
Cengage Learning at TREC 2010 Session Track
Benjamin King

University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109 USA

benjaminking@umich.edu

Ivan Provalov
Cengage Learning
27500 Drake Road

Farmington Hills MI, 48331 USA

ivan.provalov@cengage.com

ABSTRACT
This paper details Cengage Leaning’s TREC 2010 Session
track submission and our efforts to improve retrieval
performance over a user’s session. We use a number of
different techniques to achieve this goal including query
term weighting, query expansion and re-ranking. In this
paper we detail these techniques and the results of our
submission. Using our query term weighting technique
combined with our corpus term collocation query expansion
we were able to achieve 0.2375 for the nsDCG@10.RL13
metric.

1. INTRODUCTION
Our goals were to further research relevance improvements
and to work on developing session techniques that might be
applicable in Cengage Learning’s products. We focused
our efforts on two aspects of the problem: 1) creating a
strong ad-hoc retrieval system to serve as the framework for
our session efforts and 2) implementing a number of
various techniques for improving retrieval performance
over a session of queries.

2. TASK DESCRIPTION
The goals of the TREC 2010 Session Track are “to test
whether systems can improve their performance for a given
query by using information about a previous query, and …
to evaluate system performance over an entire query session
instead of a single query.” [7]

Because this is the first year of this track, the task involves
a simple session of only two queries, an original query and
a reformulation of it. The participants are to submit three
runs for each user session, two of which are simply
retrievals for the individual queries without considering the
session (RL1 and RL2), and the third is a retrieval of the
reformulation using the combined evidence from both
queries (RL3).

The primary evaluation measure for this task is mean
nDCG@10 on RL3. This measure rewards systems with a
high-baseline retrieval performance that effectively
leverages the evidence of both queries in the session. For
this reason, we worked to create a strong ad-hoc retrieval
system over the ClueWeb09 collection, evaluating its
performance on the 2009 TREC Web Track queries. We
optimized our techniques for both ad-hoc retrieval and
session techniques to maximize nDCG@10.

3. COLLECTION INDEXING
For this task, we indexed the Category B subset of the
ClueWeb09 collection using Lucene1, a freely available
open source information retrieval API. In addition the
ClueWeb09 collection itself, in creating an index, we also
utilized publically available spam [2] and PageRank2 scores
for the collection. The spam scores were used prior to
indexing in order to filter documents that were likely to be
spam. Documents whose spam score fell below a fixed
threshold were excluded from the index altogether. Among
documents that were indexed, we used a combination of the
spam score and the PageRank score to endow with an
inherent retrieval preference documents that had a high
PageRank or were unlikely to be spam.

The index contains four fields:

• Document Text (after parsing HTML)

• Document Title (extracted from the title tag)

• URL

• Anchor Text [6]

Prior to indexing a document, we used the Jericho HTML
parser3 to extract the plain text from each document. The
Jericho parser is a very robust HTML parser that can
correctly handle nearly any type of malformed HTML,
though it does, in extreme cases, leave behind some markup
in the extracted text. We also performed stemming,

1 http://lucene.apache.org/
2 http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?

page=PageRank
3 http://jericho.htmlparser.net/docs/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

mailto:nsDCG@10.RL13

lowercasing, special character removal, and stop word
removal on each document field.

4. AD-HOC RETRIEVAL METHODS
4.1 Retrieval Formula
Our retrieval formula on this collection is a fusion of two
other formulas, a modified version of the default Lucene
retrieval formula, and BM25F. Using the TREC 2009 Web
Track queries and judgments, we have tuned both formulas
to achieve their best performance on this collection. To
combine the two formulas, we use the expCombSUM
fusion procedure, which gave the best performance among
all the methods attempted. [8] The fusion retrieval method
performed better than either of the individual formulas.

4.2 Query Expansion
4.2.1 Proximity Query Expansion
We augment the queries submitted to the Lucene retrieval
formula with Lucene phrase queries and span queries.
Phrase queries behave exactly like standard quoted phrases.
Because each query potentially contains a number of
different phrases, we search for all possible two word
phrases in the query (queries much longer than three words
tend to be rare, so we believe this is sufficient) For
example, given the query “gmat prep classes,” the query is
augmented with the following phrase queries: “gmat prep,”
“gmat classes,” and “prep classes.” [10] Span queries
attempt to exploit similar proximity properties. A Lucene
span query matches only documents in which the specified
search terms (not necessarily in order) are separated by no
more than n tokens, where n is user-specified (we use n=5).
We augment the query with a span query that attempts to
find all the query terms separated by no more than five
tokens.

4.2.2 Pseudo-Relevance Query Expansion
Unlike the other expansion methods listed in section 6,
pseudo-relevance feedback expansion showed no
improvements when gathering expansion terms for the two
queries separately, so we ran this method only after we had
applied all the other methods. The query was expanded
using the most common terms from the top five retrieved
documents. Although this method produced considerable
improvements in MAP, it actually hurt nDCG@10 in most
cases we tested. For this reason, we only used this method
in one of our runs.

5. EXPERIMENTAL SETUP
In the absence of any data from prior years with which to
test our methods for the Session track, we constructed our
own test data set based on the TREC-3 corpus, queries, and
judgments. Table 1 demonstrates how additional queries
were constructed. For each of fifty TREC-3 queries, we
constructed three additional queries, such that there were

three query pairs, representing each of the Session track
reformulation types (generalization, specialization, and
drift). The additional queries were themselves designed to
imperfectly represent the information need described in the
topic’s description, but in combination with the topic titles,
to more accurately specify the information need than either
query alone. By reflecting the topic’s same information
need, we were able to reuse the topic’s existing qrels for
evaluation.

Table 1. Example of query pair construction.

TREC-3
Query Title

dog maulings

Generalization
Pair

(pitbull attacks in the US, dog maulings)

Specialization
Pair

(animal attacks, dog maulings)

Drift Pair (dog bites, dog maulings)

Unfortunately, there are some significant differences
between our modified TREC-3 environment and the 2010
Session track. The most notable among these are the
lengths of the queries and the format of the content. The
Session track queries have 2.8 terms on average, while the
queries in our test-set contain nearly twice as many, with
5.0 terms on average. The TREC-3 corpus is composed
entirely of newspaper articles. The ClueWeb09 collection,
being comprised entirely of web pages, contains large
quantities of irrelevant text, such as navigational links,
copyrights, meta-data, and leftover markup. Nevertheless,
experimentation on this test set has proven to be useful,
despite the differences between the collections.

Table 2 shows how each of the methods performed
compared to the baseline RL1 and RL2 runs. Note that all
of the MAP measures are computed against the same set of
qrels, so the RL1 numbers may be somewhat inaccurate
since the RL1 queries do not always represent the
information need well (see above).

Table 2. Performance of various methods on TREC-3
test set.

Method RL1
MAP

RL2
MAP

RL3
MAP

Term Weighting (Section 6.1) 0.115 0.212 0.241

Category Re-ranking (6.2) 0.152 0.229 0.232

Usage Log Query Expansion

(6.3.1)

0.127 0.219 0.220

Corpus Collocation Query
Expansion (6.3.2)

0.198 0.238 0.249

WordNet Query Expansion (6.3.3) 0.145 0.236 0.235

6. SESSION METHODS

6.1 Query Term Weighting
In our experimentation, we found that a surprisingly
effective technique for improving retrieval performance was
to simply apply a new weight to a query term depending
upon which query it occurs in. We divided query terms into
three different categories: 1) terms that appear only in the
first query, 2) terms that appear only in the second query,
and 3) terms that appear in both queries.

Through experimentation, we found that the best weights
for these three groups were dependent upon what the type
of reformulation was (generalization, specialization, or
drift). Table 3 shows how the optimal weights differ
according to reformulation type.

Table 3. Weights for types of query terms.

Reformulation
type

1st query
only

2nd query
only

Both
queries

Generalization 0.5 1.0 2.5

Specialization 0.2 1.0 1.5

Drift 0.3 1.0 0.5

These weights also seem to make sense intuitively,
considering the user’s intent in each type of reformulation.
For example, in the case of generalization, it is more
important to remember the first query’s terms, whether they
are repeated or not, since the second query contains less
information.

Of course the requirement to change these weights
depending on the reformulation type necessitates the ability
to automatically categorize query pairs. Section 7 describes
these techniques.

6.2 Category Re-ranking
Category-based (or ontology-based) re-ranking has been
explored in literature by a number of different researchers,
usually in the context of constructing user profiles for a web
retrieval service from user actions, such as issuing queries
and clicking on documents. [3] [4] [11] In the Session
track, the only pieces of information available for use in
constructing such a user profile are the original query and
its reformulation. This helps to simplify much of the
problem of constructing a user profile, as there is no need to
determine session boundaries. However the major
drawback is that there is very little information from which
to construct such a profile.

Like much of the prior work, we chose to use the Open
Directory Project4 (ODP) as our ontology. The ODP is a
massive volunteer effort to manually classify web pages in
order to present a comprehensive directory of the World
Wide Web. It is freely available to download and is
comprised of a large number of categories, each containing
a number of web pages that were classified under that
category. Each categorized web page has a title, a URL,
and a short description.

Our approach here differs from previous work in how we
chose the best categories for a query or document. Rather
than training classifiers or calculating the cosine similarity
between term vectors, we built and searched against an
index of all the categories in the ODP ontology. Every
category in the ODP was indexed against its title and the
descriptions of all the pages categorized under it.

To categorize a query or document, the text of that query or
document was submitted to the ODP index and a list of
search results was returned with a retrieval score for each
result. The top ten results were selected as the best
category matches for the query and were given a weight
proportional to the retrieval score returned by Lucene.

As this was a re-ranking approach, we were concerned only
with modifying the order of the set of documents already
retrieved by the previous processes. For each document in
the result set, we computed a category match score:

where

• sim(q,d) is the similarity between a document d
and a query q

• Cq is the set of top ten categories for the query q

• score(x, c) is the score returned for the category c
when searching the ODP index for the text in x.

To compute the score between a document and the
categories, we submitted the full text of the document to the
search engine and retrieved a similarity score between the
document and each of the top ten category matches for the
query.

The approach for re-ranking with respect to two queries
was quite similar. Rather than using a single set Cq, we
create two sets of categories Cq1 and Cq2 which are the top
ten categories for each of q1 and q2 respectively. The
similarity score between a document and a pair of queries
then became

4 http://www.dmoz.org

where

• q1 is the original query

• q2 is the reformulated query

• α is the weight applied to the original query. We
used a value of 0.5

• β is the weight applied to the reformulated query.
We used a value of 1.0

To actually apply the re-ranking, we first ranked all the
documents in the retrieved set according to their category
score. Then using the reciprocal rank fusion method [13]
with the original retrieval scores, we computed a final
aggregate ranking.

6.3 Query Expansion
While query expansion is a popular technique for
improving average precision on a single query, we’ve found
that by using query history to select expansion terms,
retrieval performance could be improved beyond that of
single-query expansion.

We used several different methods for selecting expansion
terms: usage logs, corpus-based collocation, and WordNet
relation expansion.

6.3.1 Usage Log Query Expansion
In mining the usage logs from Cengage Learning products,
we have produced lists of related search terms. Terms t1
and t2 are said to co-occur if 1) they were both searched by
the same user in the same session or 2) there was some
document d such that searches for t1 and t2 both resulted in
the user choosing d. [9] Each related term was also
weighted according to

where

• rel(t1, t2) is the weight given to the term t2 as an
expansion candidate for t1.

• co(t1, t2) is the number of times t1 and t2 co-occur.

• T is the set of all pairs of related terms.

• Tt1 is the set of all terms related to t1.

This formula is similar in concept to the tf-idf weighting
scheme, in that it rewards frequently co-occurring terms,
but minimizes the impact of the most common search terms.

Expansion terms were sought for all possible sub-queries,
with expansion terms for longer phrases receiving a bonus
based on that length. For example, given the query “French

Lick Resort and Casino,” the entire query itself was
unlikely to be found in the usage logs. Shorter sub-queries
however, such as “French Lick” or “Resort and Casino”
may have had associated expansion terms. Expansion terms
for longer sub-queries were given exponentially greater
weights based on the number of words in the sub-query.
Terms that appeared in the expansions for multiple different
sub-queries were given greater weights based on the
number of times they appear.

In the combined RL3 run, expansion terms for both
individual queries were added. This provided a measurable
improvement over expansion on individual queries.

6.3.2 Corpus Collocation Query Expansion
Corpus-based collocation expansion was done very
similarly to log-based collocation expansion. The major
difference is in how the expansion terms are collected.
Cengage Learning maintains a collocation database used for
our Search Assist tool. This database was compiled against
large portions of Cengage Learning’s digital material and
can return a list of the fifty most common words and
phrases that appear near a given term. Although the corpus
has major differences in content and style from the
ClueWeb09 collection, expansion using this database has
nonetheless proven to be very effective.

We use the same techniques as above of breaking a
multiword query into shorter queries to search for
expansion terms and of weighting terms according to how
frequently they appeared in expansions.

6.3.3 WordNet Expansion
WordNet is a database of word forms and definitions
developed at Princeton University [5]. It is organized into
sets of synonyms called synsets. Each synset can have a
number of different types of relationships to other synsets.

Before we could choose any words for expansion, the
words in the query needed to be resolved as to which sense
of the word they referred by determining which sense of the
word is most similar to the other words in the query. This
of course makes the assumption that words with similar
senses are more likely to occur in the same query. We
believe that this is a reasonable assumption to make. To
best resolve the sense of each query term, we use a number
of different similarity measures:

• Wu and Palmer [12]

• Extended gloss overlaps [1]

• Tag count frequency

• Part-of-speech matching

The first two methods have been well covered in literature,
but the second set of methods, while greatly improving the
sense disambiguation performance, do not seem to have
been treated thoroughly before.

In our experiments with word sense disambiguation, we
found that the senses selected by the well-known similarity
measures were often obscure usages that were unlikely to
occur in everyday speech or writing. For this reason, we
created a measure which incorporated WordNet’s tag count,
a measure of how often each sense was encountered in the
tagging of corpora. Our frequency-based similarity
measure does not truly measure the similarity between two
senses, but rewards senses that appear with a high
frequency. This is also very helpful for single word
queries, which have no context with which to resolve the
sense. In these cases, we found that the sense with the
highest frequency often had the best expansion candidates.

We also found in our experiments that when word forms
were ambiguous with respect to their parts of speech, the
similarity measures would often select a sense with the
wrong part of speech. Using the labels from the OpenNLP5
part-of-speech tagger, we gave a bonus to senses whose part
of speech matched the tagged part-of-speech.

After grouping noun phrases and resolving the senses of all
the query terms, we added to the expanded query any words
with the following relationships to the query words,
weighted according to their tag count:

• Synonym – if a word A has a meaning that is
identical to word B, then A is a synonym of B and
vice-versa. Example: gregarious and friendly are
synonyms.

• Hypernym – if word A is a hypernym of word B,
then B is a type or instance of A. Example: fruit is
a hypernym of apple.

• Hypernym of a hypernym – if word A has this
relationship with word C, then there is some word
B such that word A is a hypernym of word B and
word B is a hypernym of word C.

• Meronym – if word A is a meronym of word B,
then B is composed of or contains A. Example:
finger is a meronym of hand.

In empirical testing, expanding the query with these word
types led to the greatest increase in MAP.

7. OBSERVED DOCUMENT DISCOUNT
In one of the runs we tried to give the documents that
appeared in the first query’s top results a discount if they
appeared in RL3. This may have been the factor of the
improvement for the results for this run when duplicate
documents discount metric was used.

5 http://opennlp.sourceforge.net

8. QUERY CATEGORIZATION
Although it is not required by TREC to identify query pairs
as to their reformulation type, we find it useful to produce
these labels automatically in order to improve the
performance of term weighting, which has different optimal
weights depending on the type of reformulation.

We utilized a number of different techniques to attempt to
categorize the queries according to their reformulation
types. A test on the session track queries, manually
classified prior to TREC’s official release, indicated that
the system correctly classified about 72% of the query
pairs.

Each of the following techniques contributes some quantity
to a categorization score, which ultimately determines
which label the system applies. If the final score is positive
enough, the query is judged to be a specialization, negative
enough and it is judged a generalization, and too close to
zero, a drift.

8.1 Query Term Techniques
A simple and very effective technique for categorizing
reformulations is based on observing query lengths and
which words appear in both queries. We make the
observation that queries with more terms tend to be more
specific. If the reformulated query had more query terms
than the original, then the categorization score was shifted
in favor of specialization by a factor proportional to the
difference in query length. (The converse is obviously also
true.)

In addition, we also observe that when one query contains
all the terms in another query, the first query is nearly
always the more specific of the two. When such a case
occurred, we added to the categorization score a quantity so
large that it was unlikely to be changed unless nearly all the
other evidence disagreed with the assessment.

8.2 WordNet Techniques
8.2.1 WordNet Relationships
Some WordNet relationships correlate strongly with the
concepts of generalization and specification. We used the
following types of relationships to aid categorization:

• Hypernym – if word A is a hypernym of word B,
then B is a type or instance of A. Example: fruit is
a hypernym of apple.

• Holonym – if word A is a holonym of word B,
then A is composed of or contains word B.
Example: car is a holonym of wheel. (Holonymy is
the opposite of meronymy.)

• Topic – if word A is a topic of word B, then B has
its specific meaning only in the context of A.
Example: baseball is the topic of pitcher (when
referring to an athlete).

From these relationships, we constructed the analog of a
hypernym tree (a tree with links for all of the above
relationships) for each query term. In order to capture the
ideas of generalization and specialization, we attempted to
determine when one query term is “above” another in the
tree. We settled on this definition: term A is above term B
if the two have a common ancestor C such that the distance
from A to C is less than half of the distance between B and
C. This seemed to identify nodes that have ancestor-
descendent relationships while allowing for variations and
inconsistencies in WordNet.

Scores were computed for every pair of words in the two
queries according to the following equation:

where relscore(u,v) is 1 when u is an ancestor of v, -1 when
v is an ancestor of u, and 0 otherwise.

8.2.2 WordNet Definitions
Here we leverage the idea that a word is usually defined in
terms of other more general words. If a word from the
reformulated query was defined in terms of a word in the
earlier query (that is to say, a word from the earlier query
appears in the definition of that word), then the
categorization score was increased on the specification side.
Like the previous technique, we compared all pairs of
words in the two queries:

where defscore(u,v) is defined as the number of times a
synonym of u occurs in the definition of v.

8.3 Result Set Techniques
Using the intuition that general queries return more results
than specific queries, we compared the size of the result
sets that the two queries fetched. The original query and its
reformulation were submitted to both the Bing6 search
engine and the Lucene ClueWeb09 index. Depending on
the ratio of the sizes of the result sets for the two queries,
the categorization was made more specific, more general, or
left unchanged (if the result sets were too similar in size).

8.4 Query Categorization Performance
When we measured the performance of the query
categorization performed manually vs. our system against
the prepared queries we found the following. Our manual
category assignment agreed 85% of a time with the judges,
where our system’s categorization agreed 70% of a time.
The system performed better in the automatic query
categorization for the specialization cases (85%), then for

6 http://www.bing.com

generalization (76%), and fairly poorly for the drifting
(49%).

9. RESULTS
We have submitted three different runs, each using a
different combination of the methods described in this
section. Table 4 shows the methods that were used for each
run.

Table 4: Methods used in submitted runs.

Run ID Methods

CengageS10R1 Term weighting, Corpus collocation
expansion

CengageS10R2 Term weighting, Usage-log expansion,
Corpus collocation expansion, Pseudo-
relevance expansion

CengageS10R3 WordNet expansion, Category re-
ranking, Observed Document Discount

Table 5 below shows the results of all three runs.
CengageS10R1 had the best performance among the three
runs according to the nsDCG@10.RL13 metric.

Table 5: nsDCG@10 performance for RL12 and RL13

Run

nsDCG@1
0.RL12

nsDCG@
10.RL13 Difference

R1 0.2354 0.2375 0.89%

R2 0.2328 0.2347 0.82%

R3 0.2289 0.2294 0.22%

Table 6 shows the metrics that discount duplicate
documents between RL2 and RL3.

Table 6: nsDCG@10 performance for RL12 and RL13
considering duplicate documents discount

Run

nsDCG_dupe
s@10.RL12

nsDCG_dupe
s@10.RL13 Difference

R1 0.2290 0.2225 -2.84%

R2 0.2260 0.2192 -3.01%

R3 0.2232 0.2227 -0.22%

From the Table 7, CengageS10R3 did better than the other
two runs. This table uses nDCG@10 metric.

mailto:nsDCG_dupes@10.RL13
mailto:nsDCG_dupes@10.RL13

Table 7: nsDCG@10 performance for RL1, RL2 and
RL3

Run

nDCG
@10.R
L1

nDCG
@10.R
L2

nDCG
@10.R
L3

Difference
(RL2 and RL3)

R1 0.2176 0.2612 0.2602 -0.38%

R2 0.2146 0.2596 0.2572 -0.92%

R3 0.2094 0.2572 0.2579 0.27%

Finally, Table 8 shows the nDCG and nsDCG for each run
by reformulation type. In all three runs the specialization
reformulation type’s DCG metrics are lower than those of
the drift or generalization types.

Table 8: Mean nDCG@10 and nsDCG@10 metrics by
reformulation type by each run

Reformulation Type R1 R2 R3
Drift 0.2679 0.2628 0.2693
Generalization 0.2658 0.2592 0.2588
Specialization 0.1756 0.1793 0.1619
Mean
nsDCG@10.RL12 0.2354 0.2328 0.2289
Drift 0.2716 0.2661 0.2704
Generalization 0.2606 0.2529 0.2577
Specialization 0.1827 0.1870 0.1631
Mean
nsDCG@10.RL13 0.2375 0.2347 0.2294
Drift 0.2531 0.2475 0.2584
Generalization 0.2524 0.2454 0.2418
Specialization 0.1508 0.1542 0.1316
Mean nDCG@10.RL1 0.2176 0.2146 0.2094
Drift 0.2524 0.2445 0.2416
Generalization 0.2936 0.2937 0.2950
Specialization 0.2412 0.2441 0.2392
Mean nDCG@10.RL2 0.2612 0.2596 0.2572
Drift 0.2473 0.2412 0.2446
Generalization 0.2798 0.2748 0.2890
Specialization 0.2557 0.2574 0.2433
Mean nDCG@10.RL3 0.2602 0.2572 0.2579

10. CONCLUSIONS
In summary, we used a number of different techniques to
attempt to improve performance over a user session. The
most effective of these were a combination of query term
weighting and corpus-based collocation expansion.

None of the improvements were statistically significant.
However, comparing nsDCG@10.RL12 and .RL13, we saw
some improvement in the CengageS10R1 (less than 1%)
with respect to the first goal of using the knowledge of the

previous query to improve the results for a given query.
The main metric for the second track’s goal of evaluating
the performance over the entire session (nsDCG@10.RL13)
was 0.2375.

We believe that several of these methods may be promising
directions for further research. One of our most effective
techniques was query term weighting. Our approach was
rather simple, dividing the query terms into only three
categories and applying weights. There are a number of
other similar techniques that may also be effective, such as
applying weights based on part of speech, inverse document
frequency, or word specificity (perhaps using WordNet).

Another technique which performed well was corpus-based
term collocation expansion. The term collocation
dictionary was built from our digital content and we are
actively researching ways to further improve it.

We also believe that category-based re-ranking could be
made to be more effective. This method performed well on
our TREC-3 testing set, but we were never able to replicate
that performance on the ClueWeb09 collection. We
hypothesize that this is because the ClueWeb09 collection
is much more diverse than the TREC-3 collection, and is
therefore much more difficult to correctly categorize.

Both the CengageS10R1 and CengageS10R2 runs had
similar performance as we used similar techniques for both.
We attribute the poorer performance of CengageS10R2 to
the use of pseudo relevance feedback, which can improve
retrieval performance over a large number of documents
(e.g. n = 1000), but is actually detrimental to the quality of
the top documents. Since the DCG measures for this task
are evaluated at the 10th result, we hypothesize that pseudo-
relevance feedback was primarily responsible for the
decrease.

Of the three reformulation types, the specialization
reformulation type had the lowest performance when
evaluated against the nsDCG@10.RL12 and
nsDCG@10.RL13 metrics. Upon further analysis, we
found that these two metrics are affected by the lower
nDCG@10.RL1 scores. This data shift may be explained
by the nature of the specialization reformulation type – the
first query is much less relevant to the user’s information
need than the second one.

Finally, upon a comparison of nDCG@10.RL2 and
nDCG@10.RL3, CengageS10R3 shows improvement in
overall system performance. CengageS10R3 was least
affected by the discounting of duplicate documents because
documents that appeared in the first query’s result list were
discounted in RL3.

mailto:nsDCG@10.RL13
mailto:nsDCG@10.RL12
mailto:nsDCG@10.RL13
mailto:nDCG@10.RL1
mailto:nDCG@10.RL1

11. ACKNOWLEDGEMENTS
We thank Michael Corral, Qiaozhu Mei, Drew Koszewnik,
Duane May, Eugene Kiel, Paul Tunney, Rohit Laungani,
Pete Pfeiffer, Craig Schroeder, Michael Cafarella, John
Nader for their ideas and support.

12. REFERENCES
[1] Banerjee, S. and Pedersen, T. 2003. Extended gloss

overlaps as a measure of semantic relatedness. In
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (Acapulco,
Mexico), pages 805-810.

[2] Cormack, G. V., Smucker, M. D., and Clarke, C. L. A.
2009. Efficient and effective spam filtering and re-
ranking for large web datasets. Unpublished
Manuscript.
http://durum0.uwaterloo.ca/clueweb09spam/spamhunt.
pdf

[3] Challam, V., Gauch, S., and Chandramouli, A. 2007.
Contextual search using ontology-based user profiles.
In Proceedings of RIAO 2007 (Pittsburgh, USA, May
30 – June 1, 2007)

[4] Daoud, M., Tamine-Lechani, L., and Boughanem, M.
2008. Leaning user interests for a session-based
personalized search. In Proceedings of the Second
International Symposium on Information Interaction in
Context (London, United Kingdom, October 14-17,
2008). P. Borlund, J. W. Schneider, M. Lalmas, A.
Tobros, J. Feather, D. Kelly, and A. P. de Vries, Eds.
lliX ’08, vol. 348. ACM, New York, NY, 57-64. DOI=
http://doi.acm.org/10.1145/1414694.1414708

[5] Fellbaum, C. 1998. WordNet, an electronic lexical
database, MIT Press.

[6] Hiemstra, D. and Hauff, C. 2010. MIREX: MapReduce
information retrieval experiments. Technical Report.
University of Twente.
http://doc.utwente.nl/71078/1/mirex.pdf

[7] Kanoulas, E., Clough, P., Carterette, B., and
Sanderson, M. 2010. Session track at TREC 2010. In
Proceedings of the SIGIR 2010 Workshop on the
Simulation of Interaction: Automated Evaluation of
Interactive IR. (Geneva, Switzerland, July 23, 2010),
pp. 13-14. L. Azzopardi, K. Järvelin., J. Kamps, and
M. Smucker Eds. IR Publications, Amsterdam, 2010.

[8] MacDonald, C. and Ounis, I. 2006. Voting for
candidates: adapting data fusion techniques for an
expert search task. In Proceedings of the 15th ACM
International Conference on Information and
Knowledge Management (Arlington, Virginia, USA,
November 6-11, 2006), ACM, pp. 387-396.

[9] Mei, Q., Zhou, D., Church, K. 2008. Query suggestion
using hitting time. In Proceedings of the 17th ACM
Conference on Information and Knowledge
Management (New York, NY, USA, 2008), ACM, pp.
469-478.

[10] Mishne, D. and de Rijke, M. 2004. Boosting web
retrieval through query operations. In Proceedings of
the 27th European Conference on Information
Retrieval (ECIR ’05), pages 502-516, 2004.

[11] Pretschner, A. 1998. Ontology based personalized
search. Master’s Thesis. University of Kansas.

[12] Wu, Z. and Palmer, M. 1994. Verb semantics and
lexical selection. In The 32nd Annual Meeting of the
Association for Computational Linguistics (Las
Cruces, New Mexico, USA), ACM, pages 133-138

[13] Zhang, M., Song, R., Lin, C., Ma, S., Jang, Z., Lin, Y.,
Liu, Y., and Zhao, L. 2002. Expansion-based
technologies in finding relevant and new information:
THU TREC2002: Novelty Track Experiments. In
Proceedings of TREC 2002 (Gaithersburg, Maryland,
USA, 2002)

	1. INTRODUCTION
	2. TASK DESCRIPTION
	3. COLLECTION INDEXING
	4. AD-HOC RETRIEVAL METHODS
	4.1 Retrieval Formula
	4.2 Query Expansion
	4.2.1 Proximity Query Expansion
	4.2.2 Pseudo-Relevance Query Expansion

	5. EXPERIMENTAL SETUP
	6. SESSION METHODS
	6.1 Query Term Weighting
	6.2 Category Re-ranking
	6.3 Query Expansion
	6.3.1 Usage Log Query Expansion
	6.3.2 Corpus Collocation Query Expansion
	6.3.3 WordNet Expansion

	7. OBSERVED DOCUMENT DISCOUNT
	8. QUERY CATEGORIZATION
	8.1 Query Term Techniques
	8.2 WordNet Techniques
	8.2.1 WordNet Relationships
	8.2.2 WordNet Definitions

	8.3 Result Set Techniques
	8.4 Query Categorization Performance

	9. RESULTS
	10. CONCLUSIONS
	11. ACKNOWLEDGEMENTS
	12. REFERENCES

