
ECIR – a Lightweight Approach
for Entity-centric Information Retrieval

Alexander Hold, Michael Leben, Benjamin Emde,
Christoph Thiele, Felix Naumann

Hasso-Plattner-Institut
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

Wojciech Barczynski, Falk Brauer

SAP Research Center Dresden, SAP AG
Chemnitzer Str. 48, 01187 Dresden, Germany

Abstract— This paper describes our system developed
for the TREC 2010 Entity track. In particular we study the
exploitation of advanced features of different Web search
engines to achieve high quality answers for the ‘related
entity finding’-task.

Our system preprocesses a user query using part-of-
speech tagging and synonym dictionaries, and generates an
enriched keyword query employing advanced features of
particular Web search engines. After retrieving a corpus of
documents, the system constructs rules to extract candidate
entities. Potentially related entities are deduplicated and
scored for each document with respect to the distance to
the source entity that is defined in the query. Finally, these
scores are aggregated across the corpus by incorporating
the rank position of a document. For homepage retrieval
we further employ advanced features of Web search
engines, for instance to retrieve candidate URLs by queries
such as ‘entity in anchor’. Homepages are ranked by a
weighted aggregation of feature vectors. The weight for
each individual feature was determined in beforehand
using a genetic learning algorithm.

We employed a commercial information extraction sys-
tem as a basis and implemented our system for three
different search engines. We discuss our experiments for
the different web search engines and elaborate on the
lessons learned.

I. INTRODUCTION

An Entity-Centric Information Retrieval system
(ECIR) promises a huge potential for web- and business-
users. We study in particular the application and value
of entity-centric search algorithms for enterprise appli-
cations. Thus we motivate our approach by an entity-
centric business task: Consider a business analyst of
a large corporation producing industrial goods who
needs to determine potential customers (leads). This is
usually an extremely time consuming task. Having an
ECIR-system he might for instance simply query for
all competing companies and retrieve the corresponding
customers for each of them. There are many other usage

scenarios of an ECIR-system in an enterprise search
setting.

However, a company is usually not able to index
the entire Web. Thus, we focus on how to incorporate
available services on the Web, especially search engines,
and combine them with limited local hardware resources
to provide a system that is able to provide high quality
answers for the Entity Tracks’ “find related entities”-
(REF) task.

A task of the entity track as part of the TREC 2010
challenge is to provide a system that finds all entities
with their homepages that are in a relation – described
in natural language – with an input entity. In our work,
we denote these entities as target entities and use the
term source entity for referencing the input entity.

A. Input

The input of our system is a list of queries (topics) in
an XML format. Listing 1 shows an example query that
is used across the paper.

<query>
<num> 40 </num>
<entity_name> Costco </entity_name>
<entity_URL> cw09-en0006-60-20817 </entity_URL>
<target_entity> organization </target_entity>
<narrative> Find homepages of manufacturers of
LCD televisions sold by Costco. </narrative>
</query>

Listing 1: Topic 40 from Entity Track 2010

The element num describes the identifier of the query.
The element entity_name contains the name of the
source entity and entity_URL a clueweb ID – a ref-
erence to the homepage of this entity. The definition of
target_entity determines the type of the target entity.
The last element is the narrative, which qualifies the
relation between the source and target entity in natural
language.

B. Output

The designated output as shown in Listing 2 contains
one line for each found target entity with the following
attributes:
• topic number,
• the constant string ‘Q0’,
• the clueweb document id for the homepage,
• the rank position of the particular target entity,
• the computed score for the target entity,
• the unique run ID and
• the normalized entity name (optional).

40 Q0 cw-en0002-13-22651 1 2.65 G8 Panasonic
40 Q0 cw-en0010-32-35757 2 1.99 G8 Sony

Listing 2: Top 2 results for Topic 40

II. ECIR ARCHITECTURE

The process of retrieving and ranking source entities
is illustrated in Figure 1. Our system starts with a
query expansion and rewriting step, which analyzes an
input topic to create a keyword query for the configured
Web search engine and to preprocess the query for
the extraction task. The document retrieval component
queries for each topic a specified search engine and
stores the resulting web pages to the file system. The
acquired document corpus and the preprocessed topic
are the input for subsequent processing steps.

Launcher
Query

Expansion

Document

Retrieval
Documents

UIMA Collection Processing Engine

ReaderParameter

Analysis Engine

Deduplication
Entity

Extraction

Homepage

Retrieval

Output

Writer

Fig. 1. System Overview

After the document retrieval has finished, the analysis
process is started. It reads the files each containing the
text of a single web page. For each of the documents a
data container object is created, which is passed through
the process steps.

In the entity extraction phase each document is
scanned for possible target entities. These are stored in
the document’s data container object. In the next step the

entities are subjected to deduplication and are scored re-
spectively (Section III-C). For the ranked entities, which
need to have a required minimum score, the homepages
are determined (Section III-D). At a last step, we map
the retrieved URLs to document ids of the clueweb
document corpus.

We use Apache’s implementation of the Unstructured
Information Management Architecture-standard (UIMA,
http://uima.apache.org/) to manage the analysis
process, which is implemented as a UIMA collection
processing engine (CPE). The advantage of using UIMA
is that components can be exchanged and developed
independently.

III. SYSTEM COMPONENTS IN DETAIL

In the following we introduce each component that is
illustrated in Figure 1 and discuss the most important
concepts in detail.

A. Query Expansion and Document Retrieval

The task of the query expansion and document re-
trieval component is to provide text documents that may
contain information about the relation between source
entity and target entity. This relation is described by the
narrative. The main challenge here is to estimate the
number of documents to retrieve enough input for a good
recall, but not too many to achieve acceptable processing
times. Further, if we retrieve too many documents, the
corpus may contain many less relevant documents and
thus harm precision.

Due to obvious limitations in local hardware re-
sources, we did not build our own search engine. Instead,
we use commercial Web information retrieval engines,
namely Yahoo, Google, and Bing. In order to retrieve
the most likely relevant documents, we need to generate
a suitable keyword query for a search engine based on
the topic description and capabilities of a search engine.

In the first step of the query expansion and rewriting
we extract part-of-speech elements from the narrative.
We are interested in finding verbs and noun groups.
Verbs are important, because they qualify the relation be-
tween source entity and target entity. Noun groups often
qualify the target entity in more detail and can be inter-
preted as a kind of a selection criterion. For the example
topic in Listing 1, we extract the following: homepages,
manufacturers, LCD televisions, and sold.

The next step is to find alternative names for the
source entity. Thus, we expand our query to allow for
variations that are popular on the Web. For this purpose
we exploit the Freebase (http://www.freebase.

com/) search service. As a query we send simply the
source entity name and retrieve alternative names. For
each alternative name we form an intermediate key-
word query, built from an alternative name and the
source entity name to determine the number of hits
returned by a commercial search engine. We sort all
alternative names by this number in descending order and
choose the most popular four. For example, for Costco
we obtain Costco travel, Costco Wholesale,
Price Costco, and Costco Wholesale Corp.

We concatenate the nouns and verbs extracted from
the narrative and the source entity together with its
alternatives to a single query. Further, we make sure that
the web search engine also allows for synonyms of the
tokens derived from the narrative. For instance in the
case of Google, we add a tilde as a token prefix. Thus,
in case of our example and Google as Web search engine,
we produce the keyword query:
∼sold ∼homepages ∼manufacturers ∼LCD
∼televisions ("Costco" OR "Costco travel"

OR "Costco Wholesale" OR "Price Costco" OR

"Costco Wholesale Corp").
We send the query to a search engine and download

the first k websites in the result list. These websites
are aggregated to a document corpus, which is used for
further processing. Note that we run experiments with
varying k and studied its influence (see Section IV).

B. Entity Extraction and Relation Finding

Similar to [1] our system employs a commercial fact
extraction framework, namely the SAP BusinessObjects
XI Text Analysis system. In order to extract possible
relations, i.e., the occurrence of a source entity together
with the predefined target entity type, we construct
an extraction rule for each topic that is denoted as
CANDIDATE rule in Listing 3. The rule shall extract the
sentences where the source entity occurs, together with
potential target entities in its context. The CANDIDATE-
rule combines three other rules (see Listing 3):

Source: The source entity and the most popular
alternative names are encoded in the SOURCE-rule to
recognize the source entity. For topic 40 as shown in
Listing 1, we include 〈Costco〉 (where 〈·〉 denotes a
token) and the alternative names of “Costco” such as
〈Costco〉〈travel〉 and 〈Costco〉〈Wholesale〉〈Corp〉. The
respective tokens of one (alternative) name may occur
in different order in a sentence.

Target: The TARGET-rule captures the predefined
target entity type. We leverage a subset of the 35
predefined key entity types and map them to entity types

that are addressed in the REF-task. In Listing 1 [TE
ORGANIZATION]〈〉+[/TE] (where the [TE]-tag describes
the reference to a predefine entity type of the extraction
framework) targets the entity type “organization’. The
underlying general purpose rules, e.g, for ORGANIZA-
TION, were developed by a team of linguists and shipped
with the fact extraction framework.

Context: The most relevant terms from the narrative
relation description are encoded in the CONTEXT-rule.
Therefore, we consider each token that occurs within a
noun or verb group in the narrative. To support a broader
range of linguistic variations, our system embeds the
stemmed tokens into stem-tags. Thus, the CONTEXT-rule
fires if at least one token shares the same stem with a
relevant token of the narrative query.

The CANDIDATE-rule combines the previously de-
scribed rules in one statement. Thus, we extract each
paragraph that contains at least a word group as defined
in the SOURCE-rule, the target entity type (see TARGET-
rule), and at least one token from the CONTEXT-rule.

For each document we extract the paragraphs (i.e.,
the facts consisting of SOURCE, TARGET, and CONTEXT)
that might fulfill the selection criteria as described in the
user query. In the following we denote the sentence in the
paragraph that contains the source entity as c (candidate
sentence). We further define a proximity threshold for
target entities (distance in sentences to c) that are treated
as potentially related. Other entities of the specified
target type are ignored. For entities that occur in the left
context of c we define a threshold of tpre = 1 and for
subsequent entities a threshold of tsucc = 3. In general
we assume tpre < tsucc, because it is more likely that
a related entity occurs in the right context of c. For
ranking entities, we keep the name of the target entities,
the distances to a candidate sentence and the rank of the
document in the corpus.

Note that the information extraction system also sup-
ports co-reference resolution. Thus, we may extract for
instance the most likely person, that is referred for
instance by “he” based on the linguistic structure of a
text. The information extraction system returns in such
cases the most likely alias in the context (e.g., the person
name).

C. Deduplication and Ranking of Entities

Having extracted all possible candidate facts, our sys-
tem merges duplicated target entities and scores duplicate
groups. To identify potential duplicates, we combine the
Jaccard and Jaro-Winkler similarity (see [2]). The Jac-
card similarity is a token-based vector-space similarity,

#group CANDIDATE (scope="Paragraph"): [UL]%(Target),%(Source),(%(Context))[/UL]
#group SOURCE (scope="Sentence"): (<Costco>|<Costco><travel>|<Costco><Wholesale><Corp>|..)
#group TARGET (scope="Sentence"): [TE ORGANIZATION]<>+[/TE]
#group CONTEXT (scope="Sentence"): (<STEM:sold>|<STEM:LCD>|<STEM:manufacturer>|..)

Listing 3: Simplified Extraction Rule for Topic 40

while the Jaro-Winkler similarity is a character-based
edit distance, which was especially designed for name
matching tasks since it punishes errors at the ending
of strings less than at the beginning. The combination
was necessary, because we realized that, e.g., Jaccard
performed well for organizations, but caused many false
negatives for certain person names. In turn, Jaro-Winkler
caused many false positives for entities of type organi-
zation but is suited well for persons.

In order to combine the advantages of both similarity
metrics, we aggregate them as follows: Let jac(ε1, ε2)
be the Jaccard similarity and jar(ε1, ε2) the Jaro-Winkler
similarity between two potential target entities ε1 and ε2.
Thus we compute their similarity sim(ε1, ε2) by their
average as:

sim(ε1, ε2) =
jac(ε1, ε2) + jar(ε1, ε2)

2
(1)

Our system starts with an arbitrary entity ε in the
result list, creates a duplicate group E by testing the
set of not yet processed entities. It recursively extends
E to determine the transitive closure of ε with respect
to sim(ε1, ε2). The procedure proceeds until every entity
is assigned to a duplicate group. For each group E of
entities we select the longest name from its assigned
instances as its representative.

Our scoring algorithm works as follows: Let dist(ε, c)
be the distance in sentences between a target entity
ε relative to a candidate sentence c. Having identified
potential duplicates, the scoring algorithm computes
weights for each duplicate group E with respect to a
document d as:

s(E, d) = max(ε∈d,E)

[tmax dist − |dist(ε, c)|+ 1

tmax dist + 1

]
,

(2)
where tmax dist = tpre for dist(ε, c) < 0 (occurrences

in the left context of c) and tmax dist = tsucc for
dist(ε, c) ≥ 0 (occurrences in the right context). As
result of the assumption tpre < tsucc, we obtain lower
scores for preceding entities than for succeeding ones.

To aggregate entity scores across the document corpus
D, we consider the rank position kd of a document d and
compute:

s(E,D) =
∑
d∈D

s(E, d) · log(|D| − kd + 1), (3)

where log(|D| − k + 1) ensures that potential target
entities that occur in documents with a lower k are
preferred over entities occurring at a higher k, because
they are more likely to be relevant.

D. Homepage retrieval

The REF task also requires to output the primary
homepages of the encountered entities: ”A primary
homepage is devoted to and in control of the entity” [3].
Our approach to primary homepage retrieval first queries
one of the employed commercial search engines for a set
of homepage candidates by extracting the items from the
search engine’s result list. Those candidates are ranked
by matching their URLs, titles, and snippets1 against the
information about the entity. The ranking function works
by extracting 17 features from the candidate homepage
into a feature vector f = (f1, .., f17) and then applying
configurable weights to the features. We designed a
genetic algorithm [4] in order to find the best weight
vector w = (w1, .., w17) for each search engine.

Homepage candidate retrieval: The initial candidate
set is retrieved by simply querying for the entity name.
The set is then expanded by issuing more queries that are
different for each search engine. To address those differ-
ences we use a source-specific ranking: If a candidate
has been retrieved in another way than a simple query
against the main search engine, it is marked with a flag
fn that is later being evaluated by the ranking. Flagging a
candidate means setting the respective feature to fn = 1.

Set expansion for all search engines: For each can-
didate that is a Wikipedia page, we load the Wikipedia
page and extract all outgoing links that do not point to

1Snippets are the short summaries that search engines output along
with the URLs of their search results.

Wikipedia. Those outgoing links are added as candidates
as well and are flagged as having Wikipedia as their
origin (f1). The feature “is a Wikipedia page” is dis-
cussed later on. Such a page should score less because
Wikipedia pages should never be classified primary
homepages.

After applying the following search engine specific
set enlargement operations, for each candidate URL we
add the shorter forms of the URLs to the candidates by
repeatedly removing subpaths from the end of the URL.

Set expansion for Google was done by using special
search operators. Each page related2 to a Wikipedia
candidate page was included in the set, being flagged
with f2. Furthermore, we queried for:
• allintitle operator with entity name (feature
f3)

• allinanchor operator with entity name OR (en-
tity name + narrative) (f4)

• feature:homepage operator with entity name
(f5).

Set expansion specific to Yahoo was implemented by
additionally querying for
• in-title operator with entity name OR (entity

name + narrative) (f3)
• feature:homepage operator and entity name

(f5).
Bing also offers a set of special search operators, but

we did not make use of them due to time constraints.
We deduplicated the candidate set by hashing the nor-

malized URLs and concatenating all values (homepage
title and snippet) and features to a single candidate.

Ranking the homepage candidate set: For each
homepage candidate a set of 17 features is extracted into
a feature vector. A vector of the same size contains the
weights for each of these features. The feature vector is
made up of the following items:
• f1 to f5: Source-specific flags (see above)
• f6: length of URL subpath
• f7: snippet or title contain the keywords ”official

site”, ”company website” or ”official website”
• f8: rank from source search engine result list
• f9: candidate is Wikipedia site, which decreases the

score
• f10 entity name contained in URL
• f11 entity name contained in title
• f12: Jaccard index of trigrams between entity (entity

name, narrative, expanded query3) and homepage

2Google query: ”related:http://en.wikipedia.org/wiki/Articlename”
3expanded query for document retrieval (defined in Section III-A)

(title, hostname, snippet)
• f13: reciprocal Levenshtein distance between entity

name and homepage hostname
• f14: Jaccard index of bigrams between entity name

and homepage hostname
• f15: Jaccard index of trigrams between entity (entity

name, narrative) and homepage (title, snippet)
• f16: Jaccard index of trigrams between entity name

and the entire homepage URL
• f17: Jaccard index of terms between entity (entity

name, narrative, expanded query) and homepage
(title, host, snippet)

Once a feature vector for a candidate homepage has
been determined, each feature value is multiplied with
the corresponding weight of the weight vector of the
selected search engine, to calculate the final score s(p)
for candidate page p:

s(p) =
17∑
i=1

(fi · wi) (4)

The candidate page p with the highest score s(p) is
selected to be the primary homepage.

Tuning the homepage ranking with a genetic algo-
rithm: The individual importance of the features above
is not obvious. For this reason, a genetic algorithm was
employed to find the best weight vector for each search
engine. The genetic algorithm is initialized with a set
of randomly created weight vectors that are constantly
modified by mutation and recombination and evaluated
by a fitness function. The poorest weight vectors are
removed at the end of each iteration (selection).

Mutation is used to slightly modify weight vectors in
order to climb up a (potentially local) maximum. Weight
vectors are modified by slightly increasing or decreasing
all their values by different random values.

Recombination means to combine good solutions in
order to merge them into a better one, taking advantage
of the “good parts” of both. As the best recombination
method is unknown, we randomly selected one of the
following three methods, to derive a new weight vector
w from two given vectors a and b:

crossing: a×9 b = (a1, .., a8, b9, .., b17) (5)

The cutting index 9 was intuitively selected and might
not be the best choice.

interweaving: a � b = (a1, b2, .., b16, a17) (6)

averaging: a ◦ b =
(
a1 + b1

2
, ..,

a17 + b17
2

)
(7)

To determine the quality of a weight vector w the
genetic algorithm uses as fitness function the mean
reciprocal rank (MRR) that was derived using a training
data set. Let k(w, ε, p) be the rank position of a Web
page p within a list of ranked pages, obtained using the
target entity, denoted as ε, and a weight vector w. For
a training set T = {(ε, h)} containing a set of pairs of
target entitiy ε and correct homepage h, the MRR is
given by

MRR(w, T) =
∑

(ε,h)∈T

(
1

k(w, ε, h)

)
· 1

|T |
(8)

As T , we used a handcrafted test set of 30 target
entities and their ”correct results”. We ran the genetic
algorithm until it could not find a better weight vector
w within certain time constraints.

Learned weight vectors: The genetic algorithm
yielded weight vectors with the following MRRs: Google
0.87; Yahoo: 0.80; Bing: 0.82. Note that for Bing, no
vector better than the Google vector was discovered after
a processing time of 24 hours. A longer time might
have lead to a better weight vector. Figure 2 shows
the differences between the best Yahoo and the Google
vector.

Fig. 2. Differences between best weight vectors for different search
engines. The Google weight vector relies on operators (f1 to f5),
while the Yahoo setting makes more use of text similarity (f12 to
f17). The prominent feature f15 is the trigram Jaccard index (see [2])
of homepage snippet, title and entity name, narrative concatenated.

IV. EVALUATION

During the development of our system we used topics
from 2009 to determine which parameters settings could
perform the best for TREC 2010 queries. In this section
we will focus on the final results of our system in TREC
2010.

The two basic configuration parameters for tuning our
system are the selection of the Web search engine –
used for retrieving a document corpus and homepage

RUN nDCG ALL P10 ALL MAP Rprec
G16 0.0745 0.0702 0.0357 0.0539
G64 0.0625 0.0574 0.0252 0.0500
Y64 0.0222 0.0149 0.0055 0.0223
B64 0.0178 0.0128 0.0044 0.0122

TABLE I
OFFICIAL AGGREGATED RESULTS FOR TREC 2010

candidates – and the number of retrieved documents,
which determines the size of the corpus. The search
engines we used were Google (G), Bing (B), and Yahoo
(Y). We varied the number of retrieved documents from
8 to 128. We obtained the best results for Google with 16
documents (denoted as G16). For the remaining search
engines a configuration with 64 documents turned out to
be more precise. Thus, we also submitted runs for Y64
and B64, and for comparison G64.

The main performance measures in TREC 2010 are
normalized discounted cumulative gain (nDCG) and
precision at 10 (P10). In addition, the evaluation script
provided numbers for the mean average precision (MAP)
and R-precision (Rprec). The average results of the
submitted runs are shown in Table I. The results show
that Google provides more accurate results in the first
items of the result list. Thus G16 outperforms G64,
because the latter returned more non-relevant documents,
which harm precision. For the other search engines a
higher number of documents is required to achieve an
acceptable recall. However, even compared to G64 a
significantly higher amount of less relevant documents
is contained in their result sets.

In Figure 3 we show the results of the different
configurations for each topic from 2010 (topic 21 to
topic 70). In general, we observed that our system
performs better for finding related persons than for other
entity types. The reason is that our system does not
use domain dictionaries, e.g., generated from Wikipedia.
Thus, for instance domain specific location names are
often missed, while more general but less relevant ones,
such as “South Pacific”, are extracted and harm preci-
sion.

Another problem, that was detected after official sub-
mission, was a bug in keyword query generation. This
bug dropped some relevant key words from the narrative
query. Therefore, we show the results of the fixed G16-
configuration in comparison to the the submitted G16-
results in Figure 4. Furthermore, Figure 4 depicts the best
and median results of the competing systems in 2010. It
shows that the bugfix led to a significant improvement for

Fig. 3. Comparison of the official results from TREC 2010 for different configurations per topic (nDCG)

topics with extremely long narrative queries. The results
for the other configurations improved in a similar way,
but showed – compared to each other – a similar behavior
as shown in Figure 3.

The performance was not the focus of our system.
However, it has to be mentioned that the runtime pro-
cessing of documents leads to huge overhead (as opposed
to annotating the whole clueweb corpus in advance).
Thus the time to process a single topic with a configured
corpus size of 16 was about 2 minutes (without any
parallelization). The system spends most of the time in
the deduplication phase and the mapping from real URLs
to clueweb ids.

V. DISCUSSION AND RESEARCH DIRECTIONS

In the following we discuss observations with respect
to our system when running the 2010 topics and elabo-
rate on potential extensions of our approach.

Query processing and document retrieval. The first
crucial part of our system is the query preprocessing step.
In general, our query preprocessing seems to perform
well to formulate a keyword query that returns relevant
documents.

We realized in particular that some Web search en-
gines seem to take into account the position of a token
in the keyword query to determine the relevance of
documents. Thus changing a token at the last position of

the keyword query has little influence on the candidate
documents, while changing the first token has a huge
impact. Therefore, at least a filtering of the narrative
query is crucial to narrow the set of tokens. Reordering
tokens might further improve the relevance of retrieved
documents, e.g., by a metric to determine semantic
relatedness [5] to the source entity.

We propose two more potential extensions for our
query processing component. First, we realized that
some topics, e.g., topics 37 and 44 contained a selec-
tion predicate for time (“in December 2008”, “during
June 2008”). A special treatment of those predicates
may further improve performance, e.g., by generating
alternative representations. Next, some topics contained
semantic type information or entities, such as topic 21
(“art galleries in Bethesda, Maryland”), topic 22 (“coun-
tries”), topic 30 (“U.S. states and Canadian provinces”)
or topic 35 (“companies”). Parsing them, e.g., by using
the semantic categories defined in Wikipedia, and reusing
this information in the extraction phase promises a higher
accuracy.

Entity extraction. Our system performs particularly
well for queries that aim to find related persons. The
reason is that there is common understanding of the
semantic type “person”. For locations, organizations, and
products the treatment of the semantic type is more
subjective. For instance, topic 21 asks for locations that

Fig. 4. nDCG comparison of official G16-run / bugfixed G16-run to competing systems in TREC 2010

are specified as “art galleries in Bethesda, Maryland”.
While our system retrieves documents that may answer
the query, it misses all relevant entities, because our
system classified occuring art galleries as “organization”,
but the TARGET rule (see Section III-B) is configured
with the entity types for locations.

The above example is only one case where our map-
ping from the location entity type to the predefined
entity types of the employed extraction system lowered
the performance of the overall system. For instance,
we mapped the “location” entity type also to the entity
type “regions” of the employed extraction system (e.g.,
“South Pacific”). Regions often outperformed cities or
countries in the ranking phase. A more careful mapping
and a relevance scoring for entity sub-types promises
better accuracy.

Considering entity sub-types, we may also leverage
entity types that can be extracted from narrative queries.
Having extracted from the query that the expected sub-
type of “organization” is “university” or “company”, the
extraction can be narrowed to those types as they are
also available in the extraction framework.

Deduplication and ranking. The deduplication and
ranking mechanisms perform quite well. However, our
ranking scheme considers only statistics from the nar-
rowed document corpus, which was acquired via a
keyword query. Thus, it captures for each candidate the

proximity of the source and potential target entity, and
implicitly the number of occurrences and the relevance
of a document. Another potential, quite simple (but time
consuming) solution would be to query a Web search
engine with source and target entity together with the
narrative query to also include global statistics. In order
to achieve reasonable processing times, we did not apply
such statistics.

Homepage retrieval. We made extensive use of the
Google operators, so the Google weight vector especially
relies on them. If they are not available, the importance
of textual similarity measures increases, with Jaccard
index being clearly preferred over Levenshtein distance.
The use of Bing’s special search operators was not
evaluated at all. For further improvement, data like
site structure, page content, or inclusion within certain
directories (chamber of commerce, phone books) could
serve for feature extraction as well. Especially the recom-
bination operator could be adapted to better address this
specific problem, for example grouping features using an
evolution strategy [6].

VI. CONCLUSION

Our entity-centric information retrieval (ECIR) system
preprocesses a given topic using part-of-speech tagging
and synonym lists on the web in order to create a
keyword query. The keyword query is sent to one of

three evaluated Web search engines. The documents in
the result list are aggregated in a document corpus, which
in turn is used for further processing. Based on the
preprocessed query an extraction rule is constructed to
identify possible target entities. For each document we
score each potential target entity by the distance to the
source entity. Potential target entities are subjected to a
deduplication, resulting in a set of duplicate groups. For
each duplicate group, we compute a aggregated score
with respect to the document corpus.

Our homepage retrieval and weighting scheme con-
siders a set of 17 different features for ranking. It also
considers special operators of the Web search engines.
Interestingly, we observed that a genetic learning al-
gorithm, trained on a small set of examples, weighted
textual features, such as the Jaccard similarity between
the entities and title, URL, and snippet higher than the
source-specific features and special operators. However,
we observed that these are extremely valuable to deter-
mine candidate pages.

We evaluated our system using three different Web
search engines and varied the number of documents that
were acquired. As a result, we find that our system
performs best when it uses Google to retrieve 16 top

pages. In this setting our system outperforms the average
results that have been achieved by competing systems in
TREC 2010. For some topics such as topic 24 and 54
our system outperforms the average results by far and
achieves the same nDCG as the best performing system
in TREC 2010.

REFERENCES

[1] M. Kowalkiewicz and K. Juenemann, “Improving information
quality in email exchanges by identifying entities and related
objects,” in Proceedings of the CIKM workshop on Information
credibility on the web (WICOW), 2008, pp. 81–84.

[2] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg, “A com-
parison of string distance metrics for name-matching tasks,” in
Proceedings of the IJCAI Workshop on Information Integration
on the Web (IIWeb), 2003, pp. 73–78.

[3] “Trec entity track guidelines - searching for entities and
properties of entities,” http://ilps.science.uva.nl/trec-entity/files/
trec2010/TREC Entity 2010 guidelines.pdf.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 2007.

[5] R. Gligorov, W. ten Kate, Z. Aleksovski, and F. van Harme-
len, “Using Google distance to weight approximate ontology
matches,” in Proceedings of the International Conference on
World Wide Web (WWW), 2007, pp. 767–776.

[6] I. Rechenberg, Evolutionsstrategie ’94. Frommann Holzboog,
1994.

