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Abstract 

This paper describes our participation in the 2008 TREC Blog track. Our system consists of 3 
components: data preprocessing, topic retrieval, and opinion finding. In the topic retrieval task, we 
applied Lemur IR toolkit and used various techniques for query expansion. In the opinion finding and 
polarization task, we employed a feature-based classification approach. Then re-ranking was 
performed using a linear combination of the opinionated score and the topic relevance score. Our 
system achieved reasonable performance in this evaluation. 
 

1 System Overview 

We participated in several tasks of the 2008 TREC Blog Track. Figure 1 shows the flow diagram of 
our system. First, data preprocessing is implemented to remove HTML tags and useless context, and 
extract content from the blog web pages. Second, we apply the Lemur Information Retrieval toolkit to 
retrieve 1000 relevant documents for each topic. Query terms are selected from the title and 
descriptions, and weighted according to their TFIDF values. In addition, more weight is given to 
topical terms and quoted expressions for each topic. Third, for opinion finding, we employ a 
classification framework that exploits rich linguistic features, including lexical features, polarized 
features, and sentimental analysis based on mutual information with predefined sentiment terms. The 
same method is also used for polarity task, but with different class tags in the classifiers. Re-ranking is 
performed using a simple linear combination of the opinion score and the relevance scores provided 
by the opinion analysis and the topic retrieval modules respectively. 

 

2 Data Preprocessing 

The Blog06 test collection (Ounis et al., 2006) contains more than 3 million permalinks (a total size of 
about 148G). In order to obtain plain text data for document retrieval and opinion finding, we 
preprocessed the data using two filters: html-tag filter and non-English Blog filter. This also reduced 
the size of the data collection and made the subsequent modules more efficient.  

 



 
Figure 1. System overview for TREC Blog Track 2008.  

First we used an html-tag filer to remove the useless characters and tags in the data. The blog web 
pages in the corpus have been collected from internet in HTML format. Some HTML tags are used to 
describe the structure of text-based information in a document, denoting certain text as links, headings, 
paragraphs, lists, and so on. Examples of such structure markers are “<TABLE>”, “<TD>”, and 
“<TR>”. Other tags are used to supplement the textual information with interactive forms, embedded 
images, and other objects. For example, “<script>, <link>” are used for denoting functionalities. 
These extra characters and tags are generally irrelevant to our topic retrieval and opinion finding tasks 
and thus need to be removed.  

During the html-tag filtering procedure, we treated the content between different markers differently. 
For some useful tags that provide important information about the topic of the documents, such as 
“<title></title>”, we did not remove the content between the tags. Another example is the tag “<a 
href> </a>”, which defines a link connection between different documents, and sometimes we cannot 
remove the link part. For example, in the sentence “The Buck's freshman phenom, Yi, shared his thoughts on 

being selected with the Milwaukee Journal Sentinel ”, “Milwaukee Journal Sentinel” is a link to another related post 
and is a meaningful unit in this context. So in this case we only removed the tag “<a href> </a>” and 
kept the content between the tags. In comparison, the content wrapped by <script> and </script> is 
pure programming scripts which are irrelevant to the topic, therefore we eliminated both the tags and 
the content. Table 1 lists all the content-irrelevant tags that we considered in this preprocessing step. 
After html tag filtering, the size of the blog corpus was reduced to 28G. 
 



<style> <script> <fieldset> <form> <!--comments--> //comments <address> 
<acronym> <abbr> <server> <select> <option> <strike> <button> 

Table 1: Content irrelevant tags. 

The second part of data processing is to remove non-English blogs. We noticed that some pages in 
the data collection are not in English, which may cause problems in subsequent processing. In order to 
exclude those languages for the topic retrieval and opinion finding modules, we constructed a 
non-English blog filter based on a heuristic rule. In a blog, if the proportion of English characters 
along with regular symbols such as “.”, “#”, “?” is less than a predefined threshold (we used 0.5), we 
considered it as a non-English blog. This step further reduced the size of the data collection to 24G. 

3 Topic Retrieval 

Topic queries used in the Blog Track have three fields: title (T), description (D), and narrative 
structure (N). Each year, 50 topics were used for the blog track evaluation. Up till now, there are 150 
topics in total. The following shows an example of a topic: 

<num> Number: 851 
<title> "March of the Penguins" 
<desc> Description: 
Provide opinion of the film documentary "March of the Penguins". 
<narr> Narrative: 
Relevant documents should include opinions concerning the film documentary "March of the 
Penguins". Articles or comments about penguins outside the context of this film documentary are 
not relevant. 

 
Before the retrieval process, we built index using the Lemur Information Retrieval Toolkit1 based on 
the preprocessed corpus. For each of the topic queries, the retrieval engine returns 1000 relevant 
documents, along with their relevance scores. We expanded queries using two approaches. For the 
title and description field retrieval, we applied a TFIDF-based approach to expand query terms to a 
proper size. For the title field only retrieval, a Google-set based query expansion method was used. 
We used the built-in pseudo feedback model in the Lemur toolkit. The following subsections explain 
in detail the query processing for the two conditions. 

3.1 Query processing for title and description 

A. Term weighting 
In our system, we expanded the query for each topic using the terms that appear in <title> <desc> 
fields. Each term was assigned a TFIDF-based weight indicating how significant it is to that query. TF 
is the number of occurrences of a term i in a query qj,  
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1 http://www.lemurproject.org/ 



where ni,j is the number of occurrences of the considered term in query qj, and the denominator is the 
number of occurrences of all the terms in query qj. 
IDF is the inverse document frequency, obtained by treating each query as a “document”: 
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where |Q| is the total number of queries, and |}:{| jij qtq ∈  is the number of queries containing 

term ti (that is, nij > 0). The IDF is a measurement of the general importance of the term in the entire 
query collection. In addition, we also created a global IDF table that is computed using a large blog 
corpus (about 1/5 blog posts of the blog data collection). Then we chose the lower score from the two 
IDF tables as the IDF weight of a term. This can be thought of as a smoothing approach that helps to 
obtain better estimation and reduces noises caused by stop words and some frequently used terms in 
the blog query collection such as “find”, “opinion”, “comments”.  

 
B. Part-of-Speech filtering 
We notice that using query terms composed of only nouns achieved the highest MAP in both 2006 and 
2007 blog track evaluation, so we removed all of the other non-noun words from the query terms.  

 
C. Quote weighting 
For each topic, we consider the expression inside the quotation marks as the most informative unit, 
i.e., “March of the Penguin”. Therefore, we used the quotes as is, without any part-of-speech filtering 
for those words. In addition, we assigned the weight for the entire term as twice of the sum of the 
weights of all the individual terms expanded for this query. This way Lemur will be more sensitive to 
such kind of quotes. For example, for query 851 as shown in the earlier example, the expanded terms 
with the weights are “0.5 documentary, 0.5 film, 1.0 march, 1.5 penguins”, then “March of the 
Penguins” will have a weight of 2 * (0.5 + 0.5 + 1.0 + 1.5 ).  
 

3.2 Query processing for title only 

Google Sets is an online search engine which predicts related items based on co-occurrence statistics 
by using the web as a big pool of data. For the Title field only retrieval, we took advantage of this 
online resource to expand the topic terms to a larger set by picking the top 15 terms for each topic. 
Then we fed the new query to Lemur toolkit for the retrieval. 

4 Opinion Finding 

In our system we created a learning based classification framework to assign each topic-relevant blog 
a posterior probability, which indicates how likely it is opinionated. Then the re-ranking was 
conducted based on the combination of this posterior probability and the relevance score generated in 
the topic retrieval stage.  

4.1 Classification framework 



Since the goal of the opinion finding task is to rank those blogs higher that are more relevant and 
more opinionated, it is reasonable to detect an opinionated blog based on the part of it that is relevant 
to a specific topic rather than using the entire blog text. Motivated by this, we selected some topic 
specific sentences for each relevant blog for opinion analysis. This way, if one blog belongs to more 
than one topic, it might possibly be assigned different opinionated scores for different topics. We first 
split a blog into sentences based on sentence boundary detection2, and used Lemur to retrieve top 5 
relevant sentences corresponding to the topic. Then for each retrieved sentence, we also extracted its 
preceding and following sentences. Thus for each blog, we used a maximum 15 sentences to perform 
classification.  
 
Before feature extraction, we first conducted some text normalization using regular expressions and 
rule-based approaches. Currently only months, weeks, numbers are normalized. For example, we 
replaced “September” with “MONTH”, “2008” with “NUM”. In addition, for the sentimental seed 
words (described later), we also replace them in the text with a polarized tag. For example, “good” 
becomes “O-POS” (positive). The features we explored are listed as follows, including words, 
part-of-speech, polarized features, and sentimental score statistics.  

A. Lexical features 

In addition to the bag-of-words feature, we also considered the following n-gram lexical features. 
Note that wi and pi is the word form and its part-of-speech tag.  

 Combination of a word and its part-of-speech tag: wipi 
 Bigram words: wi-1wi 
 Bigram of word and the neighboring part-of-speech tag: wi-1pi and wipi-1   
 Trigram features: wi-1wiwi+1 and pi-1pipi+1   
 Trigram syntactic patterns: wi-1piwi+1 and pi-1wipi+1   

Note that when we extracted the above features, we obtained some polarized features due to the 
normalization of those sentimental seed words mentioned above. For instance, if the ith word is a 
positive sentimental seed word, we obtain polarized bigrams and trigram such as “wi-1_O-POS”, 
“O-POS_pi+1”, “pi-1_O-POS_pi+1” and “wi-1_O-POS_wi+1”. 
 

B. Sentimental features based on Mutual Information (MI) score 

A Sentimental score is used to evaluate sentiment polarity of a textual context. The following 
describes the steps we used to compute this score. 
. 
(i) Generating sentiment terms  
First of all, we manually selected a group of sentimental seed words as shown in Table 2. Then, based 
on a large review corpus3, we computed the statistics of co-occurrences between the seed words and 
other adjectives appearing around them (we applied a window size 3 to limit the co-occurring span of 
the adjective words). Adjectives that co-occur with any seed word over 10 times are considered as 
sentiment terms. With a further human judgment on the polarity of the generated new terms, we 

                                                      
2 The sentence boundary detection is done by using “mxterminator”, a toolkit developed by Adwait Ratnaparkhi, University 
of Pennsylvania. 
3 This corpus comprises of 2000 movie reviews from (Pang et al., 2002), custom reviews from (Hu and Liu, KDD-2004) 
and 256 hotel reviews. 



compiled 50 positive sentimental terms and 50 negative ones. Some examples of the new selected 
sentiment terms are shown in Table 3. 

 
Positive good, excellent, wonderful
Negative bad, poor, terrible 

Table 2. Sentiment seed words. 
  

Positive
good, excellent, wonderful, relaxing, glorious, delicious, 
priceless, decorated, helpful, superb, … 

Negative
bad, poor, terrible, worse, absent, stupid, problematic, 
boring, threatening, … 

Table 3. Newly generated sentiment terms. 
 

(ii) Calculating MI for adjectives 
Once we have the sentiment terms, we will use them to compute the MI scores between each of them 
and an adjective. Here MI is defined as a score to evaluate the polarity strength of an adjective for 
both positive and negative categories. The following formula shows the MI score for an adjective 
word for the positive polarity: 
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where wi refers to the target adjective; St+ is the collection of positive sentimental terms; N is the size 
of St+; Co is the number of times that wi co-occurs with a sentimental term n within a contextual 
window size of win (5 in our experiments). The co-occurrence statistics were obtained using the blog 
track 2006 reference collection. Similarly we calculate the MI score of the adjective word for its 
negative polarity using all the negative sentiment terms.  
 
(iii) Calculating sentence-level sentiment scores  
After the above steps, each adjective has a positive and a negative MI score. To calculate the 
sentiment score for each sentence, we simply added all of its adjectives’ MI scores for positive and 
negative respectively.  

 
Based on the sentimental scores for each sentence, we calculated the following statistics as features 
for a blog for opinion classification. 

 Mean of the sentence sentiment scores for positive and negative, respectively.  
 Mean of the difference between positive and negative scores among sentences. 
 Mean of the ratio of positive and negative score among sentences. 

 
C. Classifier setup 
 
We used the annotated Blog-2006 and Blog-2007 data as training data and development data 
respectively. There are 4 opinion tags in the blog annotation, among which “2, 3, 4” correspond to the 
opinionated blogs. When using a binary classification (opinionated vs. not), “2, 3, 4” tags correspond 
to positive instances and “1” is negative class. We can also train a 4-way classifier based on those four 



tags, then we assign blogs with “2,3,4” hypotheses as opinionated blogs. A comparison between 
different classification paradigms will be presented later.  

4.2 Re-ranking 

Opinion classification is applied to the relevant documents returned by the first blog retrieval module. 
Each blog has an associated posterior probability of being opinionated. Then we computed the final 
score using a linear combination of the opinionated measurement (S_opi) and the relevance score 
(S_rel) from topic retrieval: 

relSopiSfinal _*_*)1( λλ +−=  

whereλ is a parameter to adjust the balance between being relevant and opinionated.  

5. Polarity Task 

To detect the polarity of a blog, we trained a classifier using blog instances with class tags “2, 3, 4”. 
Once we assign those tags for the relevant blogs returned by the topic retrieval module, we extracted 
the sentimental positive (“4”) and negative (“2”) ones. Then we applied the same re-ranking 
processing as in opinion finding, generating the ranked list of positive and negative blogs. In addition, 
considering some blogs classified as mixed polarity (tag “3”) might also belong to the positive or 
negative ones, we used those mixed polarity blogs to further expand the negative and positive ranked 
lists based on the posterior probabilities associated with positive and negative tags. In other words, 
from the hypothesized mixed opinion blogs, we selected the ones with higher posterior probability for 
the positive tags and added them to the end of the existing positive ranked list in the order of the 
posterior probabilities, until we reached 400 blogs (400 is an empirical number we chose). The same 
approach is also used for the negative ranked list.  
 
For the polarity task we compared three different classification strategies on the development set, and 
based on the results, in our final submitted runs, we chose the approach described above (i.e., the last 
setting below). 

 One stage with 4-way classification 
A 4-way classifier was trained to distinguish blogs as no-opinion, negative opinion, mixed 
opinion, and positive opinion, similar to the 4-way classification performed in opinion finding 
section. Directly based on the hypothesis from this classifier, we can generate a positive and 
negative ranked list respectively.  

 Two-stage with successive binary classification and 3-way classification 
In this two-stage approach, we trained a 3-way classifier using blog instances with “2,3,4” tags 
and applied it only to those blogs which are recognized as opinionated ones by a binary classifier 
used for opinion finding. Then blogs classified as “2” and “4” were selected for the final negative 
and positive lists.  

 One stage with 3-way classification 
This 3-way classifier was trained with tags “2,3,4”, and applied directly to the entire 1000 blogs 
recognized as relevant ones for each topic, generating the positive and negative lists.  



6 System Performance 

6.1 Performance on previous Blog-2006 and 2007 data 
 
A. Topic retrieval 
We conducted various experiments on the development set (Blog 2006 and 2007 data) to finalize our 
submitted system parameters. Table 4 shows the results for the title only (T) task using and without 
using Google-set based query expansion. The improved results suggest that the expanded terms 
produced by Google-set are helpful for query expansion. 
 

Year T only (Map/P5) T only, with Google-set query expansion (Map/P5) 
2006 0.29/0.63 0.31/0.63 
2007 0.33/0.64 0.35/0.66 

Table 4. Topic retrieval results using title only. 
 
We also evaluated topic retrieval performance using TD and TDN for query expansion respectively. In 
Table 5, results show a performance degradation when including words in the <narr> field (adding N) 
in the query terms. This might be due to some noisy terms introduced when using this field. 

 
Year TD (Map/P5) TDN (Map/P5) 
2006 0.37/0.74 0.34/0.72 
2007 0.43/0.76 0.40/0.74 

Table 5. Comparison between using TD and TDN for topic retrieval.  
 
B. Opinion finding 
For the system development for opinion finding and polarity recognition, we used the reference 
relevant documents, instead of the baseline results from our topic retrieval module. Therefore the 
results shown below are generally better than those in the submitted runs. The experiments reported 
here are mainly used to finalize the parameters for the opinion and polarity finding task. 
 
Table 6 shows the results for opinion finding on the Blog 2007 data using different classifiers, 
classification strategies, and text normalization choices. The classifier was trained using the Blog 
2006 data. For the 4-way classification, we show results using SVM and the maximum entropy 
(Maxent) classifier. Since Maxent performs much better than SVM, we chose to use Maxent for other 
experiments. We can see that using the Maxent classifier, the binary classification framework 
outperforms the 4-way classification, especially after text normalization.  

Classifier 4-way vs. binary Text normalization Map/P@5 
SVM 4-way No 0.018/0.32 

Maxent 4-way No 0.384/0.536 
Maxent binary No 0.4/0.66 
Maxent binary Yes 0.45/0.68 

Table 6. Opinion finding results on Blog-2007 data. 
 



C. Polarity task 
Polarity results on the development data are shown in Table 7. As described in Section 5, we tried 
different classification strategies on this task, among which one-stage method with a 3-way classifier 
obtained the best results compared to the other settings. Similar to the opinion finding task, the SVM 
classifier performed poorly for both opinion finding and polarity task. Both text normalization and the 
expansion using blogs with mixed opinion (tag “3”) based on the corresponding posterior probabilities 
yielded performance gain on the development set. 
 

Classifier 2-pass vs. 
1-pass 

Classification 
strategy 

Text 
normalization

Expansion 
from mixed 

Pos 
(Map/P5) 

Neg 
(Map/P5)

SVM One 4-way No No .009/.29 .031/.73 
Maxent One 4-way No No .26/.54 .07/.51 
Maxent Two bin+3-way No No .16/.51 .14/.61 
Maxent Two bin+3-way Yes No .20/.51 .13/.59 
Maxent One 3-way Yes No .26/.47 .16/.58 
Maxent One 3-way Yes Yes .35/.47 .27/.58 

Table 7. Results for the polarity task on Blog-2007 data. 
 
6.2 Submission performance at Blog-2008 
 
A. Topic retrieval 
Table 8 shows the topic retrieval results of our submitted runs. “SplBaseT” denotes the run using only 
the topic information, and “SplBaseTD” used both topic and description information of the query. The 
query processing approaches for these runs are described in Section 3. Using both title and description 
(TD) yielded better performance, consistent with what we have observed from the Blog-2007 results. 
 

RunID Map P@5 P@10 
SplBaseT 0.3077 0.6000 0.5960 

SplBaseTD 0.3298 0.6480 0.6380 
Table 8. Topic retrieval performance at Blog-2008. 

 
B. Opinion finding  
Table 9 shows the best result for opinion finding we obtained based on different baselines. The 
different performance suggests that the quality of topic retrieval has a great impact on opinion finding. 
  

Baseline Map 
1 0.3251 
2 0.2789 
3 0.3565 
4 0.3844 
5 0.3036 

Table 9. Opinion finding performance at Blog-2008. 
 

In addition, we employed feature scaling in our classifier, which scales each feature into the range 



between 0 and 1. Table 10 shows the MAP results with and without scaling. Overall, there seems to be 
slight improvement due to feature value scaling. 
 

Baseline 1 2 3 4 5 
No scaling 0.3242 0.2754 0.3565 0.3071 0.2629 

Scaling 0.3251 0.2789 0.3565 0.3465 0.2874 
Table 10. Comparison between feature scaling and non-scaling. Results shown are the MAP results on 

Blog-2008 data. 
Finally we show the effect of the interpolation weight when combining the topic relevance score and 
the opinion score. Results are shown in Figure 2 using different weights for different baseline systems. 
We notice that most baselines (3, 4 and 5) prefer the higher weight on the relevance score, indicating a 
more dominant role of the topic retrieval component. This is not true for all baselines due to different 
retrieval qualities and representation of relevance scores. 

Figure 2. Performance curve using different combination weights for the relevance score and opinion 
score on different baselines. 

 
C. Polarity task 
For the polarity task, we submitted two results for each baseline corresponding to different 
combination weights for the relevance score (0.3 and 0.7). We noticed that different baselines prefer 
different weights. The better results between the two runs are shown in Table 12 for each baseline. 
 

 Baseline Map P@5 
1 0.1110 0.2286 
2 0.0760 0.1388 
3 0.1120 0.1592 
4 0.1350 0.2286 

Positive 

5 0.1108 0.2041 
1 0.0815 0.1917 
2 0.0719 0.1583 
3 0.0888 0.1833 
4 0.0962 0.2250 

Negative 

5 0.0746 0.1792 
Table 12. Polarity task performance at Blog-2008. 
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6.3 Comparisons among performance on different datasets 
 
In Table 13, we show the MAP scores of our best runs on opinion finding and polarity tasks based on 
different datasets for comparison (Blog06, 07, and 08). We can see that the performance on Blog-2008 
is worse compared to Blog06 and Blog 07. This is as expected since our submitted system is trained 
on Blog-2006 and Blog-2007 reference data. How to improve the generalization of our systems will 
be addressed in our future work. 
 

Dataset 
Opinion 

(NOpMMs4_0.3) 
Positive 

(NTrMM4_0.7) 
Negative 

(NTrMM4_0.7) 
Blog-2006 0.57 0.19 0.18 
Blog-2007 0.70 0.31 0.20 
Blog-2008 0.35 0.14 0.10 

Table 13. Opinion finding and polarity detection results for Blog 06, 07, and 08 based on the best 
performing systems. 

7 Conclusion 

In this paper, we described our system in three tasks in the TREC blog track 2008: topic retrieval, 
opinion finding, and polarity detection. Different query expansion methods have been evaluated for 
topic retrieval. Our results show that query expansion on Title and Description fields with appropriate 
weighting can yield better performance. Extensive experiments have also been conducted on the Blog 
2007 development data for opinion finding and polarization, proving that the strategies we employed 
in our system, such as text normalization, polarized features, sentimental features, classification 
mechanism, are very helpful to improve the system’s performance.  

We will further explore more features and conduct more detailed experiments to evaluate the 
contribution of different features for opinion finding and polarity task. In addition, we plan to 
investigate a more effective and systematic combination framework between relevance score and 
opinionated score of each blog during the re-ranking process.  
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