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ABSTRACT 
This paper details Cengage Leaning’s TREC 2010 Session 
track submission and our efforts to improve retrieval 
performance over a user’s session.  We use a number of 
different techniques to achieve this goal including query 
term weighting, query expansion and re-ranking. In this 
paper we detail these techniques and the results of our 
submission.  Using our query term weighting technique 
combined with our corpus term collocation query expansion 
we were able to achieve 0.2375 for the nsDCG@10.RL13 
metric. 

1. INTRODUCTION 
Our goals were to further research relevance improvements 
and to work on developing session techniques that might be 
applicable in Cengage Learning’s products.  We focused 
our efforts on two aspects of the problem: 1) creating a 
strong ad-hoc retrieval system to serve as the framework for 
our session efforts and 2) implementing a number of 
various techniques for improving retrieval performance 
over a session of queries. 

2. TASK DESCRIPTION 
The goals of the TREC 2010 Session Track are “to test 
whether systems can improve their performance for a given 
query by using information about a previous query, and … 
to evaluate system performance over an entire query session 
instead of a single query.” [7] 

Because this is the first year of this track, the task involves 
a simple session of only two queries, an original query and 
a reformulation of it.  The participants are to submit three 
runs for each user session, two of which are simply 
retrievals for the individual queries without considering the 
session (RL1 and RL2), and the third is a retrieval of the 
reformulation using the combined evidence from both 
queries (RL3). 

The primary evaluation measure for this task is mean 
nDCG@10 on RL3.  This measure rewards systems with a 
high-baseline retrieval performance that effectively 
leverages the evidence of both queries in the session.  For 
this reason, we worked to create a strong ad-hoc retrieval 
system over the ClueWeb09 collection, evaluating its 
performance on the 2009 TREC Web Track queries.  We 
optimized our techniques for both ad-hoc retrieval and 
session techniques to maximize nDCG@10. 

3. COLLECTION INDEXING 
For this task, we indexed the Category B subset of the 
ClueWeb09 collection using Lucene1, a freely available 
open source information retrieval API.  In addition the 
ClueWeb09 collection itself, in creating an index, we also 
utilized publically available spam [2] and PageRank2 scores 
for the collection.  The spam scores were used prior to 
indexing in order to filter documents that were likely to be 
spam.  Documents whose spam score fell below a fixed 
threshold were excluded from the index altogether.  Among 
documents that were indexed, we used a combination of the 
spam score and the PageRank score to endow with an 
inherent retrieval preference documents that had a high 
PageRank or were unlikely to be spam.   

The index contains four fields: 

• Document Text (after parsing HTML) 

• Document Title (extracted from the title tag) 

• URL 

• Anchor Text [6] 

Prior to indexing a document, we used the Jericho HTML 
parser3 to extract the plain text from each document.  The 
Jericho parser is a very robust HTML parser that can 
correctly handle nearly any type of malformed HTML, 
though it does, in extreme cases, leave behind some markup 
in the extracted text. We also performed stemming, 

                                                                 
1 http://lucene.apache.org/ 
2 http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php? 

page=PageRank 
3 http://jericho.htmlparser.net/docs/index.html 
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lowercasing, special character removal, and stop word 
removal on each document field. 

4. AD-HOC RETRIEVAL METHODS 
4.1 Retrieval Formula 
Our retrieval formula on this collection is a fusion of two 
other formulas, a modified version of the default Lucene 
retrieval formula, and BM25F.  Using the TREC 2009 Web 
Track queries and judgments, we have tuned both formulas 
to achieve their best performance on this collection.  To 
combine the two formulas, we use the expCombSUM 
fusion procedure, which gave the best performance among 
all the methods attempted. [8]  The fusion retrieval method 
performed better than either of the individual formulas.  

4.2 Query Expansion 
4.2.1 Proximity Query Expansion 
We augment the queries submitted to the Lucene retrieval 
formula with Lucene phrase queries and span queries.  
Phrase queries behave exactly like standard quoted phrases.  
Because each query potentially contains a number of 
different phrases, we search for all possible two word 
phrases in the query (queries much longer than three words 
tend to be rare, so we believe this is sufficient) For 
example, given the query “gmat prep classes,” the query is 
augmented with the following phrase queries: “gmat prep,” 
“gmat classes,” and “prep classes.” [10]  Span queries 
attempt to exploit similar proximity properties.  A Lucene 
span query matches only documents in which the specified 
search terms (not necessarily in order) are separated by no 
more than n tokens, where n is user-specified (we use n=5).  
We augment the query with a span query that attempts to 
find all the query terms separated by no more than five 
tokens. 

4.2.2 Pseudo-Relevance Query Expansion 
Unlike the other expansion methods listed in section 6, 
pseudo-relevance feedback expansion showed no 
improvements when gathering expansion terms for the two 
queries separately, so we ran this method only after we had 
applied all the other methods.  The query was expanded 
using the most common terms from the top five retrieved 
documents.  Although this method produced considerable 
improvements in MAP, it actually hurt nDCG@10 in most 
cases we tested.  For this reason, we only used this method 
in one of our runs. 

5. EXPERIMENTAL SETUP 
In the absence of any data from prior years with which to 
test our methods for the Session track, we constructed our 
own test data set based on the TREC-3 corpus, queries, and 
judgments.  Table 1 demonstrates how additional queries 
were constructed.  For each of fifty TREC-3 queries, we 
constructed three additional queries, such that there were 

three query pairs, representing each of the Session track 
reformulation types (generalization, specialization, and 
drift).  The additional queries were themselves designed to 
imperfectly represent the information need described in the 
topic’s description, but in combination with the topic titles, 
to more accurately specify the information need than either 
query alone.  By reflecting the topic’s same information 
need, we were able to reuse the topic’s existing qrels for 
evaluation. 

Table 1. Example of query pair construction. 

TREC-3 
Query Title 

dog maulings 

Generalization 
Pair 

(pitbull attacks in the US, dog maulings) 

Specialization 
Pair 

(animal attacks, dog maulings) 

Drift Pair (dog bites, dog maulings) 

 

Unfortunately, there are some significant differences 
between our modified TREC-3 environment and the 2010 
Session track.  The most notable among these are the 
lengths of the queries and the format of the content.  The 
Session track queries have 2.8 terms on average, while the 
queries in our test-set contain nearly twice as many, with 
5.0 terms on average.  The TREC-3 corpus is composed 
entirely of newspaper articles.  The ClueWeb09 collection, 
being comprised entirely of web pages, contains large 
quantities of irrelevant text, such as navigational links, 
copyrights, meta-data, and leftover markup.  Nevertheless, 
experimentation on this test set has proven to be useful, 
despite the differences between the collections. 

Table 2 shows how each of the methods performed 
compared to the baseline RL1 and RL2 runs.  Note that all 
of the MAP measures are computed against the same set of 
qrels, so the RL1 numbers may be somewhat inaccurate 
since the RL1 queries do not always represent the 
information need well (see above). 

Table 2. Performance of various methods on TREC-3 
test set. 

Method RL1 
MAP 

RL2 
MAP 

RL3 
MAP 

Term Weighting (Section 6.1) 0.115 0.212 0.241 

Category Re-ranking (6.2) 0.152 0.229 0.232 

Usage Log Query Expansion 

(6.3.1) 

0.127 0.219 0.220 

Corpus Collocation Query 
Expansion (6.3.2) 

0.198 0.238 0.249 

WordNet Query Expansion (6.3.3) 0.145 0.236 0.235 



6. SESSION METHODS 

6.1 Query Term Weighting 
In our experimentation, we found that a surprisingly 
effective technique for improving retrieval performance was 
to simply apply a new weight to a query term depending 
upon which query it occurs in.  We divided query terms into 
three different categories: 1) terms that appear only in the 
first query, 2) terms that appear only in the second query, 
and 3) terms that appear in both queries. 

Through experimentation, we found that the best weights 
for these three groups were dependent upon what the type 
of reformulation was (generalization, specialization, or 
drift).  Table 3 shows how the optimal weights differ 
according to reformulation type. 

Table 3. Weights for types of query terms. 

Reformulation 
type 

1st query 
only 

2nd query 
only 

Both 
queries 

Generalization 0.5 1.0 2.5 

Specialization 0.2 1.0 1.5 

Drift 0.3 1.0 0.5 

 

These weights also seem to make sense intuitively, 
considering the user’s intent in each type of reformulation.  
For example, in the case of generalization, it is more 
important to remember the first query’s terms, whether they 
are repeated or not, since the second query contains less 
information. 

Of course the requirement to change these weights 
depending on the reformulation type necessitates the ability 
to automatically categorize query pairs.  Section 7 describes 
these techniques. 

6.2 Category Re-ranking 
Category-based (or ontology-based) re-ranking has been 
explored in literature by a number of different researchers, 
usually in the context of constructing user profiles for a web 
retrieval service from user actions, such as issuing queries 
and clicking on documents. [3] [4] [11]  In the Session 
track, the only pieces of information available for use in 
constructing such a user profile are the original query and 
its reformulation.  This helps to simplify much of the 
problem of constructing a user profile, as there is no need to 
determine session boundaries. However the major 
drawback is that there is very little information from which 
to construct such a profile. 

Like much of the prior work, we chose to use the Open 
Directory Project4 (ODP) as our ontology.  The ODP is a 
massive volunteer effort to manually classify web pages in 
order to present a comprehensive directory of the World 
Wide Web.  It is freely available to download and is 
comprised of a large number of categories, each containing 
a number of web pages that were classified under that 
category.  Each categorized web page has a title, a URL, 
and a short description. 

Our approach here differs from previous work in how we 
chose the best categories for a query or document.  Rather 
than training classifiers or calculating the cosine similarity 
between term vectors, we built and searched against an 
index of all the categories in the ODP ontology.  Every 
category in the ODP was indexed against its title and the 
descriptions of all the pages categorized under it.   

To categorize a query or document, the text of that query or 
document was submitted to the ODP index and a list of 
search results was returned with a retrieval score for each 
result.  The top ten results were selected as the best 
category matches for the query and were given a weight 
proportional to the retrieval score returned by Lucene. 

As this was a re-ranking approach, we were concerned only 
with modifying the order of the set of documents already 
retrieved by the previous processes.  For each document in 
the result set, we computed a category match score: 

 

where 

• sim(q,d) is the similarity between a document d 
and a query q 

• Cq is the set of top ten categories for the query q 

• score(x, c) is the score returned for the category c 
when searching the ODP index for the text in x. 

To compute the score between a document and the 
categories, we submitted the full text of the document to the 
search engine and retrieved a similarity score between the 
document and each of the top ten category matches for the 
query. 

The approach for re-ranking with respect to two queries 
was quite similar.  Rather than using a single set Cq, we 
create two sets of categories Cq1 and Cq2 which are the top 
ten categories for each of q1 and q2 respectively.  The 
similarity score between a document and a pair of queries 
then became 

                                                                 
4 http://www.dmoz.org 



 

where  

• q1 is the original query 

• q2 is the reformulated query 

• α is the weight applied to the original query.  We 
used a value of 0.5 

• β is the weight applied to the reformulated query.  
We used a value of 1.0 

To actually apply the re-ranking, we first ranked all the 
documents in the retrieved set according to their category 
score.  Then using the reciprocal rank fusion method [13] 
with the original retrieval scores, we computed a final 
aggregate ranking. 

6.3 Query Expansion 
While query expansion is a popular technique for 
improving average precision on a single query, we’ve found 
that by using query history to select expansion terms, 
retrieval performance could be improved beyond that of 
single-query expansion. 

We used several different methods for selecting expansion 
terms: usage logs, corpus-based collocation, and WordNet 
relation expansion. 

6.3.1 Usage Log Query Expansion 
In mining the usage logs from Cengage Learning products, 
we have produced lists of related search terms.  Terms t1 
and t2 are said to co-occur if 1) they were both searched by 
the same user in the same session or 2) there was some 
document d such that searches for t1 and t2 both resulted in 
the user choosing d. [9]  Each related term was also 
weighted according to 

 
where 

• rel(t1, t2) is the weight given to the term t2 as an 
expansion candidate for t1. 

• co(t1, t2) is the number of times t1 and t2 co-occur. 

• T is the set of all pairs of related terms. 

• Tt1 is the set of all terms related to t1. 

This formula is similar in concept to the tf-idf weighting 
scheme, in that it rewards frequently co-occurring terms, 
but minimizes the impact of the most common search terms. 

Expansion terms were sought for all possible sub-queries, 
with expansion terms for longer phrases receiving a bonus 
based on that length.  For example, given the query “French 

Lick Resort and Casino,” the entire query itself was 
unlikely to be found in the usage logs.  Shorter sub-queries 
however, such as “French Lick” or “Resort and Casino” 
may have had associated expansion terms.  Expansion terms 
for longer sub-queries were given exponentially greater 
weights based on the number of words in the sub-query.  
Terms that appeared in the expansions for multiple different 
sub-queries were given greater weights based on the 
number of times they appear. 

In the combined RL3 run, expansion terms for both 
individual queries were added.  This provided a measurable 
improvement over expansion on individual queries. 

6.3.2 Corpus Collocation Query Expansion 
Corpus-based collocation expansion was done very 
similarly to log-based collocation expansion.  The major 
difference is in how the expansion terms are collected.  
Cengage Learning maintains a collocation database used for 
our Search Assist tool.  This database was compiled against 
large portions of Cengage Learning’s digital material and 
can return a list of the fifty most common words and 
phrases that appear near a given term.  Although the corpus 
has major differences in content and style from the 
ClueWeb09 collection, expansion using this database has 
nonetheless proven to be very effective. 

We use the same techniques as above of breaking a 
multiword query into shorter queries to search for 
expansion terms and of weighting terms according to how 
frequently they appeared in expansions. 

6.3.3 WordNet Expansion 
WordNet is a database of word forms and definitions 
developed at Princeton University [5].  It is organized into 
sets of synonyms called synsets.  Each synset can have a 
number of different types of relationships to other synsets. 

Before we could choose any words for expansion, the 
words in the query needed to be resolved as to which sense 
of the word they referred by determining which sense of the 
word is most similar to the other words in the query.  This 
of course makes the assumption that words with similar 
senses are more likely to occur in the same query.  We 
believe that this is a reasonable assumption to make.  To 
best resolve the sense of each query term, we use a number 
of different similarity measures:  

• Wu and Palmer [12] 

• Extended gloss overlaps [1] 

• Tag count frequency 

• Part-of-speech matching 

The first two methods have been well covered in literature, 
but the second set of methods, while greatly improving the 
sense disambiguation performance, do not seem to have 
been treated thoroughly before.   



In our experiments with word sense disambiguation, we 
found that the senses selected by the well-known similarity 
measures were often obscure usages that were unlikely to 
occur in everyday speech or writing.  For this reason, we 
created a measure which incorporated WordNet’s tag count, 
a measure of how often each sense was encountered in the 
tagging of corpora.  Our frequency-based similarity 
measure does not truly measure the similarity between two 
senses, but rewards senses that appear with a high 
frequency.  This is also very helpful for single word 
queries, which have no context with which to resolve the 
sense.  In these cases, we found that the sense with the 
highest frequency often had the best expansion candidates. 

We also found in our experiments that when word forms 
were ambiguous with respect to their parts of speech, the 
similarity measures would often select a sense with the 
wrong part of speech.  Using the labels from the OpenNLP5 
part-of-speech tagger, we gave a bonus to senses whose part 
of speech matched the tagged part-of-speech. 

After grouping noun phrases and resolving the senses of all 
the query terms, we added to the expanded query any words 
with the following relationships to the query words, 
weighted according to their tag count: 

• Synonym – if a word A has a meaning that is 
identical to word B, then A is a synonym of B and 
vice-versa.  Example: gregarious and friendly are 
synonyms. 

• Hypernym – if word A is a hypernym of word B, 
then B is a type or instance of A.  Example: fruit is 
a hypernym of apple. 

• Hypernym of a hypernym – if word A has this 
relationship with word C, then there is some word 
B such that word A is a hypernym of word B and 
word B is a hypernym of word C. 

• Meronym – if word A is a meronym of word B, 
then B is composed of or contains A.  Example: 
finger is a meronym of hand. 

In empirical testing, expanding the query with these word 
types led to the greatest increase in MAP. 

7. OBSERVED DOCUMENT DISCOUNT 
In one of the runs we tried to give the documents that 
appeared in the first query’s top results a discount if they 
appeared in RL3.  This may have been the factor of the 
improvement for the results for this run when duplicate 
documents discount metric was used. 
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8. QUERY CATEGORIZATION 
Although it is not required by TREC to identify query pairs 
as to their reformulation type, we find it useful to produce 
these labels automatically in order to improve the 
performance of term weighting, which has different optimal 
weights depending on the type of reformulation. 

We utilized a number of different techniques to attempt to 
categorize the queries according to their reformulation 
types.  A test on the session track queries, manually 
classified prior to TREC’s official release, indicated that 
the system correctly classified about 72% of the query 
pairs. 

Each of the following techniques contributes some quantity 
to a categorization score, which ultimately determines 
which label the system applies.  If the final score is positive 
enough, the query is judged to be a specialization, negative 
enough and it is judged a generalization, and too close to 
zero, a drift. 

8.1 Query Term Techniques 
A simple and very effective technique for categorizing 
reformulations is based on observing query lengths and 
which words appear in both queries.  We make the 
observation that queries with more terms tend to be more 
specific.  If the reformulated query had more query terms 
than the original, then the categorization score was shifted 
in favor of specialization by a factor proportional to the 
difference in query length.  (The converse is obviously also 
true.) 

In addition, we also observe that when one query contains 
all the terms in another query, the first query is nearly 
always the more specific of the two.  When such a case 
occurred, we added to the categorization score a quantity so 
large that it was unlikely to be changed unless nearly all the 
other evidence disagreed with the assessment. 

8.2 WordNet Techniques 
8.2.1 WordNet Relationships 
Some WordNet relationships correlate strongly with the 
concepts of generalization and specification.  We used the 
following types of relationships to aid categorization: 

• Hypernym – if word A is a hypernym of word B, 
then B is a type or instance of A.  Example: fruit is 
a hypernym of apple. 

• Holonym – if word A is a holonym of word B, 
then A is composed of or contains word B.  
Example: car is a holonym of wheel. (Holonymy is 
the opposite of meronymy.) 

• Topic – if word A is a topic of word B, then B has 
its specific meaning only in the context of A.  
Example: baseball is the topic of pitcher (when 
referring to an athlete). 



From these relationships, we constructed the analog of a 
hypernym tree (a tree with links for all of the above 
relationships) for each query term.  In order to capture the 
ideas of generalization and specialization, we attempted to 
determine when one query term is “above” another in the 
tree.  We settled on this definition:  term A is above term B 
if the two have a common ancestor C such that the distance 
from A to C is less than half of the distance between B and 
C.  This seemed to identify nodes that have ancestor-
descendent relationships while allowing for variations and 
inconsistencies in WordNet. 

Scores were computed for every pair of words in the two 
queries according to the following equation: 

 
where relscore(u,v) is 1 when u is an ancestor of v, -1 when 
v is an ancestor of u, and 0 otherwise.                                                                                                                                                                     

8.2.2 WordNet Definitions 
Here we leverage the idea that a word is usually defined in 
terms of other more general words.  If a word from the 
reformulated query was defined in terms of a word in the 
earlier query (that is to say, a word from the earlier query 
appears in the definition of that word), then the 
categorization score was increased on the specification side.  
Like the previous technique, we compared all pairs of 
words in the two queries: 

 
where defscore(u,v) is defined as the number of times a 
synonym of u occurs in the definition of v. 

8.3 Result Set Techniques 
Using the intuition that general queries return more results 
than specific queries, we compared the size of the result 
sets that the two queries fetched.  The original query and its 
reformulation were submitted to both the Bing6 search 
engine and the Lucene ClueWeb09 index.  Depending on 
the ratio of the sizes of the result sets for the two queries, 
the categorization was made more specific, more general, or 
left unchanged (if the result sets were too similar in size). 

8.4 Query Categorization Performance 
When we measured the performance of the query 
categorization performed manually vs. our system against 
the prepared queries we found the following.  Our manual 
category assignment agreed 85% of a time with the judges, 
where our system’s categorization agreed 70% of a time.  
The system performed better in the automatic query 
categorization for the specialization cases (85%), then for 
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generalization (76%), and fairly poorly for the drifting 
(49%).  

9. RESULTS 
We have submitted three different runs, each using a 
different combination of the methods described in this 
section.  Table 4 shows the methods that were used for each 
run. 

Table 4:  Methods used in submitted runs. 

Run ID Methods 

CengageS10R1                                         Term weighting, Corpus collocation 
expansion 

CengageS10R2 Term weighting, Usage-log expansion, 
Corpus collocation expansion, Pseudo-
relevance expansion 

CengageS10R3 WordNet expansion, Category re-
ranking, Observed Document Discount 

 

Table 5 below shows the results of all three runs.  
CengageS10R1 had the best performance among the three 
runs according to the nsDCG@10.RL13 metric.  

Table 5: nsDCG@10 performance for RL12 and RL13  

Run 

 
nsDCG@1
0.RL12  

 
nsDCG@
10.RL13  Difference 

R1   0.2354    0.2375 0.89% 

R2   0.2328    0.2347 0.82% 

R3   0.2289    0.2294 0.22% 

 

Table 6 shows the metrics that discount duplicate 
documents between RL2 and RL3. 

Table 6: nsDCG@10 performance for RL12 and RL13 
considering duplicate documents discount 

Run 

 
nsDCG_dupe
s@10.RL12  

 
nsDCG_dupe
s@10.RL13  Difference 

R1 0.2290 0.2225 -2.84% 

R2 0.2260 0.2192 -3.01% 

R3 0.2232 0.2227 -0.22% 

 

From the Table 7, CengageS10R3 did better than the other 
two runs.  This table uses nDCG@10 metric. 
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Table 7: nsDCG@10 performance for RL1, RL2 and 
RL3 

Run 

 
nDCG
@10.R
L1  

 
nDCG
@10.R
L2  

 
nDCG
@10.R
L3  

Difference 
(RL2 and RL3) 

R1 0.2176 0.2612 0.2602 -0.38% 

R2 0.2146 0.2596 0.2572 -0.92% 

R3 0.2094 0.2572 0.2579 0.27% 

 

Finally, Table 8 shows the nDCG and nsDCG for each run 
by reformulation type.  In all three runs the specialization 
reformulation type’s DCG metrics are lower than those of 
the drift or generalization types. 

Table 8:  Mean nDCG@10 and nsDCG@10 metrics by 
reformulation type by each run 

Reformulation Type R1 R2 R3 
Drift 0.2679    0.2628    0.2693    
Generalization 0.2658    0.2592    0.2588    
Specialization 0.1756    0.1793    0.1619    
Mean 
nsDCG@10.RL12 0.2354    0.2328    0.2289    
Drift 0.2716    0.2661    0.2704    
Generalization 0.2606    0.2529    0.2577    
Specialization 0.1827    0.1870    0.1631    
Mean 
nsDCG@10.RL13 0.2375    0.2347    0.2294    
Drift 0.2531    0.2475    0.2584    
Generalization 0.2524    0.2454    0.2418    
Specialization 0.1508    0.1542    0.1316    
Mean nDCG@10.RL1 0.2176    0.2146    0.2094    
Drift 0.2524    0.2445    0.2416    
Generalization 0.2936    0.2937    0.2950    
Specialization 0.2412    0.2441    0.2392    
Mean nDCG@10.RL2 0.2612    0.2596    0.2572    
Drift 0.2473    0.2412    0.2446    
Generalization 0.2798    0.2748    0.2890    
Specialization 0.2557    0.2574    0.2433    
Mean nDCG@10.RL3 0.2602    0.2572    0.2579    
 

10. CONCLUSIONS 
In summary, we used a number of different techniques to 
attempt to improve performance over a user session.  The 
most effective of these were a combination of query term 
weighting and corpus-based collocation expansion.   

None of the improvements were statistically significant.  
However, comparing nsDCG@10.RL12 and .RL13, we saw 
some improvement in the CengageS10R1 (less than 1%) 
with respect to the first goal of using the knowledge of the 

previous query to improve the results for a given query.  
The main metric for the second track’s goal of evaluating 
the performance over the entire session (nsDCG@10.RL13) 
was 0.2375. 

We believe that several of these methods may be promising 
directions for further research.  One of our most effective 
techniques was query term weighting.  Our approach was 
rather simple, dividing the query terms into only three 
categories and applying weights.  There are a number of 
other similar techniques that may also be effective, such as 
applying weights based on part of speech, inverse document 
frequency, or word specificity (perhaps using WordNet).   

Another technique which performed well was corpus-based 
term collocation expansion.  The term collocation 
dictionary was built from our digital content and we are 
actively researching ways to further improve it. 

We also believe that category-based re-ranking could be 
made to be more effective.  This method performed well on 
our TREC-3 testing set, but we were never able to replicate 
that performance on the ClueWeb09 collection.  We 
hypothesize that this is because the ClueWeb09 collection 
is much more diverse than the TREC-3 collection, and is 
therefore much more difficult to correctly categorize. 

Both the CengageS10R1 and CengageS10R2 runs had 
similar performance as we used similar techniques for both.  
We attribute the poorer performance of CengageS10R2 to 
the use of pseudo relevance feedback, which can improve 
retrieval performance over a large number of documents 
(e.g. n = 1000), but is actually detrimental to the quality of 
the top documents.  Since the DCG measures for this task 
are evaluated at the 10th result, we hypothesize that pseudo-
relevance feedback was primarily responsible for the 
decrease. 

Of the three reformulation types, the specialization 
reformulation type had the lowest performance when 
evaluated against the nsDCG@10.RL12 and 
nsDCG@10.RL13 metrics.  Upon further analysis, we 
found that these two metrics are affected by the lower 
nDCG@10.RL1 scores.  This data shift may be explained 
by the nature of the specialization reformulation type – the 
first query is much less relevant to the user’s information 
need than the second one. 

Finally, upon a comparison of nDCG@10.RL2 and 
nDCG@10.RL3, CengageS10R3 shows improvement in 
overall system performance.  CengageS10R3 was least 
affected by the discounting of duplicate documents because 
documents that appeared in the first query’s result list were 
discounted in RL3. 

mailto:nsDCG@10.RL13
mailto:nsDCG@10.RL12
mailto:nsDCG@10.RL13
mailto:nDCG@10.RL1
mailto:nDCG@10.RL1
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