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Abstract

In this paper we present a system which uses
ontological resources and a gene name vari-
ation generation tool to expand concepts in
the original query. The novelty of our ap-
proach lies in our concept-based normal-
ization ranking model. For the 2007 Ge-
nomic task, we also modified this system ar-
chitecture with an additional dynamic form
of query expansion called entity-based rel-
evance feedback. This technique works
by identifying potentially relevant entity in-
stances in an initial set of retrieved candi-
date paragraphs. These entities are added
to the initial query with the aim of boasting
the rank of passages containing lists of these
entities. Our final modification to the sys-
tem, aims to maximizing the passage-level
MAP score, by dropping sentences that do
not contain any query concepts, from the
beginning and the end of a candidate para-
graph. Our TREC 2007 results show that our
relevance feedback method can significantly
improve baseline retrieval performance with
respect to document-level MAP.

1 Introduction

The purpose of an information retrieval (IR) sys-
tem is to retrieve documents or passages which are
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relevant to the user’s information need. Genomic
or biomedical IR focuses on retrieving passages
which discuss genomic concepts (such as genes,
proteins, biological processes) and other medical en-
tities (such as diseases) over a collection of biomedi-
cal journal papers. The introduction of high through-
put assays, and the subsequent dramatic increase
in publications describing this data has made effec-
tive solutions to Genomic IR a high priority in the
biomedical community.

The TREC Genomics Track1 provides partici-
pants with a platform to test and evaluate their Ge-
nomic IR techniques and solutions. From 2006,
the Genomics Track introduced a new task which
focuses on retrieving short passages instead of the
traditional documents or paragraphs (Hersh et al.,
2006). Passages in this task are defined as text se-
quences that cannot exceed the paragraph (or legal
span) boundaries, and are subsets of the original
paragraphs in which they occur. Mean Average Pre-
cision (MAP) is used by the track to evaluate system
performance at three different levels of information
granularity: Document, Passage and Aspect.

Before building a system for this year’s task,
based on the Zettair2 search engine, we implemented
and evaluated a passage-level retrieval system that
would have been ranked among the top 5 systems
at the 2006 track. This system uses ontological re-
sources (MeSH3 and Entrez Gene4) and a gene name

1http://ir.ohsu.edu/genomics/
2http://www.seg.rmit.edu.au/zettair/
3http://www.nlm.nih.gov/mesh
4http://www.ncbi.nlm.nih.gov/sites/

entrez?db=gene



variation generation tool to expand concepts in the
original query. The novelty of our approach lies in
our modified Okapi ranking scheme which improves
IR effectiveness by ensuring that passages that con-
tain all of the concept terms in the original query are
ranked higher than passages which contain multiple
references to a subset of these concepts. In addi-
tion, the importance of the original query concepts
is maintained after query expansion by using a ge-
ometric progression to normalize the contributed of
the expansion terms.

In this paper, we introduce the query expansion
and ranking methods used by the NICTA team at
2007 Genomics Track. We also report on our ex-
perimental results and analysis.

2 System Description

The TREC Genomics track was established in 2003
with the aim of supporting the evaluation of infor-
mation retrieval systems capable of answering the
types of questions typically posed by genomicists.
This year’s track focused on the retrieval of in-
formation supporting list-type answers to genomic
queries. Here are some sample queries with general
entity types in bold:

• What DRUGS have been tested in mouse mod-
els of Alzheimer’s disease?

• What centrosomal GENES are implicated in
diseases of brain development?

• What MOLECULAR FUNCTIONS does he-
licase protein NS3 play in HCV (Hepatitis C
virus)?

• What MUTATIONS in apolipoprotein genes
are associated with disease?

• Which PATHWAYS are possibly involved in
the disease ADPKD?

Hence, relevant passages are those that contain
both a list of specific instance of these general entity
types, and the other biological concepts mentioned
in the query. In all, 36 queries were evaluated on a
collection of full-text journal papers, where the task
was to retrieved relevant answer passages rather than
full-text documents.

In the following section we describe our novel
genomic retrieval system. The architecture of this
system is shown in Figure 1. The retrieval of rele-
vant answer passages involves a number of different
processing steps: first the collection is preprocessed
and indexed; then a user query is expanded with re-
lated terms extracted from two ontological resources
MESH and Entrez Gene; an initial set of paragraphs
is retrieved; these are then processed by an entity
finder component which looks for entity instances in
these paragraphs that match the general entity type
in the user’s query; these specific entity instances
are then added to the query and a second set of can-
didate paragraphs is retrieved; these paragraphs are
then reduced to passages and re-ranked before being
presented to the user. A more detailed description of
these steps is provided in the following subsections.

Collection Preprocessing

The TREC collection consists of full-text journal ar-
ticles obtained by crawling the Highwire site5. The
full collection contains 162,259 documents and is
about 12.3 GB in size when uncompressed. After
preprocessing, the whole collection becomes 7.9 GB
and contains 8,920,137 paragraphs. We index these
paragraphs rather than documents, since the task is
a passage level retrieval task. The collection is pre-
processed as follows:

Paragraph Segmentation: for evaluation purposes
the Genomics Track requests that the ranked
answer passages must be within specified para-
graph boundaries.

Sentence Segmentation: all sentences within para-
graphs are segmented using a tool called
sentence-boundary.pl6, with the orig-
inal start and end offset information of sen-
tences recorded.

Character Replacement: Greek characters repre-
sented by gifs are replaced by textual encod-
ings; accented characters such as “À” or “Á”
are replaced by “A”; Roman numbers are re-
placed by Arabic numerals. These replace-

5http://www.highwire.org
6http://l2r.cs.uiuc.edu/˜cogcomp/atool.

php?tkey=SS
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Figure 1: System architecture.

ments are very important for capturing varia-
tions in gene names.

Removal: all HTML tags, very short sentences,
figures, tables, paragraphs with the heading
Abbreviations, Acknowledgement, Notes, and
some special characters are removed.

Query Expansion

Once the collection has been indexed, querying can
begin. The 2007 Genomics Track focused on re-
trieving passages that respond to questions requiring
list-type answers. Each topic contains one general
biomedical entity type followed by at least one en-
tity instance such as a gene, a disease or biological
process. For example:

Topic 200: What serum [PROTEINS] change
expression in association with high disease activity
in lupus?

Topic 201: What [MUTATIONS] in the Raf gene
are associated with cancer?

Our query expansion process proceeds as follows.
For each gene or protein in the query, it is expanded
with entries from the Entrez Gene database. Since
the same gene may occur in many different species,
and many of their synonyms only differ with re-
spect to capitalization, we choose the first entry re-
trieved that belongs to the species type Homo sapi-
ens. Then, terms in the Official Symbol, Name,

Other Aliases and Other Designations fields, for
the gene, are added to the query. For example,
“BRAF”, “v-raf murine sarcoma viral oncogene ho-
molog B1”, “B-raf 1”, “BRAF1”, “MGC126806”,
“MGC138284”, “RAFB1”, “B-Raf proto-oncogene
serine/threonine-protein kinase”, and “Braf trans-
forming” are added into Topic 201 as the expanded
terms of the “Raf gene”.

For all other biological terms in the query, we
use the MeSH taxonomy of medical terms to find
their synonyms (using the Entry Terms and See Also
fields). For example, in Topic 200, the phrase
“serum protein” is expanded to “Blood Proteins”,
“Proteins, Blood”, “Plasma Proteins”, “Proteins,
Plasma”, “Serum Proteins”, “Proteins, Serum”,
“Protein Binding”, and “Serpins”.

As a final step all the Roman digit numbers in the
queries are replaced by their corresponding Arabic
numbers. A similar operation was performed on the
collection.

Gene Variant Generation

(Trieschnigg et al., 2006) report a significant im-
provement after using biomedically-tuned tokeniza-
tion. As well as expanding with synonyms, we use a
“gene variant” generation tool, which is based on the
tokenization, to generate all the possible variants for
both original query terms and expanded terms. Our
segmentation rules are similar to those described in



(Buttcher et al., 2004). We describe them as follows:
Given a gene name containing a hyphen or punc-

tuation, or a change from lower case to upper case,
or from a character to a number (or vice versa), or
a Greek character (e.g. “alpha”), we call this a split
point. A word is split according to all its split points,
and all variants are generated by concatenating all
these split parts, optionally with a space inserted.
Greek characters are also mapped to English vari-
ants, e.g. “alpha” is mapped to “a”.

According to the rules, for the query term
“Sec61alpha”, we would generate the following lex-
ical variants which are also commonly used forms
of this term in the collection:“Sec 61alpha”, “Sec61
alpha”, “Sec 61 alpha”, “Sec 61a”, “Sec61 a”, “Sec
61 a”, and “Sec61a”;

Concept-based Query Normalization

Our document ranking method is based on the Okapi
model (Robertson et al., 1994), which is a widely
used ranking metric. However, there are two fun-
damental problems with using this model on TREC
Genomics queries.

The first problem regards Okapi not differentiat-
ing between concept terms and general query terms
in the query. For example, consider two documents,
one containing the terms “serum protein” and “lu-
pus”, and the other containing the terms “disease”
and “lupus”. Clearly, the first document containing
the two biological concepts is more relevant to Topic
200. The second problem occurs because TREC
2007 Genomics topics contain more than one con-
cept term. It is possible that a short paragraph that
discusses only one concept will be ranked higher
than a longer paragraph which mentions two con-
cepts. Again this is an undesirable outcome.

To overcome these problems, a Conceptual IR
model was proposed in (Zhou et al., 2006). In this
paper we propose another method called concept-
based query normalization which is based on the
Okapi model and similar to the method introduced
in (Li, 2007; Stokes et al., 2008) for geospatial IR.

The first problem is solved by dividing query
terms into two types: general terms tg and concept
terms tc. Given a query with two concept terms and
a general term, the similarity between a query Q and
a document Dd is measured as follows:

sim(Q, Dd) = gsim(Q, Dd) + csim(Q, Dd)

where gsim(Q,Dd) is the general similarity score
and csim(Q,Dd) is the concept similarity score. The
general similarity score is given by:

gsim(Q, Dd) =
∑
t∈Qg

simt(Q, Dd) =
∑
t∈Qg

rd,t · wt · rqt

where Qg is the aggregation of all general
terms/phrases in the query. The concept similarity
score is given by:

csim(Q, Dd) =
∑

C∈Qc

simc(Q, Dd)

=
∑

t∈C,C∈Qc

Norm(simt1(Q, Dd), . . . , simtN (Q, Dd))

=
∑

t∈C,C∈Qc

(simt1 +
simt2

a
+ · · ·+ simtN

aN−1
)

where Qc is the aggregation of all concepts in the
query, C is one concept in Qc, and ti is a term/phrase
in the query, after expansion, which belongs to the
concept C; the ti are listed in descending order ac-
cording to their okapi similarity scores simt1 , . . .,
simtN :

simt(Q, Dd) = rd,t · w′t · rq,t

where

rd,t =
(k1 + 1) · fd,t

k1 · [(1− b) + b · Wd
avgWd

] + fd,t

w′t = log
N −max(ft, ftq ) + 0.5

max(ft, ftq ) + 0.5
(1)

rq,t =
(k3 + 1) · fq,t

k3 + fq,t

where k1 and b are usually set to 1.2 and 0.75 re-
spectively, and k3 can be taken to be ∞. Variable
Wd is the length of the document d in bytes; avgWd

is the average document length in the entire collec-
tion; N is the total number of documents in the col-
lection; ft is the number of documents in which term
t occurs; and f{d,q},t is the frequency of term t in ei-
ther a document d or query q.

Note that (1) is an adjustment of the calculation
for the weight w′t of an expansion term t appear-
ing in the query: for expansion term t, its own term



frequency ft and the corresponding original query
term’s frequency ftq are compared, and the larger
value is used. This ensures that the term contributes
an appropriately normalized “concept weight”.

To solve the second problem, we use the follow-
ing rules to ensure that for two passages P1 and
P2, where one contains more unique concepts than
the other, the number of concepts ConceptNum(P)
will override the Okapi score Score(P) and assign a
higher rank to the passage with more unique con-
cepts:

if ConceptNum(P1) > ConceptNum(P2) then
Rank(P1) > Rank(P2)

else if ConceptNum(P1) < ConceptNum(P2) then
Rank(P2) > Rank(P1)

else if Score(P1) ≥ Score(P2) then
Rank(P1) > Rank(P2)

else
Rank(P2) > Rank(P1)

Entity-based Relevance Feedback
For the 2007 task, the topics are in the form of ques-
tions asking for lists of specific entities. Besides
certain genes, diseases or biological processes, there
are 14 general entity types. Each topic include one
such entity type (e.g. “ANTIBODIES”, “BIOLOG-
ICAL SUBSTANCES” and so on). Unlike those
certain gene or disease names, some relevant pas-
sages will be missing by our retrieval if they do not
mention these general entity types by name. For ex-
ample, for Topic 200, a relevant passage mentions
“beta2glycoprotein” which is a antibody; however
the term “antibody” is not used in the passage. Three
tools are used to find instances of different entity
types. They are: BioTagger7 (for “GENE” or “PRO-
TEIN”), MutationFinder8 (for “MUTATION”), and
MMTx9 (for all other entity types, Table 1 shows a
mapping relationship between MMTx headings and
these entity types). We now describe our entity-
based relevance feedback method:

1. Retrieve the first 100 paragraphs which include
at least one instance of each concept in the
query expanded by the ontologies and the vari-
ant generation tool.

7http://www.seas.upenn.edu/˜strctlrn/
BioTagger/BioTagger

8http://mutationfinder.sourceforge.net/
9http://mmtx.nlm.nih.gov/

2. Divide all the topics into three groups accord-
ing to their entity types: Group A (“GENE”
or “PROTEIN”), Group B (“MUTATION”) and
Group C (all other types). For topics in each
group, run the corresponding tool against their
top 100 paragraphs to find all instance names.

3. Among all the detected instance names, to
avoid noise, discard all the names that only oc-
cur once. Then pick up the first 30 most fre-
quent terms.

4. For all these instances, use the above genera-
tion tool to formulate all their lexical variants,
and add them to the query. The expanded query
is then re-submitted to the retrieval engine, and
the passage extraction step, described below, is
applied.

Passage Extraction

As already mentioned, in 2006, the Genomics Track
defined a new question answering-type task that re-
quires short full-sentence answers to be retrieved
in response to a particular query. However, be-
fore answer passages can be generated, we first re-
trieve the top 1000 ranked paragraphs for each topic,
and use a simple passage extraction rule to reduce
these paragraphs to shorter answer spans. Any sen-
tence in paragraphs which mention any of the query
terms/phrases, including expanded ones, is called a
relevant sentence; otherwise it is called an irrelevant
sentence. Our method is described as follows:

1. From the first sentence to the last one, keep re-
moving the irrelevant sentences until a relevant
sentence is found;

2. Repeat this process starting from the last sen-
tence.

This method only reduces the size of retrieved
paragraphs; however, it does not split a paragraph
into multiple passages.

After passage extraction has been applied for a
particular topic, we re-rank passages by re-indexing
them, and re-querying the topic against this new in-
dex, using the global statistics from the original in-
dexed collection, i.e. using term/phrase frequency ft

and the average paragraph length avgWd.



Table 1: Mappings between MMTx Headings and 2007 Entity Types.
Entity Types MMTx Headings
ANTIBODIES Concept: Antibodies

Semantic Type: Immunologic Factor
BIOLOGICAL Semantic Type: Hormone
SUBSTANCES Semantic Type: Enzyme

Semantic Type: Element, Ion, or Isotope
Semantic Type: Carbohydrate
Semantic Type: Carbohydrate Sequence
Semantic Type: Lipid
Semantic Type: Amino Acid, Peptide, or Protein
Semantic Type: Amino Acid Sequence
Semantic Type: Nucleic Acid, Nucleoside, and Nucleotide
Semantic Type: Biologically Active Substance
Semantic Type: Steroid
Semantic Type: Eicosanoid

CELL OR Semantic Type: Cell
TISSUE TYPES Semantic Type: Tissue
DISEASES Semantic Type: Disease or Syndrome

Semantic Type: Neoplastic Process
DRUGS Pharmacologic Substance

Semantic Type: Antibiotic
MOLECULAR Semantic Type: Molecular Function
FUNCTION
PATHWAYS N/A
STRAINS Concept: Strain

Semantic Type: Virus
Semantic Type: Bacterium
Concept: Sterotype

SIGNS OR Semantic Type: Sign or Symptom
SYMPTOMS Semantic Type: Finding
TOXICITIES Concept: Toxic effect

Concept: Toxicity aspects
Semantic Type: Hazardous or Poisonous Substances

TUMOR TYPES Semantic Type: Neoplastic Process

Table 2: Table showing improvement in MAP score obtained over baseline MAP when query expansion and
normalization ranking methods have been used.

Run Passage2 MAP Aspect MAP Document MAP
MuBase 0.0604 0.1427 0.1896
MuMshNfd 0.0776† +28.5% P = 0.01 0.2156† +51.1% P = 0.01 0.2724† +43.7% P < 0.001
MuMan 0.0747 +23.7% P = 0.1 0.1937 +35.8% P = 0.2 0.2438 +28.6% P = 0.1

Table 3: Table showing improvement in MAP score when entity-based feedback is performed.
Run Passage2 MAP Aspect MAP Document MAP
MuMshNfd 0.0776 0.2156 0.2724
MuMshFd 0.0895 +15.3% P = 0.2 0.2068 −4.08% P = 0.5 0.2906† +6.68% P = 0.03

Table 4: Table showing MAP scores of runs with (MuMshfd) and without feedback (MuMshNfd) when
passage extraction is used.

Run Passage2 MAP Aspect MAP Document MAP
MuMshNfd 0.0776 0.2156 0.2724
MuMshNfdRsc 0.0809 +4.25% P = 0.4 0.2079† −3.57% P = 0.05 0.2682 −1.54% P = 0.08
MuMshFd 0.0895 0.2068 0.2906
MuMshFdRsc 0.0893 −0.22% P = 0.4 0.2016† −2.51% P = 0.02 0.2880 −0.89% P = 0.2



3 Experimental Results and Analysis

This year NICTA participated in the TREC Ge-
nomics Track and submitted three official runs:

• MuMshNfdRsc: ontology-based (MESH and
Entrez Gene) query expansion and passage ex-
traction

• MuMshFd: ontology-based query expansion
and entity-based relevance feedback

• MuMshFdRsc: ontology-based query expan-
sion, entity-based relevance feedback, and pas-
sage extraction

In this paper, for comparison purposes, we also
discuss the results of three unofficial post-TREC
runs:

• MuBase: baseline run using the original query
terms and phrases without passage reduction

• MuMshNfd: ontology-based query expansion
without passage extraction

• MuMan: a manual query expansion run without
passage extraction

Table 2 presents the MAP scores of the MuBase,
MuMshNfd and MuMan runs10. The purpose of
this comparison is to evaluate the effectiveness of
the query expansion (manual and automatic) with a
baseline run. A paired one-sided Wilcoxon signed-
rank test at the 0.05 confidence level is also reported.
This table shows that both manual and ontology ex-
pansion outperform a baseline system that just re-
trieves paragraphs based only on the original query
terms. But only the ontology expansion has statis-
tically significant improvements in all three MAPs.
It is interesting to observe that our automatic ex-
pansion method outperforms manual expansion of
the queries performed by a PhD student studying
Genetics. The student was instructed to add addi-
tional terms using any freely available ontologies
or biomedical databases, or based solely on their
knowledge of the topic.

Table 3 shows the effectiveness of our entity-
based feedback method by comparing the MAP

10The PASSAGE2 MAP score is used as the primary passage
retrieval evaluation measure in 2007

Table 5: Table showing performance of our best Pas-
sage2 MAP scoring run MuMshFd with the maxi-
mum and median average scores on the Genomics
Track.

Run Passage2 Aspect Document
MAP MAP MAP

MAX 0.1817 0.4156 0.4353
MEDIAN 0.0278 0.1078 0.1871
MuMshFd 0.0895 0.2068 0.2906

scores of the runs MuMshNfd and MuMshFd. Our
dynamic feedback run (MuMshFd) shows improved
Passage2 and Document MAP scores; however, only
the Document MAP increase is statistically signifi-
cant. There is also a small drop in Aspect MAP.
This may be explained by the fact that we make no
attempt to optimize for this metric.

Table 4 compares the performance of our pas-
sage extraction strategy. Four runs are investigated:
MuMshNfd, MuMshFd and their passage extraction
extensions MuMshNfdRsc and MuMshFdRsc. As
observed in our TREC Genomics 2006 experiments,
while the Passage2 MAP increases, the Aspect and
Document MAP scores drop slightly when passage
extraction is applied (Stokes et al., 2007). How-
ever, in our 2007 experiments no significant im-
provement on Passage2 MAP occurs with passage
extraction. This can be explained by the difference
in gold standard span lengths between the 2006 and
2007 tasks. We found that on average, these spans
are much shorter in 2006 than in 2007: 1.7 sentences
for 2006 compared with 3.9 sentences per span for
2007. Hence, this year’s gold standard passages are
closer in length to actually paragraphs, thus reducing
the need for passage reduction.

Our final set of results in this section, shows how
our best run (MuMshFd) performs with respect to
systems that participated in the official TREC 2007
Genomics Track. Table 5 lists the MAP scores of the
best and median results of all the participants. The
maximum and median results in this table were cal-
culated according to the average scores of the best
and median runs for each topic, which belong to
different systems, so these scores are somewhat in-
flated. Hence, our best run’s (MuMshFd) MAPs are
lower than the maximum scores listed here, but this
run does outperform the median average scores in all
three MAPs, as does our baseline (MuBase).
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Figure 2: Passage2 MAPs of the maximum, median results, as well as our MuMshFd and MuMshNfd runs
on the basis of each topic.

4 Discussion

In this section, we will discuss some of the pros and
cons of our entity-based feedback method and some
observations on the performance of our system at a
topic level.

Given the wide-variety of entity types under in-
vestigation at this year’s TREC Genomics Track, it
was impossible to annotate enough training data in
time to build a classifier that could tag all instances
of these entities in the TREC collection before in-
dexing. Apart from gene, protein and mutation en-
tities there are no freely available machine learning
entity classification tools to perform full entity anno-
tation. The MMTx tool is a rule-based lookup sys-
tem that provides extensive entity coverage, at the
cost, however of efficiency. Runtime estimates for
annotating the entire collection far exceeded system
development time allowed by the Genomics Track
— around 63 days for the MMTx tool. Conse-
quently, we chose an intermediate solution where a
subset of an initial set of retrieved paragraphs was
annotated automatically by a set of open source tag-

gers, and all annotated terms matching the entity
type in the query are then added to the initial query,
which is followed by a second retrieval step.

We have not performed a detailed analysis of the
miss and false alarm rates of the entity taggers we
used; however, we have confirmed that there is a
reasonable correlation between a high entity feed-
back/gold standard passage overlap score11 and an
increase in MAP score.

Figure 2 shows the per topic Passage2 AP (av-
erage precision) score of the maximum and median
participant result scores, as well as our MuMshFd
and MuMshNfd runs. Five of our feedback run
(MuMshNfd) topics match the AP score of the max-
imum system performance for that topic (see topics
201, 218, 223, 234, and 235). In contrast four of our
topics for the feedback run have AP scores that are
slightly less than the median scores (see topics 209,
213, 215 and 222). Apart from topic 209 these dif-

11the entity feedback/gold standard passage overlap score is
calculated as the number of entity feedback terms that are men-
tioned in the gold standard passages for a given topic divided by
the total number of entity feedback terms added to the query.



ferences are only very slight. There are only two
topics (224 and 231) where our feedback method
is obviously outperformed by the non-feedback run.
However, our Passage2 MAP scores in Table 3 show
that our feedback run improvement is not statisti-
cally significant compared to the non-feedback run.
We can explain this outcome by looking at the topic
results in more detail.

In general, we have observed that the feedback
run returns many new relevant passages that were
not retrieved by either the non-feedback or base-
line system; however, in turn many of the previ-
ously retrieved relevant passages have dropped out
of the top 1000 candidate passages in the feed-
back run. We have identified the following rea-
sons for this. In some cases, entity feedback terms,
while relevant, are also either general English terms
(e.g. “Net”, “Bad”) or ambiguous abbreviations (e.g.
“rD” and “HI”) — this is particularly evident in
gene and protein entity feedback. For example, the
feedback method identified the gene “HI”, which is
also a commonly used abbreviation for histamine,
haemophilus influenzae, hemagglutination inhibi-
tion and many other biological concepts. These am-
biguous terms may be responsible for retrieving off-
topic passages. We noticed that there are many in-
stances where a candidate passage only shares a sin-
gle entity feedback term with the query; hence, in
future system development we need to account for
this, by either filtering out these passages or adjust-
ing the weighting scheme to boost the relevance of
passages which mention concrete concept instances
that were in the original query.

5 Conclusion

In conclusion then, our results concur with those
reported by previous TREC genomics participants,
where query expansion using ontological resources
and a lexical variant generation tool have provided
statistically significant improvements over baseline
systems. However, our passage reduction strat-
egy did not significantly improve Passage MAP this
year, since gold standard passages tended to be
nearer the length of actually paragraphs, which dif-
fers from gold standard passages in 2006. Our re-
sults also show that for this task a manual expansion
of the queries does not produce significant perfor-

mance improvements over the baseline.
Our major contribution to this year’s track, was

the evaluation of an entity-based feedback method
that captured entity instances from an initial set of
retrieved paragraphs that were then used to expand
the original query. This method improved our re-
sults; however, the difference was only statistically
significant at the document MAP level. In general
our system achieved higher scores than the median
participant score for the document, passage and as-
pect MAPs. Our intentions for future work is to ad-
dress the problems with our feedback technique that
were outlined in Section 4.
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