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1 Introduction

The University of Twente participated in three tasks of TREC 2009: the adhoc
task, the diversity task and the relevance feedback task. All experiments are
performed on the English part of ClueWeb09.

We describe our approach to tuning our retrieval system in absence of train-
ing data in Section 3. We describe the use of categories and a query log for
diversifying search results in Section 4. Section 5 describes preliminary results
for the relevance feedback task.

2 ClueWeb09

The English part of ClueWeb09 (ClueWeb09 English 1 to ClueWeb09 English 10)
was indexed with the Lemur Toolkit, version 4.9. We did not attempt to index
the non-English part. The documents were Krovetz stemmed. The indexed
metadata fields are title, url and heading (html tags H1 to H4).

2.1 Anchor texts

We extracted the anchor text and indexed it separately. Due to time constraints,
we were only able to match the anchor text within each of the 10 sub corpora,
that is anchor text found in a document of English 2 linking to a document
in English 5 was not considered. This resulted in anchor texts for 297 million
docmentes, which is almost 59% of the English part of ClueWeb09. Full anchor
text extraction, which we ran after the official submission, resulted in anchor
texts for about 87% of the English web pages.
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2.2 Spam Detection

A collection crawled from the Web is likely to contain a considerable amount
of spam pages. Many approaches exist to identify spam pages based on page
content, hyperlink structure, URL form, the similarity between pages of a single
host and combinations of those features [1, 2, 3, 4]. For the TREC experiments
we implemented a basic spam detection mechanism, that relies on page content,
page title features and URL form.

In a first step, we determined the number of different hostnames in the
corpus. In total, we found more than 18 million hostnames among the English
part of ClueWeb09, many with 1 or 2 pages only. While 47.78% of hosts contain
1 page only, together those pages amount to only 1.71% of all pages in the corpus.
A total of 99.58% of hosts contain less than 1000 pages, and 96.75% of hosts
have less than 100 pages. We concentrated our efforts of detecting spam on
the small percentage of hosts with 100 or more pages in the English part of
the ClueWeb09 corpus. The total number of those hosts is 589, 343. Together,
they make up 75.02% of all pages in the corpus. Each of the hosts with 100 or
more pages is classified as either a spam host or a no-spam host. This result
is then used to postprocess the retrieval results – all documents belonging to a
host classified as spam are filtered out and lower ranked results are used to fill
the gap. When a document belongs to a host that was not classified it is also
filtered out.

Problematic is the lack of training data for ClueWeb09. We relied on the
judgments of the Web Spam Challenge in 2006 and 20071, where a corpus
of documents (UK domain) was labelled as spam/no-spam on the host level.
When combining the training and test data provided, we find 296 spam hosts
in ClueWeb09 with ten or more pages. If the minimum page count per host
is set to 100 pages, we find 136 spam hosts. To boost the number of positive
(i.e. spam) training examples, we manually jugded sampled hostnames from
the ClueWeb corpus and found another 75 spam hosts, thus in total we have
371 positive spam examples with 10 or more documents. During the judging
process we also identified 442 negative (no-spam) training examples.

The document features we rely on, include the document length, the title
length, the ratio between plain text and html text, the ratio between plain text
and anchor text, the number of digits in a URL, etc. For hosts with more
than 100 pages in the corpus, we sample 100 pages and determine a total of 28
features for each sampled document. Then, as host features we rely on the mean
and the standard deviation of each feature, resulting in a total of 56 features
for each host. Given the features and the training examples we use Weka and
its C4.5 implementation (called J48) to derive a decision tree. Two variations
are tested, namely J48 and a cost-sensitive variety of J48 that punishes the
error spam host classified as no spam 5 times as much as vice versa. The latter
classifier is thus more strict, we will denote it CS5.

To evaluate both algorithms, we performed 10-fold cross-validation. For the
J48 approach, 78.23% of the instances are classified correctly. The CS5 approach

1http://webspam.lip6.fr
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classified as
NO-SPAM SPAM

NO-SPAM
353 89

examples
SPAM

88 283
examples

(a) J48

classified as
NO-SPAM SPAM

NO-SPAM
305 137

examples
SPAM

54 317
examples

(b) CS5

Table 1: Confusion matrices of spam versus no-spam examples based on 10-fold
cross-validation.

yielded 76.51% correctly classified. Though CS5 leads to less correctly classified
examples, it filters out more spam hosts as can be seen in the confusion matrices
of Table 1. We tested both approaches in our submitted runs. Given the trained
decision tree, all hosts with 100 or more pages in the corpus were classified as
either spam or no-spam. For the J48 approach, out of 589,343 hosts, 440,043
(74.66%) hosts were found to be no-spam, 25.34% were identified as spam.
Conversely, for CS5, 351,307 (59.61%) were labeled as no-spam, while 40.39%
were identified as spam hosts.

3 Adhoc Track

In the adhoc task, we rely on an automatic evaluation approach proposed by
Soboroff et al. [6], called Random Sampling (RS) to select the best retrieval
strategy from a mix of retrieval approaches. We derive a number of retrieval
runs, based on different retrieval methods such as Okapi, Language modeling,
but also based on different indexed fields, e.g. the title field, the anchor text
index, etc. Then, RS is employed to estimate which of those systems per-
forms best. In previous work, RS was found to perform well to find the poor
and average systems, while severely misjudging the best systems. We found in
experiments with more diverse and more recent data sets, that this is only a
significant problem in cases where manual systems are included in the pool of
systems.

Apart from estimating the best retrieval method, we also face the issue of
merging the results. The indices are on 10 different machines, thus at one point
we need to merge the ranked lists of results. In Figure 1 the overall system
is depicted. Each query is sent to the 10 indices C1 to C10 and m different
retrieval methods are applied, resulting in m different result lists. Then, spam
detection is applied to each ranked list and those documents, determined to be
spam are filtered out and removed from the list. We deal with each set of result
lists separately, RS is applied to estimate which of those is the best performing
one. Then, the 10 result lists are merged to form the final result list.

Merging was tested in three flavours: (i) normalizing of retrieval scores by
ZMUV (zero mean, unit variance) and merging of the results based on the
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Figure 1: Retrieval chain of the adhoc task.

normalized scores, (ii) round robin merging, by first taking the top result of
each index, then the second of each index and so on to possibly diversify the
results and (iii) to merge the unnormalized scores.

In order for RS to be useful, there should be a relatively large number
of retrieval runs to rank, but also the runs should differ in their results. For
instance, it may not be very useful to derive 20 Okapi runs, that only differ in
their parameter settings. We attempted to derive a variety of retrieval runs. As
basic retrieval approach we rely on Dirichlet smoothed language modeling. We
derived 28 runs for each of the 10 corpora including runs based on document
title, anchor text, non-uniform document priors, pseudo-relevance feedback, etc.

Submitted as official runs were the runs listed in Table 2. For twCSrs9N

the results are filtered according to CS5 and ZMUV merging is employed. For
run twCSrsR merging was performed in a round robin manner. Merging with-
out normalization and J48 spam detection was tested in run twJ48rsU. Round
robin merging results in the best mean average precision, but merging without
normalization results in better early precision.

runID map bpref P@5 P@100 eMAP eP@5 eP@100
twCSrs9N 0.0297 0.1480 0.2080 0.0758 0.0217 0.2250 0.2421
twCSrsR 0.0403 0.1700 0.2000 0.0960 0.0263 0.2200 0.2570
twJ48rsU 0.0284 0.1211 0.2760 0.0742 0.0200 0.2800 0.2501

Table 2: Overview of submitted adhoc runs.

4 Web Diversity Track

In the diversity task, we rely on categories and a query log to determine topic
aspects.
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4.1 Category & query log information

We derived a list of 98 categories from the Open Directory Project (ODP),2

mostly consisting of single terms only, such as education, animal, etc. Then, we
relied on Indri’s Boolean AND operator, #band, to force the retrieval system
to only return documents containing all query terms and the category term.
This step was performed for each combination of query and category term(s).
A ranking of category terms was determined by sorting them according to re-
trieval score of the top retrieved document. The five categories with the highest
retrieval score were kept. For instance, for the query solar panel (wt09-45) and
the subcorpus English 1, the top five categories found are product, company,
environment, video and research.

As an alternative source of information, we used a query log consisting of
over 21 million queries [5]. To respect the anonymity of the users, we used a
stripped version of the query log that only contains the actual queries issued in
random order (and none of the other metadata, such as user id and clicks). Each
query was located in the log and the terms that co-occur with the query most
often were determined. For instance, the query dinosaurs (wt09-14) occurred
in the log as dinosaurs (194 times), dinosaurs com (12), walking with dinosaurs

(9), www dinosaurs com (7), the dinosaurs (7), dinosaurs tv show (6), dinosaurs

pictures (6), types of dinosaurs (6), dinosaurs for kids (6) and dinosaurs the tv

show.
From each of the 50 queries, a number of new queries are derived, containing

the original query string and one of the top five category terms and the query
log terms respectively. Retrieval was performed for each query; subsequently
those retrieval results were merged. Here, we performed round robin merging,
as we do indeed want to cover different categories. Score normalization with
subsequent merging might not bring about the desired results, if a particular
aspect of a query has too low scores. This process is repeated for each corpus
English 1 to English 10. In a final step, the results over the 10 corpora are
merged.

4.2 Experimental results

The two runs officially submitted are described in Table 3. Spam detection was
again used as a preprocessing step, the result merging occurred either in a round
robin fashion (RBB) over the 10 subcorpora or according to normalized scores
(RNB).

runID α-ndcg@5 α-ndcg@10 α-ndcg@20 IA-P@5 IA-P@10 IA-P@20

twCSodpRNB 0.123 0.145 0.167 0.062 0.063 0.056
twCSodpRBB 0.144 0.164 0.193 0.067 0.062 0.061

Table 3: Overview of submitted TREC runs to diversity task.

2http://www.dmoz.org
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5 Relevance Feedback Track

The Relevance Feedback track consists of two phases. In the first phase, for
each query, five documents are identified that are judged by an assessor. In
the second phase then, the knowledge gained of the (non-) relevance of those
documents shall be exploited. For both phases the Category B data set was
used.

5.1 Phase 1

We relied on Indri’s query language for a baseline run with combinations of
keywords, phrases and unordered windows of size 8 and 12. The top five doc-
uments, from different domains, retrieved per query were used. Thus, the only
filtering performed was according to URL in order to avoid returning five very
similar documents from the same domain. This run is twen.1. Of the top five
documents of the 50 queries, fourteen had not a single relevant document among
them while three had not a single non-relevant document among them. Thirteen
queries had at least one highly relevant document.

The second submitted run twen.2 is a keyword only Dirichlet smoothed
language modeling run (µ = 1500), without domain filtering applied. Sixteen
queries had not a single relevant document in the top five documents, two queries
had not a single non-relevant document and twelve queries had at least one
highly relevant document among them.

5.2 Phase 2

Given a number d = {10, 50, 100, 250, 500} of top retrieved documents from
the baseline retrieval approach (LM with Dirchlet smoothing: µ = 1500), the
t = {5, 10, 20, 50, 100} most discriminative terms in them are determined. For
each parameter combination the expanded query is formed by adding the t most
discriminative terms to the original query. Retrieval is performed, yielding runs
r1 to rt×d.

Given the relevance judgments of five documents for each query, the quality
of each ri is determined in an adhoc fashion. The relevance of a document is
either 2 (highly relevant), 1 (relevant) or 0 (not relevant). For each relevance
judgment, the rank of the document in the run’s top 1000 retrieved documents
is determined. If the docid is not found, a value of 0 is assigned, if it is a highly
relevant document, its score is 2 × (1000 − rank), if it is relevant (1000 − rank)
and if it is not relevant −0.5 × (1000 − rank). A run that does not contain any
of the five judged documents is considered to be better than a run that contains
one or more non-relevant documents but no relevant one.

The run of the t × d runs that has the highest quality for a given set of
relevance judgments is the run used for that particular query.
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5.3 Experiments

Spam detection (CS5) was performed as a post-processing step. Reranking by
document length was switched on for twen.ugTr.1, twen.twen.1 and twen.UCSC.2.
The results of the submitted runs are described in Table 4. Each run is created
by selecting the best (according to the given relevance judgments) expanded
query run out of 25 possible ones.

runID emap stAP

twen.twen.1 0.0317 0.1528
twen.twen.2 0.0306 0.1344
twen.ilps.1 0.0369 0.1481
twen.FDU.1 0.0311 0.1415
twen.YUIR.2 0.0398 0.1384
twen.ugTr.1 0.0327 0.1297
twen.UCSC.2 0.0343 0.1294

Table 4: TREC runs submitted to the relevance feedback task.

6 Discussion

This draft report presents perliminary results for the TREC adhoc task, the
diversity task, and the relevance feedback task. We investigated, amongst oth-
ers, unsupervised tuning of our system and the use of categories and query log
information for diversifying search results. Additional experimental results will
be described in the final version of this paper, showing if the approaches were
indeed successful.

To deal with the new ClueWeb09 collection, we needed to aquire at least
two skills that are unnessesary for tests on previous TREC collections. First,
the data, even if only the English part is used, cannot be indexed on a single
machine, requiring some cluster computing skills. Second, web spam seems to be
a much bigger problem in ClueWeb09 than in previous (web) TREC collections,
requiring some spam detection skills.
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