
On Retrieving Legal Files: Shortening Documents and Weeding Out Garbage
Scott Kulp and April Kontostathis

Department of Mathematics and Computer Science
Ursinus College

Collegeville PA 19426
sckulp@gmail.com;akontostathis@ursinus.edu

Abstract

This paper describes our participation in the TREC Legal experiments in 2007. We have applied novel normal-
ization techniques that are designed to slightly favor longer documents instead of assuming that all documents should
have equal weight. We have also developed a new method for reformulating query text when background information
is provided with an information request. We have also experimented with using enhanced OCR error detection to
reduce the size of the term list and remove noise in the data. In this article, we discuss the impact of these effects on
the TREC 2007 data sets. We show that the use of simple normalization methods significantly outperforms cosine
normalization in the legal domain.

1 Introduction
One of the problems people in the legal profession face is the discovery of relevant documentation. When preparing
cases for trial, law firms must search through hundreds of thousands of documents in order to find the most pertinent
information in support of their case. In the legal domain, recall is considered to be more important than precision, but
an increase in precision at top ranks would prevent time wasted on irrelevant materials.

In response to this need, the Text Retrieval Conference (TREC) started a new “Legal” track in 2006. The IIT
Complex Document Information Processing test collection was used as the data set for the 2006 and 2007 competitions.
This collection consists of roughly 7 million documents (approximately 57 GB of uncompressed text) taken from the
Legacy Tobacco Document Library hosted by the University of California at San Francisco. These documents were
made public during various legal cases involving US tobacco companies as part of the settlement agreement.

The documents in the TREC Legal corpus have widely disparate lengths, from a few sentences to hundreds of
pages. Our primary experiments looked at the impact that document normalization has on this type of corpus. The
normalization techniques we used are described in Section 2.3. We believe that the normalization studies we have
done can be generalized to other collections with widely varying lengths. In addition to a standard query, the TREC
Legal topics include background information which can be helpful for improving search. We have devised a method
for using this background information to better identify which query terms serve as the best discriminators. These
techniques are described in Section 2.4. We also experimented with using OCR error detection algorithms to reduce
the size of the term list and reduce noise in the data, as described in Section 2.2. The results of our studies appear in
Section 3.

2 Approach
In this section we describe our search and retrieval platform and discuss the methodologies used in our experiments.

2.1 The Information Retrieval System
The search and retrieval system we used for this project is custom-built. The TREC Legal data set is large, and gen-
erating and storing a single term-by-document matrix for the entire index was infeasible with the resources available.
We developed a way to split up the data set so that our system could index and run queries on each piece separately,
but produce results as if the system processed the entire set at once. The approach mirrors generalized vector space
retrieval. We had intended to use the log-entropy weighting scheme [6] for term weighting. However, we discovered a
programming error after our runs were submitted and we ended up using only local weighting (log tf) for all runs. We
compared log tf to log entropy in subsequent experiments and the precision and recall numbers are almost identical,
which is very interesting. More analysis is needed to determine the effect of term weighting with power normalization,
but this is left as future work. We used the following algorithm to index TREC Legal:

1



• Split up the original data set into some number of smaller pieces; indexing TREC Legal on a machine with 8
GB of RAM required us to split it up into 81 subsets, each approximately 700-750 MB in size.

• Index each subset. For each subset, we removed terms that appear less than six times from the index. The
documents were also processed using Optical Character Recognition (OCR) software. We applied the OCR
error detection algorithm described in [9], supplemented by some additional rules, to reduce the size of the term
list. Table 1 shows the number of terms pruned with and without OCR error detection.

• Loop through each sub-index file, keeping a running total of all the global term frequencies. After all the global
frequencies of the terms in each of the sub-indices are found, the global term weights could be calculated (but
this step was inadvertently omitted in our experiments as explained above). Given enough memory resources
on the computer, this step can be combined with the previous step.

• With the global term weight list loaded, each sub-index is again reloaded separately. The local weight (and
global weight, if applicable) is then applied to each entry in the term-by-document matrix. The sub-indices are
then re-saved.

After the data set is indexed, a list of queries is processed by running the queries separately against each sub-index
and keeping a running list of the top-scoring documents for each query. In our experiments, the normalization of
documents was done at query run time, because we changed it with each run, but normally normalization would be
applied during the term weighting step above.

Our test computer has an Intel Core 2 Quad processor at 2.4 GHz with 8 GB of system RAM and is running
Windows XP x64 Professional. Given some parallelization, it takes about 6-8 hours to index TREC Legal, 2 hours to
process queries on the entire data set, and 45 minutes to run queries on just the documents that have been judged for
relevance.

2.2 OCR Error Detection
The documents in the TREC Legal data set were scanned in using Optical Character Recognition (OCR) software.
However, OCR technology is imperfect and often creates errors within the documents. For example, the word “won-
derful” may be mistakingly read as “wonolerful” by the OCR software. Sometimes, such as when it comes across a
graphic image, the OCR software generates garbage strings. Both mistakes can adversely affect the weighting of terms
in the documents, as well as make the size of the index much larger than it should be.

To help alleviate this problem, our system can automatically detect OCR errors and remove them. We began by
mimicking the garbage detection rules found in the rmgarbage system [9], and then added additional rules in order to
find more items. The changes we have made to rmgarbage were done in order to remove terms more liberally, thus
shrinking the index even more. We used the following rules to decide if a string is garbage (an example follows each
rule):

• If a string is more than 20 characters in length, it is garbage. This rule was taken from rmgarbage, but shortened
from 40 to 20 characters.

Example: iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii...

• If the number of punctuation characters in a string is greater than the number of alphanumeric characters, it is
garbage. This rule was taken from rmgarbage.

Example: ?3//la‘

• Ignoring the first and last characters in a string, if there are two or more different punctuation characters in the
string, it is garbage. This rule was taken from rmgarbage.

Example: b?bl@bjk.1e.322

• If there are three or more identical characters in a row in a string, it is garbage. This rule was taken from
rmgarbage, but shortened from four or more characters to three.

Example: aaaaaBlE

2



Table 1: Number of Terms Removed Using Pruning Methods
Num Terms Removed

Prune <= 5 (No OCR Detect) 454,892,023
Prune <= 5, rmgarbage 3,160,618,688

Prune <= 5, rmgarbage ext 3,195,632,736

• If the number of uppercase characters in a string is greater than the number of lowercase characters, and if the
number of uppercase characters is less than the total number of characters in the string, it is garbage. This is a
new rule we developed when we saw that OCR errors often created excessive numbers of uppercase characters,
but normally, in English, there is usually no more than one uppercase character in a term. However, some-
times real English words appeared in all uppercase characters, which is acceptable, so words that contain only
uppercase characters are not considered garbage.

Example: BBEYaYYq

• If all the characters in a string are alphabetic, and if the number of consonants in the string is greater than 8
times the number of vowels in the string, or vice-versa, it is garbage. This rule was taken from rmgarbage, but
the threshold was shortened from 10 to 8.

Example: jabwqbpP

• If there are four or more consecutive vowels in the string or five or more consecutive consonants in the string, it
is garbage. This is a new rule we developed when we noticed that real English words with these traits are rare,
but this property appeared often in OCR errors.

Example: buauub

• If the first and last characters in a string are both lowercase and any other character is uppercase, it is garbage.
This rule was taken from rmgarbage.

Example: awwgrapHic

Table 1 lists the number of terms pruned using three different methods. These numbers count repeated terms as
well (for example, if the misspelled term “lavvyer” appears five times, it would be counted five times). The total
number of terms in the entire collection is 7,358,393,244 before any pruning has been done. We estimate that an full
index for TREC Legal without pruning would uses about 62 GB of hard drive space. Using OCR error detection saves
about 8 GB of space.

2.3 Document Normalization
One of the major problems in information retrieval is the way large documents have a natural advantage over shorter
documents when processing queries, simply because there are more opportunities for term matches in longer docu-
ments. The goal of document normalization is to reduce this advantage so that small relevant documents have the
same probability of being returned as large relevant documents. The most widely-used normalization method is co-
sine normalization, and we used it as the basis for comparison in our experiments. Some alternate normalization
techniques include pivoted document length normalization [7], maximum tf normalization [6], BM25 [5], and byte
length normalization [8]. Pivoted document length normalization and BM25 have been shown to be more effective
compared to cosine normalization on some collections; however, these techniques require extensive training, so they
are not directly comparable to our approach (although our approach could be enhanced with pivoting). Maximum tf
weighting schemes [6] use the largest term weight in a document as the normalization factor. This approach does not
seem applicable to the TREC legal collection, where we have such widely differing document lengths and the risk of
having outliers (terms with weights that are much higher than the norm), due to undetected OCR errors or uncommon
proper names, appears to be particularly high. Byte length normalization has been shown to be effective on collections
which have OCR errors corrected and on collections with simulated OCR errors [8]. This technique does not directly
apply to our situation because a significant number of the OCR errors in TREC Legal were removed by our prepro-
cessor and the remaining OCR errors are quite real, not simulated. We plan to compare our results to the byte length
normalization, BM25, and pivoted document length normalization in the future.

3



2.3.1 Cosine Normalization

The standard method of document normalization is cosine normalization. For every document, the normalization
factor is calculated. The normalization factor is defined by the expression√∑n

i=1 w2
i

where wi is weight of the ith term in the document, and n is the number of unique terms in the document. The original
term-document weight is divided by this normalization factor to get the final normalized term-document weight. When
this is applied to every document in the collection, each document will have length of one.

The problem with cosine normalization is that it assumes that the probability of relevance is completely indepen-
dent from document length. However, it is more likely that very long documents do have a slightly higher chance of
being truly relevant to a query, since they have more content. To account for this, we developed document normaliza-
tion schemes that bestow less of a penalty on the longest documents.

2.3.2 Log Normalization

We first use a log function to normalize documents. Let t be the total number of terms in a document. The log
normalization factor is defined by the expression

log(t)

The original term-document weight is divided by the normalization factor to find the final normalized term-document
weight. We chose the log function because of its slow growth as t becomes higher. This way, while all documents are
shortened somewhat, very long documents are not penalized as much as shorter documents.

2.3.3 Power Normalization

We also experimented with using different powers of t as the normalization factor.
Let t be the total number of terms in a document. The square root normalization factor is defined by the expression

√
t

The cube root normalization factor is defined by the expression

t1/3

The fourth root normalization factor is defined by the expression

t1/4

We used these powers of t for reasons similar to log normalization. These functions grow slowly with very large
values of t, and so very large documents still have some advantage. The biggest difference between log normalization
and power normalization is simply the rate of growth of the normalization factor functions. The power functions grow
much faster than the log function, meaning the length advantage of extremely large documents is diminished more.

2.3.4 Analysis

Early experiments showed that log normalization worked well on small datasets with homogeneous lengths, but gave
too much advantage to longer documents when used for the TREC Legal experiments. Figure 1 contains the data plots
displaying the vector lengths of all the judged documents for the 2006 TREC Legal queries after normalization. A
graph of document lengths after cosine normalization is applied would be a horizontal straight line at 1. The documents
are sorted by vector length before normalization, in ascending order, so that document x in Figure 1(a) is referring to
the same document as document x in Figure 1(b), as well as Figure 1(c), etc. In Figure 1(a), we can see the original
document lengths, without normalization (sorted shortest document to longest document). On Figure 1(b), we can see
the document lengths after log normalization is applied. The shape of the curve for log normalization is very similar
to the original document length curve, meaning the log function had little effect.

This prompted us to try power normalization techniques for TREC Legal. As we can see from Figures 1(c),
1(d) and 1(e), the power functions have a much greater effect on the curve. Figure 1(c) shows that the square root

4



0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

D
o

c 
Le

n
gt

h

Document

Doc Lengths (No Norm)

(a) No Normalization.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

D
o

c 
Le

n
gt

h

Document

Doc Length (Log Norm)

(b) Log Normalization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400 450

D
o

c 
Le

n
gt

h

Document

Doc Length (Sqrt Norm)

(c) Square Root Normalization.

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450
D

o
c 

Le
n

gt
h

Document

Doc Length (Cube Root Norm)

(d) Cube Root Normalization.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450

D
o

c 
Le

n
gt

h

Document

Doc Length (1/4 Root Norm)

(e) Fourth Root Normalization.

Figure 1: The Effect of Normalization on Document Length

Table 2: Average Number of Terms in Returned Documents - 2006 queries
No Norm Log Norm FrthRt Norm CubeRt Norm Sqrt Norm Cosine Norm

Rank 10 194658.17 114085.49 11222.43 1709.70 362.09 299.68
Rank 20 174553.65 107315.34 12910.54 2011.27 434.03 348.11
Rank 30 162117.71 104196.73 14813.93 2118.35 458.15 398.22

Table 3: Average Number of Terms in Returned Documents - 2007 queries
No Norm Log Norm FrthRt Norm CubeRt Norm Sqrt Norm Cosine Norm

Rank 10 36691.7 28742.4 15845.5 8186.0 2146.5 2829.7
Rank 20 29168.3 24734.4 16084.3 11068.2 3093.4 3797.5
Rank 30 23651.3 21442.8 16207.4 11049.5 3381.9 4434.2

5



function is so heavy, the graph is actually somewhat downward-sloping. However, when using cube root or fourth root
normalization, the graphs acts precisely as we intended with a very slight upward slope as original document sizes
become longer.

In Tables 2 and 3, we can see the effect the normalization scheme has on the number of terms in the documents
returned by our search system at top ranks for the 2006 and 2007 queries. As we expected, using no normalization
results in too many large documents, which is not useful. Since log normalization does not have a very large effect
on the long documents in TREC Legal, the average term length of the returned documents is within the same order
of magnitude as using no normalization. Cosine normalization and square root normalization return very short doc-
uments. However, cube root normalization and fourth root normalization have average term counts that are between
cosine/square root normalization and log normalization.

It is interesting to compare the 2006 numbers to the 2007 numbers. Although the trends are the same, the variation
is much more pronounced for the 2006 queries. This leads us to believe that the 2007 queries are somehow different
from the 2006 queries (collectively), but more analysis is needed to identify the differences. Subsequent experiments
with the 2006 and 2007 queries separately have determined that retrieval performance also differs significantly [4].

2.4 Query Pruning
Another problem we faced in the TREC Legal project was deciding what to use as the queries. In the past, research has
been done on expanding queries using such methods as thesaurus expansion [3] and automatic/manual query relevance
feedback expansion [2, 1]. However, instead of expanding queries to make them longer, we wanted a way to make
queries shorter and more specific.

In for each of the 46 topics in the 2006 set released by TREC legal, there is a short problem summary (the request
text), and then a much longer overview of the problem. The problem summary is similar to a standard query, in that it
is a simple one-sentence description of what the user wants to find. The following is an example:

All documents referencing the lobbying efforts of antismoking groups which specifically refer to their use of cartoons.

Using a standard English stop list, the terms all, the, of, which, to, their, and use are removed. However, the terms
documents, referencing, specifically, and refer are jargon and are of no use when trying to do a document search. In
fact, using these terms in the queries could have a negative effect on recall and precision, since documents that have
matches to just those terms are probably not relevant.

To solve this problem, we needed a custom stop list to prune the legal jargon from the queries. However, given
the very short length of the problem summaries, there was not enough information to automatically generate this stop
list. We then decided to look at the longer problem descriptions. We used these descriptions directly as queries, but
they were much too large (many were multiple pages long) and had too much extra information. They sharply lowered
recall and precision rates when tested with the 2006 queries. They also are filled with technical jargon, and so we used
them to automatically generate a stop list of high-frequency legal terms.

We developed a program which read all the topics. The system kept a record of the running total for each term’s
frequency throughout the query topics. We reviewed the list of terms that appeared more than sixty times in the query
file to identify candidates for the legal term stop list, all but three of these terms were chosen for the stop list (the three
that were eliminated were California, media and code - these were eliminated from the stop list because they did not
appear to be legal jargon). Four additional terms were added to the legal stop list, as a result of manual analysis of
the problem summary statements. The these four terms were expressly, discussing, referencing, relating. A legal term
stop list consisting of 155 terms was created. In the next section we discuss our 2007 runs and see the effect of using
this stop list on precision and recall rates.

3 Results
We were restricted to eight runs for 2007. The runs are described in Table 4. We selected runs that would test the
effectiveness of each of the three strategies. For example, we could test the effectiveness of the various normalization
strategies by comparing the results of runs 1-5. The effectiveness of automated query pruning can be gauged by
comparing the manual runs 7 and 8 to query pruning runs 2 and 5. The OCR could be evaluated by comparing runs 6
and 2.

6



Table 4: Description of submitted runs for TREC Legal 2007
Run Name Automatic? Normalization Query Pruning? OCR?

ursinus1 Yes Fourth Root Yes No
ursinus2 Yes Cube Root Yes No
ursinus3 Yes Square Root Yes No
ursinus4 Yes Log Yes No
ursinus5 Yes Cosine Yes No
ursinus6 Yes Cube Root Yes Yes
ursinus7 No Cube Root No No
ursinus8 No Cosine No No

Table 5: Actual Precision Comparisons for TREC Legal 2007
Rank

Run Name 5 10 15 20 30 100 200 500 1000 MAP
ursinus5 0.065 0.056 0.056 0.049 0.042 0.027 0.023 0.015 0.012 0.010
ursinus1 0.335 0.286 0.259 0.234 0.209 0.139 0.095 0.058 0.038 0.084
ursinus2 0.302 0.237 0.214 0.202 0.170 0.106 0.077 0.045 0.034 0.065
ursinus3 0.070 0.065 0.062 0.058 0.050 0.030 0.023 0.015 0.012 0.010
ursinus4 0.251 0.177 0.144 0.136 0.119 0.075 0.056 0.035 0.024 0.034
ursinus6 0.237 0.219 0.194 0.176 0.151 0.096 0.068 0.047 0.032 0.057
ursinus7 0.265 0.202 0.177 0.157 0.140 0.100 0.069 0.044 0.029 0.052
ursinus8 0.074 0.084 0.074 0.066 0.058 0.038 0.032 0.020 0.014 0.012

The results provided by NIST are shown in Tables 5, 6, and 7. The precision rates for power normalization runs are
much higher than precision rates for the cosine normalization (baseline) run. At rank 10, there is a 415% improvement
in precision when using fourth root normalization over cosine normalization, and there is a 365% improvement in pre-
cision when using cube root normalization over cosine normalization. Large improvements in precision performance
can be seen in all other rankings as well, when using cube or fourth root normalization over cosine normalization.
Figure 2 shows the recall comparison between the cosine normalization baseline and the fourth root, cube root, and
log normalization schemes. Interestingly, log normalization performed better on the 2007 queries than it did on com-
parable runs using the 2006 queries. We speculate that this may be related to the pooling techniques used in the
evaluation process. Log normalization resulted in longer documents being retuned at top ranks, and therefore more
gray documents appeared in top ranks. The estimated gray at B for log normalization was .1305 as compared with
.0088 for cosine, .0157 for fourth root, and .0084 for cube root. The estimated gray at rank 5 for log was .3070, which
was much larger than all other runs.

The results for Query Pruning were mixed. Generally the Query Pruning with cube root normalization (run 2)
outperformed manual querying with cube root normalization (run 7), but the opposite was true when cosine normal-
ization was used (see the data for runs 5 and 8 for cosine normalization with and without query pruning, resp.). This
provides further evidence that there are subtle differences between the 2006 and 2007 queries, and they cannot be used
interchangably to compare retrieval results.

As expected OCR detection had little impact on retrieval performance. A comparison of run 6 to run 2 shows that
no OCR detection (run 2) has slightly higher retrieval performance in many cases. We speculate that the aggressive
OCR error detection scheme may be removing true keywords unintentionally.

4 Conclusions
We have described experiments using several new algorithms that improve the performance of a search and retrieval
system in the legal domain. Log and power normalization are promising new methods of document normalization that
aim to retrieve longer, more relevant documents in the top ranks when the corpus has widely disparate lengths. Thus

7



Figure 2: TREC Legal Estimate Recall Comparison

0.15

0.2

0.25

0.3

0.35

E
s
t
im

a
t
e

d
 R

e
c
a

ll

Cosine

Fourth Rt

0

0.05

0.1

0.15

E
s
t
im

a
t
e

d
 R

e
c
a

ll

Fourth Rt

Cube Rt

Log

Table 6: Estimated Precision Comparisons for TREC Legal 2007
Rank

Run Name P5 P10 P100 P1000 P5000 P10000 P15000 P20000 P25000 Est P@B
ursinus5 0.072 0.093 0.114 0.093 0.085 0.086 0.078 0.090 0.083 0.081
ursinus1 0.340 0.365 0.316 0.252 0.192 0.188 0.165 0.137 0.125 0.195
ursinus2 0.307 0.289 0.261 0.209 0.146 0.141 0.136 0.122 0.117 0.154
ursinus3 0.072 0.120 0.110 0.098 0.087 0.087 0.086 0.082 0.078 0.084
ursinus4 0.332 0.306 0.321 0.293 0.204 0.184 0.162 0.151 0.139 0.233
ursinus6 0.242 0.297 0.253 0.197 0.142 0.140 0.127 0.116 0.108 0.153
ursinus7 0.265 0.238 0.265 0.224 0.145 0.130 0.120 0.113 0.109 0.161
ursinus8 0.093 0.119 0.121 0.119 0.101 0.094 0.085 0.079 0.085 0.101

Table 7: Estimated Recall Comparisons for TREC Legal 2007
Rank

Run Name R5 R10 R100 R1000 R5000 R10000 R15000 R20000 R25000 Est R@B
ursinus5 0.000 0.000 0.008 0.022 0.078 0.108 0.140 0.187 0.220 0.063
ursinus1 0.002 0.004 0.013 0.063 0.171 0.226 0.257 0.299 0.329 0.113
ursinus2 0.002 0.003 0.012 0.064 0.154 0.212 0.246 0.278 0.314 0.112
ursinus3 0.000 0.000 0.008 0.023 0.080 0.110 0.131 0.180 0.213 0.063
ursinus4 0.001 0.001 0.006 0.036 0.125 0.182 0.228 0.278 0.315 0.096
ursinus6 0.002 0.003 0.016 0.063 0.155 0.212 0.243 0.273 0.298 0.110
ursinus7 0.001 0.001 0.010 0.054 0.112 0.176 0.200 0.260 0.283 0.099
ursinus8 0.000 0.000 0.004 0.036 0.089 0.125 0.158 0.168 0.191 0.071

8



far, our testing has been restricted to the legal domain, but we believe similar improvements would be seen in other
applications.

References
[1] Efthimis N. Efthimiadis. A User-Centred Evaluation of Ranking Algorithms for Interactive Query Expansion. In

SIGIR ’93: Proceedings of the 16th annual international ACM SIGIR conference on Research and Development
in Information Retrieval, pages 146–159, New York, NY, USA, 1993. ACM Press.

[2] Susan Gauch and John B. Smith. Search Improvement via Automatic Query Reformulation. ACM Transactions
on Information Systems, 9(3):249–280, 1991.

[3] Y. Jing and W. Bruce Croft. An Association Thesaurus for Information Retrieval. In Proceedings of RIAO-94, 4th
International Conference “Recherche d’Information Assistee par Ordinateur”, New York, US, 1994.

[4] Scott Kulp. Improving Search and Retrieval Performance through Shortening Documents, Detect-
ing Garbage, and Throwing Out Jargon. Technical report, Ursinus College, Collegeville, PA, USA,
http://webpages.ursinus.edu/akontostathis/KulpHonorsThesis.pdf, 2007.

[5] Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull, and Marianna Lau. Okapi at
TREC. In Text REtrieval Conference, pages 21–30, 1992.

[6] Gerard Salton and Chris Buckley. Term Weighting Approaches in Automatic Text Retrieval. Technical report,
Cornell University, Ithaca, NY, USA, 1987.

[7] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted Document Length Normalization. In Research and
Development in Information Retrieval, pages 21–29, 1996.

[8] Amit Singhal, Gerard Salton, and Chris Buckley. Length Normalization in Degraded Text Collections. Technical
report, Cornell University, Ithaca, NY, USA, 1995.

[9] Kazem Taghva, Tom Nartker, Allen Condit, and Julie Borsack. Automatic Removal of “Garbage Strings” in OCR
Text: An Implementation. In The 5th World Multi-Conference on Systemics, Cybernetics and Informatics, 2001.

9


	Introduction
	Approach
	The Information Retrieval System
	OCR Error Detection
	Document Normalization
	Cosine Normalization
	Log Normalization
	Power Normalization
	Analysis

	Query Pruning

	Results
	Conclusions

