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Abstract. Our goal in participating in the TREC 2009 Entity Track is to study 
whether QA list technique can help improve accuracy of the entity finding task. 
Also, we take a looking for homepage finding to identify homepages of an 
entity by training a maximum entropy classifier and a logistic regression 
models for three types of entity respectively. 

1. Introduction 

This is Beijing Institute of Technology’s first year participating in TREC. For related 
entity finding track, we mainly focus on employing pipeline architecture to model this 
track, indexing and retrieving by indri and making use of OpenNLP’s ME classifier to 
identify extracted entities homepages.  

2. Related Entity Finding Task 

The related entity finding task is new to be proposed by NIST this year. This task is 
defined as the following: 

Given an input entity, by its name and homepage, the type of the target entity, as 
well as the nature of their relation, described in free text, find related entities that are 
of target type, standing in the required relation to the input entity. 

This task shares similarities with both expert finding (in that we need to return not 
“just” documents) and homepage finding (since entities are uniquely identified by 
their homepage). However, approaches to address this task need to generalize to 
multiple types of entities (beyond just people) and return the homepages of multiple 
entities, not just one. Also, the topic defines a focal entity to which returned 
homepages should be related. [1] 

2.1. System Overview 

We complete our experimental system architecture as pipeline architecture by 
devising from OpenEphyra’s framework. 
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Fig. 1. The Related Entity Finding System Architecture. 

We outline the retrieval framework as above. From TREC-supplied query topics, 
we first analyze the narrative of every query topic and extract keywords and terms. 
Second we employ BagofWordsGenerator and QueryReformationGenerator to rewrite 
query strings. Then we send query strings to the indri search engine, and get results. 
The granularity of results is focused text snippet rather than document. From the 
focused text snippets, we employ some OpenNLP components and Stanford’s parser 
to identify target typed named entities. By counting number of occurrences in focused 
text snippets at sentence level, we rank entities by the reverse order of occurrences. 
We get the top 150 entities and post the top 150 entities’ name to indri search engine 
respectively. Using Maximum entropy classifier to score the returned web pages as 
the related entity’s homepage candidate, we rank the entity’s homepage candidates by 
the scores in reverse order. Finally, we rerank those ranked entities by just filtering 
out those entities which have no homepages whose scores are above threshold. 

2.2. Query Topic Parsing  

As for a QA, Ephyra spends much effort to analyze question syntactically and 
semantically. To identify answer type, it employs machine learning scheme to train 
answer patterns and identify answer types. This tricky phase is not necessary for the 
related entity track because the target entity type is explicitly given. Also, 
OpenEphyra employs wordnet to expand query terms. From the expanded query 
string, it generates some irrelevant terms. Then we remove those irrelevant words 
manually to avoid topic drift. As for the explicit entity name, we just add it to the 
query string without expanding it. To take the first query topic for an example, 
OpenEphyra will generate two query strings. One is focus words i.e. blackberry 



Carriers makes phones, weighted score 1.0. The query to send to indri is as following: 
 #combine [passage100:50](blackberry Carriers makes phones). 
The passage length and increment size are set 100 and 50 separately 

experimentally. Variable lengths of window size will generate different results. It is 
challenging to decide the reasoned window size. The passage length constructed a 
context for locating related entities. It represents the proximity between the source 
entity and the target related entity. 

The other is expanded terms, i.e. blackberry (Carriers OR toter OR bearer) makes 
(phones OR telephone OR “telephone set”). Obviously, toter and bearer are 
synonymous with carrier in wordnet. But it not suitable for this query topic. We just 
remove them manually. The converted query string is such as the following: 

 #combine [passage100:50](blackberry Carriers #or(phones telephone  
“telephone set”)). 

This query string has weighted score 1.5. The weight score is addresses as the 
degree how the generated query string matches the narrative of the query topic. It can 
be considered as a degree of proximity between target entity and input entity.  

2.3. 

2.4. 

Named Entity Identification  

In this task, the type of target entity is restricted in three types: person, organization 
and product. Generally speaking, the first two types are easier to identify from 
focused snippets. However, for the product type, it is rather difficult to be identified 
correctly. To deal with this issue, we resort to wikipedia online knowledge database 
whose pages always have a category label. We made a hardworking to find that those 
introductions, productions, products, games, software, hardware etc. category labels 
are almost classified into product type. It helps us to extract 43,393 product names. 
Also, by using the same method, we extracted 18,181 organization names and 
118,002 person names.  

In this experimental system, we employ OpenEphyra’s NETagger to complete 
named entity identification. OpenEphyra’s NETagger combines model-based, pattern-
based and list-based named entity taggers. It is natural for us to add a product list to 
hope to improve product identification performance. As for the other easier to identify 
named entity types resort to StanfordNeTagger.   

As for StanfordNeTagger, we load ner-eng-ie.crf-3-all2006-distsim.ser.gz 
serialized model which can label: PERSON, ORGANIZATION, and LOCATION 
entities. The model is trained on data from CoNLL, MUC6, MUC7, and ACE. 

Related Entity Candidates Ranking 

It is well known that the search results ranking is not necessary responding to those 
extracted entities ranking. We apply the following formula in a probabilistic model to 
rank related entity candidates. 

yNredundancRscoreQscoreEr γβα ++=  
Q refers to Query String which represents the fitness of the generated query string 

to express the nature of related entity with the source entity. R refers to the search 



Result, which represents the relevancy of searched result (in this context its 
granularity is passage) to the search string. N refers to Number of redundancy of the 
focused snippets which reside the same entity. α , β ,γ  are the coefficient 
respectively. In this experimental setting, it is simply to set all the coefficients 1. 
Besides that, the result’s score are formalized to 1 if the result is in the top N. You 
may notice that the effect of the result ranking is taken into consideration implicitly 
for we extract entities from the result passages from top N. Those which are not in the 
top N are ignored definitely. 

2.5. ME-Based Entity Homepages Classifier 

We model the entity homepage identifying as a binary-class classifying problem. Our 
aim is to set the probability to represent the likelihood of one URL is a homepage 
rather than to make a binary decision – yes or no. [4] proposed a machine learning 
approaches to predict the correct homepage in response to a user’s homepage finding 
query. He generates a binary decision tree to predict whether a URL is a homepage 
URL or not. Obviously, it is more suitable to employ probability than binary decision 
in this task. Table. 2.1 demonstrate those attributes. 

Table. 2.1 Attributes vector 

 
URL length the number of characters in the URL 
URL depth the number of slashes in the UR 
URL type four types of URL: root, subroot, path, file. he 

type of URL which is proposed by 
UTwente/TNO in TREC-2001 homepage 
finding track 

Entity in URL whether the specified entity name is present in 
the URL 

Variants of entity in URL manually devise many variants of the entity 
name which are likely to be used by web 
designers and decide whether one of those 
variants exists in the URL 

Position type the position type refers to the above defined 
types of URL. The position type represents the 
entity name or its variants exists which part in 
the URL 

Entity in page title whether entity name or its variants exist in 
page’s title 

Keyword whether page’s title contains with a keyword; 
these keywords are “official”, “home”, 
“homepage” 

Length of title number of characters in title 
Occurrence of entity in 
title 

the number of entity name occurrence in the 
title 



 
The ME model then is applied to the results returned by the mixture of context 

language models retrieval system, in hopes that we can filter out most of the irrelevant 
web pages in these returned webpage lists. 

Additionally, we normalize URL by using BasicURLNormalizer which is extracted 
from nutch-0.9 before we extract type of URL. As for variants of entity name, we 
analyze homepage_en.nt from DBPedia and get the following rule to generate 
variants of the specified entity name.  

Table. 2.2 Variant form rules 

 
1.  Replace blank space with “_”,”+”,”%20|”,”” respectively 
2.  Replace “’s” with “s”, “”, respectively 
3.  Number of characters in Abbreviation is equal or greater then three 
4.  Concatenate the first character of every word in the specified entity 

name including stopwords or excluding stopwords respectively. 
5.  For two words in the specified entity name, combine first three to 

five characters of each word to generate abbreviations. 
 
By using these variants of the specified entity name, it gets 99.9% in finding entity 

names in their homepages. It represents that web designers will always naming their 
homepage’ URL from related entity names. 

2.6. 

2.7. 

Logistic Regression Model for Homepage Finding 

As for ME classifier, it is not easy to interpret the generated model from training 
materials. We leverage a logistic regression model for homepage finding also. To 
compare the effective performance the two models, the result is explained in the 
section 2.10. 

Entity Homepage Finding 

The procedure to identify the extracted entities’ homepages involves two phrases. In 
the first phrase, we generated a Max entropy homepage classifying model to predict 
the probability of a URL is the specified entity’s homepage. The second phrase is to 
employ a mixture of context language models, which can easily be expressed in the 
Indri query language to find which web page is most relevant to the specified entity. 
For example, for the entity name “BlackBerry”, the following query will be 
constructed: 

#wsum(5.0 #1(BlackBerry).(title) 3.0 #1(BlackBerry).(anchor) 1.0  
#1(BlackBerry)) 

After send the constructed query to Indri, we get so many homepage candidates. 
Then, we employ beforehand generated homepage model to predict the probability of 
whether a webpage is the specified entity name’s homepage or not. For the task is just 



to return three URL as an entity name at most, we rank these homepage candidates 
according to the predicted probability in descending order and select the top 3. 

2.8. 

2.9. 

2.10. 

Related Entity Reranking 

In this phrase, we have already extracted related entities and their homepages. We 
take a simple approach to rerank the entity list by filtering whose homepages’ 
probability scores are all below 0.5 which represent that the entity has no homepage at 
all. Naturally, by definition, every entity will have a homepage at least. Then the 
entities which are considered as no homepages will be dropped off. Of course, this 
decision depends on the precision of the homepage ME classifier and the coverage of 
the used corpus. 

Experimental Setup  

We ran our index builds and our queries on an IBM 366 server and data are located on 
SCSI disk made in RAID5. For conveniently handling we divide the index in six 
sections, which occupy 649G disk space totally. Index size is the total size of the 
index on disk including both the inverted file and compressed collection. All indexed 
documents are 50,220,423. For the slow index speed, we did not index anchor text but 
just title and heading fields. Documents are stemmed with the Krovetz stemmer and 
stopped using a standard list of 421 common terms. The metadata indexed include 
docno and url. 

We used the full collection and simply handled all documents as HTML documents. 
That is, we did not resort to any special treatment of document types, nor did we 
exploit the internal document structure that may be present; instead, we represented 
all documents as plain text. We did not take special consideration on those wikipedia 
documents in the corpus. 

Supporting documents When we extract context from a document we also store 
its document id and the entity the context belongs too. We return up to 3 supporting 
documents from this set for each entity. 

Results and Discussions 

The official test set contained only 20 queries. Given the facts that this is a new task, a 
new collection, and it supplies a relatively small number of topics, evaluation will 
primarily focus on analysis of the results and runs on a per-topic basis, rather than on 
average measures. The normalized discounted cumulative gain (nDCG) is an 
important measure in the official results. There are many methods to evaluate the 
system. For example, we can evaluate the system by the relevance of the normal 
homepages, Wikipedia homepages or names of entities. Table 1 lists the evaluation 
results of our two runs(we only submit BITDLDE09Run)that are evaluated with 
different output fields. NAME denotes the names of result entities, HP denotes the 
normal homepages of result entities and WP denotes the Wikipedia pages of result 
entities. The official results are the values in the first row. They evaluated the runs 



according to the relevance of the primary homepages of entity and did not take the 
Wikipedia homepages or entity names into consideration. In other rows, we combine 
different output fields to test the change of performance. The results shows that the 
performance of each run improves when consider Wikipedia homepages in evaluation. 
The reason is that the Wikipedia pages are of high quality and make it easy for system 
to find the homepage. On the other hand, using entity names to evaluate decreases the 
performance. It shows that directly finding the entity names is more difficult than 
returning the whole web pages.  

Table 2.3: nDCG and P@10 results of our runs with different output fields in Entity track 

BITDLDE09Run LogisticRegressionRun RunID 
nDCG P@10 nDCG P@10 

HP 0.0416 0.0200 0.0499 0.0400 
HP+NAME 0.0379 0.0200 0.0471 0.0400 
HP+WIKI 0.0705 0.1250 0.0895 0.1150 
HP+NAME+WIKI 0.0731 0.1250 0.0879 0.1150 

We make a statistic for retrieval performance without discard any homepage for 
identified entities. It shows that the retrieval ratio is low (0.3024 for all relevant 
documents and 0.0898 primary homepages). Obviously, it needs to improve query 
formations to raise recall greatly. The low recall ratio makes a great effect for the low 
performance for the next step for homepage finding. 

In future work, there are a number of things for us to explore. First, we will explore 
more efficient way to automatically construct queries to improve great recall. It may 
base the assumption described in Clarke: query terms are likely to appear in close 
proximity to each other within relevant documents. This technique is expressed by 
Donald Metzler etc. in TREC 2004 in the terabyte track which is used to evaluate 
Indri search engine. [2]Second is on homepage finding for a specified named entity. 
[3] found a prior based on the type of the URL to be a very effective source of 
information. Our Max Entropy Classifier will take the different distribution for 
different type entities into consideration. Third, we will employ language model to 
construct entity model from the selected homepage candidates to improve recall. 
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