweets, we found that using link

retrieval helps improving precision and recall for highly rel-
evant and relevant tweets. Future work should focus on a
score-distribution dependent selection criterion. For the En-
tity track there are no analyses or conclusions to report yet;
at the time of writing no evaluation results are available for
the Entity track.
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