
York University at TREC 2007: Enterprise

Document Search

Y u Fan1 Xiangji Huang2

iamfanyu@gmail.com jhuang@yorku.ca

1Department of Computer Science & Engineering

YorkUniversity, Toronto, ON, Canada

2School of Information Technology

YorkUniversity, Toronto, ON, Canada

Abstract

York University evaluated a prepcessing approach for this year’s enterprise document
search task. With different parsing tools, we create two data sets. Based on each data
set, we generate two official runs. Their results demonstrate that the removal of raw
data in preprocessing stage has a negative impact on the retrieval performance.

1 Introduction

This year we use the Okapi system for our enterprise document search experiments. In
contrary to last year’s data post-processing approach, our focus in this year’s enterprise
track was on data preprocessing.

One of the main challenges in enterprise search is to deal with a large number of data
type variation. Considering the enterprise search as a chain of functional components with
data flow through, an obvious bottle neck of all-time is preprocessing. One of our major
objectives is to develop a methodology to preprocess the data.

This year, the enterprise track use a new data collection. The task is to find missing page
or a set of pages contains keywords that can help to create an overview page about a given
topic.

We assume that an overview page must be very “human-oriented” in comparison to machine
generated pages. “Human-oriented” files intend to be “natural expression of opinons”. For
example, emails or lecture notes are much more human-oriented than a SQL report page or
a database table file or dynamically generated Web forms. This assumption is not extremely
logically sound. However, it does give us a start point to implement a preprocessing strategy

First, we identify relevent files that are also human-oriented. After examining the data
collection, we find that there are many documents with an empty body and a source path
that links to an application file such as MS Word file, or a presentation slide, or a pdf file.
They were crawled but not included in the data collection before we trace their location and

1



download their contents. This reminds us the challenge of dealing with data type variation
and the importance of pre-processing methodology.

Also, we find there are a lot of documents that are database tables. Since we focus on
finding human-oriented files, these files are in general not of interst to us. Therefore, these
database tables can just be placed into our to-be removed list.

2 Our System and Method

2.1 Okapi

We used Okapi BSS (Basic Search System) as our main search system. The weighting
function used is BM25 [2]. For a given term t, a query q and a document d within a
collection of documents, the weight w of d with respect to q and t is calculated by following
formula:

w =
(k1 + 1)× tf

K + tf
× log

N − n + 0.5
n + 0.5

× (k3 + 1)× qtf

k3 + qtf
⊕ k2 × nq × (advl − dl)

(advl + dl)

Table 2.1 BM25 variables references

Variable description
N total number of indexed documents in the collection.
n number of documents containing the term t. (n ≤ N)
tf within document term frequency of t in d.
qtf within query term frequency of t in q.
nq number of query term (query length).
dl length of document d.

avdl average length of all indexed documents in the collection.
K k1 × (1− b + b× dl

avdl )
K1,k2,k3,b constants, used to tune the system.

BM25 weighting scheme is the core of Okapi system. Relevance judgment of terms and
documents are made based on calculated weights shown above.

2.2 Data Preprocesing and Query Expansion

As discuss above, we examine a fraction of the data, for each identified data type, either
re-collect the doc’s body or mark the doc as to-be removed. We also investigate the effect of
different parsers on the raw data. Finally, we generate two data set. One contains 370,715
documents. The other one contains 360,715 documents. These two data sets are used to
create our four official runs.

Raw data are converted into its original form: one document per file. A well-written parser
will generate an ‘exch’ file by a single run on the raw data. This is not true for the entperise
track due to the fact that enterprise data type is never homogeneous. For query expansion,
we add a narritive term list to query term list and use the average weight of query terms as
a threshold. Query expansion, in gereral, does make a positive contribution to the retrieval
performance.

2



3 Experimental Results and Discussions

We used a java-based parser to process the raw data and create the first dataset. This
parser removed all the XML tags and HTML tags. A text-base browser combined with perl
script created the second dataset. Database files were removed from the second dataset.
Then on each dataset, we generated two runs. One run was generated using query from
the topic file. The other run was generated using queries expanded with narritive terms
from topic files. We would like to investigate how the data post-processing (such as query
expansion) is influenced by the data pre-processing.

The official runs were generated using Okapi 2.41 and the parameters for BM25 were set to
3, 0, 8 and 0.55 for k1, k2, k3 and b respectively. Table 3.1 shows a comparison of parser
during preprocessing. Table 3.2 shows the effect of query expansion.

Table 3.1 Title only query, Port’s stemming with gsl.lemurl

Run MAP R-prec Description (Table 3.1)
york07ed1 0.4405 0.4484 a Java parser,blindly remove tags query only

370715 docs,keep 10000db files
york07ed2 0.4270 0.4480 lynx dumping tool, with perl script remove

page overhead,query only,360715 docs

Table 3.2 Query expanded with narrative, Port’s stemming, gsl.lemurl

Run MAP R-prec Description (Table 3.2)
york07ed1 0.4405 0.4484 Query only, no expansion. 370,715 docs
york07ed4 0.4536 0.4553 Same as york07ed1, with narritive query

expansion
york07ed2 0.4270 0.4480 query only, 360,715 doc with db file re-

moved,no expansion
york07ed3 0.4237 0.4351 Same as york07ed2, with narritive expan-

sion

4 Conclusion and Future Work

As the results show, more documents always give better performance although it seems to
us that these removed documents have nothing to do with overview papers.

Also, recovering of those so-called human-oriented files did not give us obvious performance
gain. Especially, when the number of recovered documents is not significant comparing to
the size of the dataset.

3



Acknowledgement

This research is supported in part by the research grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

References

1 S. E. Robertson, J. K. Sparck (1976). Relevance Weighting of Search Terms.
Journal of the American Society for Information Science 27, May-June 1976,
p129-146

2 M. Beaulieu, M. Gatford, X. Huang, S. E. Robertson, S. Walker and P. Williams
(1996). Okapi at TREC-5. Proceedings of 5th Text REtrieval Conference, pp.
143-166, 1996.

4


