
The University of Amsterdam at the TREC 2007 QA Track

Katja Hofmann Valentin Jijkoun Mahboob Alam Khalid
Joris van Rantwijk Erik Tjong Kim Sang

ISLA, University of Amsterdam
http://ilps.science.uva.nl/

Abstract: In our participation in the TREC 2007 Question An-
swering (QA) track, we focused on three tasks. First, we processed
the new blog corpus and converted it to formats which could be
used by our QA system. Second, we rewrote the module interface
code in Java in order to improve the maintainability of the system.
And third, we added a new table stream which has learned asso-
ciations between question properties and properties of candidate
answers. In the three runs we submitted to the competition, we
experimented with answer type checking and web re-ranking. In
follow-up experiments we were able to further evaluate the contri-
bution of these two factors, and to evaluate our new table lookup
stream and combinations of streams.

1. INTRODUCTION

We participated in the TREC 2007 Question Answering (QA) track
with the experiences of three earlier participations (2003-2005).
Our prime goal this year was to evaluate a new QA stream, and to
experiment with answer type checking, web re-ranking, and with
combining QA streams.

From a system point of view, we continued with our efforts to
approach QA as an XML retrieval task [1]. Since our last par-
ticipation, we have standardized data access in the QA system by
convertingall of our data resources to fit in an XML database [5].
For the current evaluation, we have focused on three tasks:

1. Convert the new blog corpus to formats that can be used by
our system.

2. Standardize the code that takes care of the communication
between the different modules of the system by completely
rewriting it in Java (previously it was written in Perl).

3. Include in the parallel architecture a new table stream which
has learned associations between questions and candidate
answers rather than rely on manually defined association rules.

This paper contains eight sections. After this introduction, we
present a general overview of the system in section 2. Our work on
processing the blog corpus is discussed in section 3 while section
4 describes our approach of QA as XML retrieval in more detail.
Sections 5 and 6 present the two most recent modifications to the
QA system: standardizing the code and adding a new table stream.
Section 7 describes the submitted runs and discusses their perfor-
mance. We conclude in section 8.

2. SYSTEM DESCRIPTION

The architecture of our Quartz QA system is an expanded version of
a standard QA architecture consisting of parts dealing with question

analysis, information retrieval, answer extraction, and answer post-
processing (clustering, ranking, and selection). The Quartz archi-
tecture consists of multiple answer extraction modules, orstreams,
which share common question and answer processing components.
The answer extraction streams can be divided into three groups
based on the corpus that they employ: the newspaper corpus, the
new blog corpus, or the Web. Below, we describe these briefly.

The Quartz system (Figure1) contains four streams that generate
answers from the two data sources, the AQUAINT newspaper cor-
pus and the blog corpus. TheTable Lookupstream searches for an-
swers in specialized knowledge bases which are extracted from the
corpus offline (prior to question time) by predefined rules. These
information extraction rules take advantage of the fact that certain
answer types, such as birthdays, are typically expressed in one of a
small set of easily identifiable patterns. The stream uses the anal-
ysis of a question and manually defined patterns to map questions
to database queries. Our new stream,ML Table Lookup, performs
the answer lookup task by using a mapping learned automatically
from a set of training questions (see section6 for a more elabo-
rate description). TheNGramstream extracts the word ngrams that
most frequently occur with words from the question. First, pas-
sages are retrieved from the collection using a standard retrieval
engine (Lucene) and a text query generated from the question. Sec-
ond, the most frequent ngrams in these passages are generated and
filtered and returned as answers.

The most advanced of the four streams is XQuesta. For a given
question, it generates XPath queries for answer extraction, and exe-
cutes them on an XML version of the corpus which contains both
text and additional annotations. The annotations include informa-
tion about part-of-speech, syntactic chunks, named entities, and
temporal expressions. For each question, XQuesta only examines
text passages relevant to the question (as identified by Lucene, see
also section 4).

There is one stream which employs textual data outside the TREC
document collection defined for the task: theNGramstream also
retrieves answers by submitting automatically generated web queries
to the Google web search engine and collecting most common ngrams
from the returned snippets. The answer candidates found by this
stream are not backed up by documents from the TREC collection
as required by the task. For this reason such candidates are never
returned as actual answers, but only used at the answer merging
stage to adjust the ranking of answers that are found by other QA
streams as well.

3. PRE-PROCESSING THE BLOG CORPUS

In this year’s TREC QA track the WEB_BLOG_06 collection (blog
corpus) was introduced as an additional source of information. This



Question analysisQuestion

ML Table 
Lookup XQuestaTable Lookup NGram

Tables AQUAINT 
corpus

Blog 
corpus Web

Candidate 
answers

Post-
processing

Ranked 
answers

Figure 1: Quartz-2007: the University of Amsterdam’s Question Answering System. After question analysis, a question is forwarded
to two table modules and two retrieval modules, all of which generate candidate answers. These four question processing streams use
the two data sources for this task, the AQUAINT newspaper corpus and the blog corpus, as well as fact tables which were generated
from these data sources, and the Web. Related candidate answers are combined and ranked by a postprocessing module, which
produces the final list of answers to the question.

collection presented a number of challenges that are typical for web
corpora, such as encoding issues, mix of languages, boilerplate text
(e.g. advertisement), etc. In addition, the size of the blog corpus is
much larger than previous corpora used for TREC QA.

To address these challenges we preprocess the blog corpus using
a set of Perl scripts. First, we detect the character encoding of each
blog post and convert all characters to UTF-8. Second, we detect
the language of the blog post using TextCat [3] and remove all non-
English blog posts. Third, we attempt to extract the content of the
blog post using a set of templates1. If template matching fails, we
fall back to extracting post titles and removing HTML tags only.
Finally, the blog post content is split into sentences using a rule-
based sentence splitter2.

Our content extraction method using templates was based on the
observation that a large portion of the blog posts was published us-
ing major blog publishing platforms. For example, about 38% of
the blog posts were published using the platform Blogger. These
platforms usually use templates to generate the blog HTML pages.
Consequently, it should be possible to extract the original content
by reverse engineering the templates used to generate these pages.
We manually created templates for the 7 most common publishing
platforms, WordPress, Blogger, Typepad, Moveable Type, move-
abletype.org, canalblog, and CommunityServer.

The blog corpus comprises more than 3 million blog posts split
up over 3247 TREC format files. Due to the large size of the corpus,
we had to run preprocessing on the grid, and some files could not
be preprocessed in time. We were able to process 86.5% of the blog
posts. 12.6% of all posts were classified as non-English posts and
were not included in content extraction. Template-based content
extraction was successful for only 19.4% of the blog posts. We as-
sume that small changes in templates between different versions of
publishing platforms are responsible for this relatively small num-
ber. Automatic learning of templates may be a way towards more
robust content extraction. For the remaining 54.4% of the blog
posts, only title extraction, HTML tag removal and sentence split-
ting was performed.

1Using Template::Extract, available from http://cpan.org.
2We use the Perl module Lingua::EN::Sentence (http://cpan.org).

4. QA AS XML RETRIEVAL

One of our QA streams,XQuestaimplements the “Question An-
swering as Semistructured Retrieval” approach. We view various
text analysis tools (sentence splitter, part-of-speech and named en-
tity taggers, chunker, parsers) as black boxes producing stand-off
XML annotations of the input text data, and using XML querying
for data access. For incoming questions, the question analysis mod-
ule generates one or more structural queries that are used to extract
answers from relevant passages identified by a passage retrieval en-
gine. In this year’s version of the system, we processed the data col-
lection offline, generating a large repository of XML annotations.
Since annotation tools are independent, the results generally can-
not be presented in a single XML tree: e.g., for each document, we
have sentence-split, POS-tagged, chunked, NE-tagged, and syntac-
tically parsed versions in separate XML DOM structures. To facil-
itate transparent simultaneous access to such multi-level structures
we extended Nux, an open-source Java library for XQuery process-
ing. When accessing an XML document with multiple annotations,
we load separate XML files containing layers of stand-off annota-
tion of the same data, and join them in a single new XML object
(DOM tree). The new document can be accessed with the stan-
dard XQuery facilities. Additionally, we implement an XQuery
function stand-off:wide that retrieves XML elements overlap-
ping (character-wise) with the current element, irrespective of the
annotation layer, based on offsets specified with start and end at-
tributes. For example, the following XQuery extracts person names
that occur as parts of syntactic objects of verbs:

stand-off:wide(//phrase[@type="VP"]/phrase[@type="NP"])
/NE[@type="PERSON"]

This implementation was inspired by theselect-wide XPath
axis in the XQuery support in the MonetDB [8]. See [2] for more
details.

5. REWRITING INTERFACE CODE

The QA system we used in previous years consisted of many com-
ponents but was mostly developed ad-hoc, i.e., without a consistent
system architecture. As a result, the system was difficult to main-
tain and change. To address this problem we re-implemented large



parts of the system following a modular system design. The goal
is to develop a self-contained system that is consistent and can be
maintained more easily. The main feature of the newly developed
system architecture is that it consists of several modules which are
cleanly separated by interfaces. This allows us to minimize depen-
dencies between components. A detailed description of the new
architecture can be found in [6]

6. LEARNING TO FIND ANSWERS

As described in section2, our offline information extraction mod-
ule creates a database of simple relational facts to be used during
question answering. The TableLookup QA stream uses a set of
manually defined rules to map an analyzed incoming question into
a database query. A new stream,MLTableLookup, uses supervised
machine learning to train a classifier that performs this mapping. In
this section we give an overview of our approach. We refer to [7]
for further details.

The purpose of the table lookup stream is to map an incom-
ing questionQ to an SQL-like query“select AF from T where
sim(QF,Q)”, whereAF andQF are fields of tableT with QF be-
ing the field with information similar to that in the question while
field AF contains a candidate answer. In this query formalism, the
task of generating the query is a combination of two subtasks: (1)
mapping an incoming questionQ to a triple〈T,QF,AF〉 (a table-
lookup label) and (2) defining an appropriate similarity function
sim(QF,Q), a task for which we use Lucene’s vector space model.

The interesting and novel part of the stream is the query formu-
lation part, i.e., training a classifier to predict table lookup labels.
For this purpose, features were extracted from the questions from
the TREC QA tasks of 2001-2003 with the Quartz question classi-
fication module. Pairs of features and answers were retrieved from
table rows and these were used as training material for label pre-
diction. A ten-fold cross validation test with this data set reached
MRR scores of up to 0.287 which is good given that the tabular
data only contains answers to a fraction of the questions.

7. SUBMITTED RUNS

We have submitted three different runs for the main task of the
Question Answering track of TREC 2007. In all the runs, list ques-
tions are treated as factoid questions by supplying only one answer.
For answering OTHER questions we employ our system developed
for the WebCLEF 2007 task [4]. For a given topic, the system re-
trieves relevant passages, splits text in sentences, and estimates im-
portance of sentences for the topic by computing a simple sentence
centrality score based on lexical similarity with other sentences in
the pool.

The first run (uams07main) was generated by the system de-
scribed in section2. In test runs of this system we had noticed two
problems. First, although each stream performs internal answer
type checks, the system frequently returned answers of the wrong
semantic type, like1792in response toWho is Mozart?. The sec-
ond problem was related to the final reranking module which was
based on web frequency counts of the candidate answers. It dis-
played erratic behavior and sometimes returned orderings which
seemed to be random.

In order to evaluate the effect of these two problems, we created
two alternative runs. The first (uams07atch) was generated by ap-
plying an extra type check to the answers of the main run, filtering
out answers that did not match the expected answer type according
to a coarse-grained named entity scheme (classes: person, location,
organization, miscellaneous, timex, quantity and other). This run

selected the highest ranked answer that passed the filter, or NIL if
no such answer was available.

For the second alternative run (uams07nwrr), we used the an-
swers as ranked before running the web ranking module. We did
not apply an extra final answer type check here since this would
have made it more difficult to find out the exact effect of the rerank-
ing module. The additional type check would have had an influence
on the result as well.

The results of the three runs can be found in Table1. Our main
interest was the exact factoid accuracy. The main run performed
worst (0.072). The run with extra answer type checks (uams07atch,
0.083) achieved approximately 20% relative improvement over the
main run. The run without web reranking (uams07nwrr, 0.092) per-
formed best, with a relative improvement of 46.2% over the main
run.

The scores for list questions were comparable. Results for
OTHER questions were consistently above the median score of all
participants. Since we submitted the same answers to these ques-
tions in all three runs, we were surprised that there were differences
between the scores. According to the evaluation organizers, these
are caused by inconsistencies between assessors.

Since the submission deadline, we have performed additional ex-
periments to evaluate different parts of our system. For the evalu-
ations we have only looked at factoid questions of the main track
of TREC QA 2007. The unofficial answer patterns for these ques-
tions3 were used to classify answers as correct and incorrect. We
were interested in finding answers to the following questions:

1. The QA system performed better with either added answer
type check or omitted web reranking. How well would it
perform if both modifications were applied at the same time?

2. The system contains six independent QA streams. How well
did each of these streams perform on the 2007 factoid ques-
tions?

3. The answers of the streams were generated by combining
all streams. Can a combination of a subset of these streams
achieve a better performance?

The results of the additional evaluation experiments can be found
in Table2. We did not check justification, so the factoid accuracy
scores should be interpreted as an approximation of the sum of the
exact and unsupported scores of Table1.

In the first experiment, we performed an extra type check on the
answers of the uams07nwrr no web reranking run. According to
the factoid answer patterns, this approach achieved an accuracy of
0.168 which constitutes a 43.6% relative improvement over our best
submitted run (Table2). Even with the two modifications, the per-
formances of three of the individual streams (XQUESTA blog and
the two table streams) are worse than our lowest-scoring submitted
run. The two AQUAINT streams reach a similar performance as
our best submitted run while the web ngrams stream performs a lot
better. However, it should be mentioned that the last stream does
not generate corpus justification for its answers, so using only this
stream would lead to all answers being unsupported.

In the final experiment, we selected the top answers from the
system that were supported by at least one of a combination of
individual QA streams. We used the top three performing individ-
ual streams, web ngrams, XQUESTA AQUAINT and AQUAINT
ngrams. For answers supported by web ngrams, we additionally re-
quired that they were supported by one of the other five QA streams
in order to make sure that the answer could be found in the corpus.

3http://ilps.science.uva.nl/∼erikt/trec2007/patterns2007.txt



factoid accuracy
run (exact,local,unsup.,inex.) list F other F overall

uams07main 0.072 , 0.003 , 0.011 , 0.056 0.032 0.209 0.104
uams07atch 0.083 , 0.003 , 0.019 , 0.061 0.032 0.191 0.103
uams07nwrr 0.092 , 0.006 , 0.036 , 0.064 0.028 0.198 0.105

median scores 0.131 0.085 0.118 0.108

Table 1: Results for the main QA task: our three submitted
runs as well as the median scores of all 51 submitted runs. Our
three runs used the same answers for other questions (scoring
differences are caused by assessor inconsistencies). Our main
system (uams07main) generates more correct factoid answers
with an additional answer type check (uams07atch). The best
results were achieved when the final web reranking based step
was omitted (uams07nwrr).

factoid accuracy
exact+unsup. run description

0.080 uams07main: main run
0.096 uams07atch: with extra type checks
0.117 uams07nwrr: without web reranking
0.168 nwrr + extra type checks
0.028 learned tables (6)
0.045 baseline: always answer NIL
0.048 tables with rules (5)
0.056 XQUESTA blog (4)
0.111 AQUAINT ngrams (3)
0.123 XQUESTA AQUAINT (2)
0.163 web ngrams (1)
0.154 combination: (2) + (3)
0.163 combination: (1) + (3)
0.166 combination: (1) + (2) + (3)
0.181 combination: (1) + (2)

Table 2: Approximate factoid accuracy scores (exact+un-
supported) for post-deadline experiments. First, the three sub-
mitted runs followed by the best submitted run with additional
answer type checks. Then the performances of the six individ-
ual streams as well as that of a baseline system which always
answers NIL. Finally, an evaluation of four combinations of
the best three individual QA streams. The final combination
of XQUESTA AQUAINT and web ngrams performs best.

We examined one combination of three streams and three combi-
nation of two streams. This approach led to the highest factoid
performance score we have measured: 0.181 for the combination
of web ngrams and XQUESTA AQUAINT (Table2).

8. CONCLUSIONS

We described our participation in the main task of the TREC 2007
Question Answering track. This year, we have continued with our
approach of QA-as-XML-retrieval setting, where incoming ques-
tions are converted to semistructured queries which are applied to a
target collection which was automatically annotated with linguistic
information at indexing time. Additionally, we added the new blog
corpus to the target collection, built a new QA stream for tabular
data accessed via learned associations and completely rewrote the
architecture code of our QA system.

Our prime goal was to experiment with answer type checking,
web re-ranking, and combinations of streams, and to evaluate our
new table lookup stream. Our experiments show that answer type
checking can substantially improve performance, while web re-
ranking can hurt the performance of our system. Substantial im-

provements also resulted from post-deadline experiments combin-
ing different subsets of individual streams. These combinations
also outperformed each individual stream. Performance of our new
table lookup stream stayed far below the results obtained in cross
validation on previous year’s data and further analysis will be nec-
essary to fully assess the factors influencing its performance.

Acknowledgments

This research was supported by the Netherlands Organization for
Scientific Research (NWO) under project numbers 017.001.190,
220-80-001, 264-70-050, 612-13-001, 612.000.106, 612.000.207,
612.066.302, 612.069.006 640.001.501, 640.002.501, and C.2324.-
0114.

References

[1] D. Ahn, S. Fissaha, V. Jijkoun, K. Müller, M. de Rijke, and
E. Tjong Kim Sang. Towards a multi-stream question answering-
as-xml-retrieval strategy. InProceedings of the Fourteenth Text
Retrieval Conference (TREC 2005). NIST, 2006.

[2] W. Alink, V. Jijkoun, D. Ahn, M. de Rijke, P. Boncz,
and A. de Vries. Representing and querying multi-dimensional
markup for question answering. InProceedings of the 5th Work-
shop on NLP and XML (NLPXML-2006): Multi-Dimensional
Markup in Natural Language Processing, 2006.

[3] W. Cavnar and J. Trenkle. N-Gram-Based Text Categorization.
In Proceedings of SDAIR-94, 3rd Annual Symposium on Docu-
ment Analysis and Information Retrieval, pages 161–175, 1994.
http://www.let.rug.nl/∼vannoord/TextCat/.

[4] V. Jijkoun and M. de Rijke. The University of Amsterdam
at WebCLEF 2007: Using centrality to rank web snippets. In
A. Nardi and C. Peters, editors,Working Notes for the CLEF
2007 Workshop, 2007. URL: http://www.clef-campaign.
org/2007/working_notes.

[5] V. Jijkoun, J. van Rantwijk, D. Ahn, E. Tjong Kim Sang, and
M. de Rijke. The University of Amsterdam at QA@CLEF 2006.
In Working Notes for the CLEF 2006 Workshop. Alicante, Spain,
2006.

[6] V. Jijkoun, K. Hofmann, D. Ahn, M. A. Khalid, J. van
Rantwijk, M. de Rijke, and E. Tjong Kim Sang. The university
of amsterdam at clef@qa 2007. InWorking Notes for the CLEF
2007 Workshop. Budapest, Hungary, 2007.

[7] M. Khalid, V. Jijkoun, and M. de Rijke. Machine learning
for question answering from tabular data. InFlexDBIST-07 Sec-
ond International Workshop on Flexible Database and Informa-
tion Systems Technology, 2007.

[8] MonetDB, 2007. URL:http://www.monetdb.nl.

http://www.clef-campaign.org/2007/working_notes
http://www.clef-campaign.org/2007/working_notes
http://www.monetdb.nl

	1 Introduction
	2 System Description
	3 Pre-processing the blog corpus
	4 QA as XML retrieval
	5 Rewriting Interface Code
	6 Learning to find answers
	7 Submitted runs
	8 Conclusions

