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ABSTRACT 

A Grid Information Retrieval (GIR) simulation was used to 
process the TREC Million Query Track queries.  The GOV2 
collection was partitioned by hostname and the aggregate 
performance of each host, as measured by qrel counts from the 
past TREC Terabyte Tracks, was used to rank the hosts in order of 
quality.  Only the 100 highest quality hosts were included in the 
Grid IR simulation, representing less than 20% of all GOV2 
documents.  The IR performance of the GIR simulation, as 
measured by the topic-averaged AP, b-pref, and Rel@10 over the 
TREC Terabyte-Track topics is within one standard deviation of 
the respective topic-averaged TREC Million Query participant 
median scores.  Estimated AP of the Million Query topic results is 
comparable to the topic-averaged AP of the Terabyte topic results. 

1. INTRODUCTION 
One goal of the ARSC multisearch experiment for the 2007 TREC 
Million Query Track is to estimate a practical upper bound of the 
number of document collections that can be independently 
searched in a distributed information retrieval application, while 
simultaneously completing Track requirements.  The specific 
question is:  if a set of internet hosts, each providing its own local 
search service, are to be chosen nearly at random, how many hosts 
can be chosen if 10,000 queries are to be processed in about 100 
hours?  A secondary goal is to answer or at least reduce the scope 
of the question:  how should those hosts be chosen so as to 
maximize the IR performance while simultaneously minimizing 
the number of hosts searched? 

2. Grid Information Retrieval 
One of the main inspirations for this work is our continued 
interest in distributed information retrieval systems.  The authors 
and colleagues are involved with the Open Grid Forum's standards 
working group on Grid Information Retrieval.  The WG is striving 
to develop standards for distributed search in grid computing 
environments [10]. 

GIR spans several major themes: distributed indexing, transport 
methods for queries and result sets, human interface, and methods 
for query persistence.  For TREC purposes, though, the emphasis 
is on result set merging.  The issue is that different IR systems, 
with different collections or subcollections, each produce their 
own results for a given query in a distributed IR system.  How can 
these different sets of results (each ordered by relevance, as 
produced by the independent IR systems), be effectively unified 
into one set?  This issue was investigated for TREC 2006 [9]. 
Rather than ranking arbitrarily, GIR seeks to produce a single 
relevance-ranked set, with ordering that indicates the relative 
relevance of each document, regardless of which IR system it 
came from.  In recognition of the vast number of potential 
collections (every Web host; every database server; etc.), the 
current work examines the potential for automatically selecting a 
sestet of collections to query.  This investigation is highly relevant 
to GIR, where collection selection is viewed as a necessary early 
phase of any search. 

 

3. Host Quality and QREL Density 
One criterion that may help to automatically decide which of 
many hosts to search for a particular query is past performance of 
each host for similar queries.  The qrels from the TREC Terabyte 
Tracks are an available data set of past host relevance and were 
used to pick a subset of presumably high-quality hosts over which 
to process the 10,000 queries in the Million Query Track.  The 
analysis in the remainder of this section also appears in [7] but is 

Table 1: Total count, mean and standard deviation over 
149 topics of GOV2 Terabyte Track qrels 

Relevance 
Score ∑ µ σ 

Not Relevant 108,434 728 335 
Relevant 22,566 151 136 
Very Relevant 4351 29 49 

Total 135,351 908 342 
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included here for completeness. Each TREC Terabyte topic 
consists of an identifying number, a title, a description, and a 
narrative that encapsulates possible search keywords, an idea of 
the information desired, and a criterion for determining the 
relevance of a document to the topic.  Participants could submit 
several runs of ranked result sets for the annual set of 50 topics.  
About 100 of the top documents from each of up to two runs were 
added to the judgment pool.  The method of pooling to estimate 
the performance of an IR system on a large test collection is 
described in [11].  Assessors assign 

 
topic,document( )  pairs in the 

judgment pool to relevance scores of 0, 1, or 2 to not relevant, 
relevant, or highly relevant pairs.  The information contained in 
the topic is used by the assessor to determine relevance [5].  For 
the purpose of discussion, a qrel or relevance judgment will be 
defined as the triplet

 
topic,document,relevance score( ) .  The 

distribution of relevance judgments according to relevance score 
is summarized in Table 1. 

From the perspective of distributed information retrieval, the set 
of relevance judgments for a topic can be partitioned by the 
document field into disjoint subsets corresponding to Web domain 
names.  By assuming that the set of the top documents retrieved 
by the monolithic IR systems used in the TREC Terabyte track is 
about the same set of documents that would be returned by local 
IR search nodes at each Web host, the number of relevance 
judgments binned by Web domain name and topic can be used to 
estimate the number of domains that would respond to a given 
topic.  Table 2 lists the number of hosts that contain the set of 
relevance judgments partitioned by relevance score.  Many hosts 
that return relevant documents also return non-relevant documents 
so the total number of hosts responding to a query is about the 
same as the number of hosts retrieving non-relevant documents. 

Hundreds of hosts in GOV2 contain non-relevant qrels for each 
topic and generally only tens of hosts contain relevant qrels [7].  
Using a priori statistical or experience-based knowledge like 
term-document frequencies or past performance of similar queries 
to identify the Web domain names most likely to retrieve 
documents relevant to a particular topic before transmitting the 
search query to remote search nodes is one way to reduce the 
bandwidth used during the distributed search.  However, this is 
not viable in practice because a priori knowledge of which hosts 
contain documents that are relevant to a topic is not easily 
available and most hosts do not contain relevant documents for 
any particular topic.  

Over the union of all the TREC Terabyte Track topics, only 2704 
hosts out of the 6353 hosts represented in the judgment pool 
retrieved at least one relevant or very relevant document.  As with 
the distribution of documents among hosts described in [7], the 
distribution of relevant or very relevant qrels among hosts in the 
judgment pool appears to follow a Zipfian distribution as 
illustrated in Figure 0.  Quantitatively, 20% of the hosts in the 
judgment pool that retrieved a relevant document for any topic 
contain more than 78% of all the relevant and very relevant qrels. 
And more than 80% of the hosts that contain relevant (or very 
relevant) qrels for any TREC topic contain 10 or fewer relevant 
qrels for all topics.  The qualitative similarity between the 
distribution of topic-aggregated relevant qrels and the distribution 
of documents among hosts is the premise of a model of relevance, 
described in [7], postulating that the number of relevant 
documents retrieved from a host that contains relevant documents 
for a topic is approximately, over many topics and hosts, 
proportional to the total number of documents contained in the 
host.  This model may then be used to improve the efficiency of a 
distributed search.  In the 2007 TREC Million Query Track where 
it was not practical to search every sub-collection for every query, 
only the sub-collections with the most relevant qrels in the 
previous TREC Terabyte Tracks were chosen to search.  This 
decision is approximately equivalent to deciding to search only 
the largest GOV2 hosts.  

 

4. EXPERIMENT DESCRIPTION 
4.1 Search Software 
Simple index and search applications were constructed from the 
demo classes of the Apache Lucene 2.1 toolkit.  The Lucene 
framework has been used by the ARSC distributed IR group in a 
previous TREC Terabyte Track as described in [8].   

Table 2: Total count of Web hosts containing the Terabyte 
Track qrels out of the 17,186 GOV2 hosts 

Relevance score ∑ 

Not relevant 6109 
Relevant 2553 
Very relevant 970 

Any 6353 

 

Figure 0:  Zipf plot of the host frequency vs. the total number 
of contained relevant and very relevant qrels over all TREC 
topics 
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4.2 Search Hardware 
ARSC’s Cray XD1 (“Nelchina”) was used to index the GOV2 
collection and process the queries.  This system was used in the 
2006 TREC Terabyte Track [9] with Amberfish software [13] and 
this is the first year that the ARSC distributed IR group has used 
the Lucene toolkit on the XD1 to complete a TREC Track. 

Nelchina features 108 2.6Ghz Opteron processor cores with 4GB 
of memory each, the PBS Pro scheduler, and Cray’s variation on 
the SuSE Linux operating system.  A disk subsystem, provided by 
Direct Data Networks (DDN), provides 18TB of high 
performance disk space for temporary storage via the Lustre 
cluster file system.  Results from informal experiments at ARSC 
have revealed that five to ten simultaneous indexing or searching 
threads on dedicated nodes can operate simultaneously before the 
overall aggregate performance decreases. 

4.3 Host Collection and Selection 
The GOV2 collection was stored on the shared file system on the 
DDN disk and then partitioned into disjoint sub-collections at 
index-time according to hostname as described above and in [8] 
and [9].  The indexes were constructed using a simple Lucene-
based index application and stored on the shared file system.  For 
performance considerations, GOV2 source text was placed on a 
different physical disk than the target index. 

Only a small fraction of the indexes were used to process all 
10,000 queries.  About 100 hosts or indexes could be 
independently searched within TREC time constraints using the 
software and hardware described above.  The indexes chosen 
corresponded to the GOV2 hosts that contained the most relevant 
and very relevant qrels over the TREC Terabyte Tracks. 

First the relevant and very relevant qrel counts were binned 
according to topic and containing host, so let 

  
N

r
(t, H )  be the 

total number of relevant and very relevant qrels for TREC 
Terabyte Track topic number  t  and host H , defined as the set of 
documents in the GOV2 collection contained in the host.  Then 
the qrel counts were summed over the topics 
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The hosts were then sorted in descending order of the topic-
summed qrel counts creating a sort permutation !  so that 
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topic was processed using the Lucene-based search application for 

every host in the set 
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are plotted in Figure 1 against the number  m  of (relevant-qrel 
sorted) hosts.  Similarly, the cumulative proportion of documents 
contained 
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is plotted in Figure 2 against  m  where 
 
H  denotes the 

cardinality or size of the set or host H .  Note that the 100 hosts 
chosen in this experiment contain 19% of the documents in the set 

Figure 1: Cumulative relevant and non-relevant qrels 
contained vs. qrel-sorted GOV2 Hosts 

 

Figure 2:  Cumulative proportion of documents contained 
vs. relevant qrel-sorted hosts  
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of 6353 hosts sampled in the TREC Terabyte Track judgment 
pool and 18% of the documents in all the GOV2 hosts.  Plotted in 
Figure 3 is the ratio of cumulative sums of relevant to non-
relevant qrels 

 
   

!N
r

H
! i( )( )

i=1

m

" !N
nr

H
! i( )( )

i=1

m

"  

as a function of m .  The steady downward trend following the 
initial noise in the function of qrel-sorted hosts may indicate that 
only the first 300 or so most relevant hosts, just under 5% of all 
the hosts represented in the TREC Terabyte Track judgment pool 
or 27% of all GOV2 documents, can be included in distributed 
searches before the number of non-relevant documents likely to 
be found in the remaining hosts increases faster than the number 
of relevant documents likely to be found. Or in other words, the 
judgment pool sample of the aggregate performance of many 
systems over many topics begins to decrease as more hosts are 
included in the pool, where performance is defined by the total 
number of relevant documents found relative to the non-relevant 

documents.  Therefore, it may be possible to increase the 
efficiency of a distributed, or even monolithic, search by 
restricting the search to only those hosts that performed well, i.e. 
to those hosts that contained the most relevant documents in the 
TREC Terabyte Track judgment pool drawn from the top 
documents from each system [4], over a sufficient number of 
topics without sacrificing IR performance of the search  or 
perhaps even improving it.   

Note that the results and inferences made here are based on 
general observations of judgment pool results sampled and 
contributed over many topics from a wide variety of systems and 
may not hold true for a single system or topic applied to a 
restricted domain.  The number of topics in the TREC Terabyte 
Track is small relative to the number of likely topics a typical IR 
system may process.  Results from the Million Query Track may 
help to distinguish how much of the aggregate trends can be used 
to improve the performance of a single system over most topics 
and how stable the trends are over many more topics. 

4.4 Batch Query Processing Method 
Between six to twelve search processes were started on three to 
six, respectively, dual processor-core nodes on Nelchina.  A 48-
hour job wall-clock limit is enforced on Nelchina, a shared 
resource at the Arctic Region Supercomputing Center, so several 
jobs were needed to process the entire 10,000 query Million 
Query set.  The number of nodes used for any particular job 
depended strongly on the number of nodes available at the start of 
the job.  Each search process selected queries from a query queue 
and ran the queries against the 100-host collection described in 
Section 4.3, saving the results to disk.  After processing the entire 
set of queries, the TREC-formatted results from the jobs were 
concatenated to the final set of results and submitted to NIST. 

5. IR PERFORMANCE RESULTS 
Aggregate topic-averaged IR performance measures of the results 
submitted during this experiment, labeled ffind07d, and those 
submitted by MQ participants are presented in Table 3.  The IR 
performance was calculated relative to the TREC Terabyte topics 
and qrels.  Note that the performance of ffind07d is within one 
standard deviation of the MQ participant median even though 
nearly 81% of the GOV2 collection was discarded at search time.  
While it is not very surprising when commercial-quality IR 
software performs reasonably well at searching a fraction of the 
GOV2 collection already known to contain many documents 
relevant to the topics, it might be surprising if searching the same 
fraction of GOV2 over many new MQ topics yielded comparable 
IR performance results.  A judgment pool constructed by MQ 

Figure 3:  Ratio of cumulative sums of relevant to non-
relevant qrels contained vs. relevant-qrel sorted hosts 

 

Table 3:  Mean and standard deviation of AP, bpref, and REL@10 over the 149 TREC Terabyte Topics 

  MQ participant     
  worst median best ffind07d 

  µ σ µ σ µ σ µ σ 

AP 0.0101 0.0302 0.2219 0.1529 0.3956 0.1787 0.1360 0.1298 

bpref 0.0230 0.0477 0.2958 0.1845 0.4697 0.1854 0.2253 0.1760 

REL@10 0.3423 0.9283 4.7718 2.6256 7.9262 2.4192 2.6510 2.5809 
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Track organizers using the expected AP method [3] and the 
statistical evaluation method [1] will be used to evaluate MQ 
system performance.  The mean average precision of ffind07d 
estimated by the statistical evaluation method was 0.1633 over 
1083 valid MQ topics and is within one standard deviation of the 
MAP calculated over the 149 Terabyte Track Topics.  This is at 
least a promising indication that a distributed GIR search 
application could currently be constructed with IR performance 
comparable to that currently obtained by monolithic search 
applications provided that a relatively small number of likely 
relevant document collections can be pre-selected at search time.  
It is of additional interest to note that the estimated MAP of the 
system on the 1083 valid MQ topics is near the calculated MAP of 
the system on the 149 Terabyte topics even though the document 
collection searched over all topics corresponded to just 100 out of 
over 17,000 hosts in GOV2 that contained many relevant 
documents for the Terabyte topics.  A stronger inference may be 
possible after comparing the statistical evaluation method 
estimated MAP here to the estimated MAP of other MQ 
participant systems. 

6. TOWARD A GOV2 HOST SPACE 
Due to bandwidth and other IR performance constraints inherent 
in any loosely coupled distributed information retrieval task like 
multisearch, an Internet-scale Grid IR application that effectively 
and dynamically relevance-ranks entire collections relative to a 
user query will tend to provide superior performance to the user in 
both search quality and bandwidth cost relative to a Grid IR 
application that searches all available collections for every query 
[12].  The vector space or document configuration space model 
[15, 16] for relevance-ranking documents with respect to a query 
has been enormously successful, and variations of it are used to 
some extent in nearly every IR application available today.    

Conceptually, there are many seemingly reasonable and 
straightforward ways to extend a vector space model for 
automatic indexing of documents to the automatic indexing of 
entire hosts or other subsets of documents such as relevance-
ranked result-sets for the purpose of collection ranking and result-
set merging.  Practical considerations ranging from the 
cooperativeness of the distributed document collections [17] to 
user expectations and requirements, however, will inevitably 
narrow the range of models that may be considered reasonable 
and possibly even preclude straightforward extensions of a typical 
document vector space model entirely.  Vector space models for 
the automatic indexing and query relevance ranking of entire sub-
collections include the “big document” approach briefly 
summarized in [17] where a union of documents in a collection is 
used to represent the collection as a single document, but may also 
include host vector spaces that are constructed dynamically at 
query time.  One possible method may be to extract cluster 
descriptor terms from each of the collection subsets [6] and use 
those to define the basis of a coarse sub-collection configuration 
space.   A simple similarity measure based on the cardinality of 
the intersection of descriptor sets may allow the Cluster 
Hypothesis [14] to be tested on collection subsets analogous to 
how it has been tested on documents.  Broad but shallow 
judgment pools as constructed in the TREC Million Query Track 
will help to test this hypothesis as any subset similarity measure 
implemented in an efficient Grid IR application will likely need to 

operate on collection result-sets comparable in size to the single 
page of results. 

6.1 Host Space Configuration Model 
Consider the set  G  of GOV2 documents and let 

 
H  be a partition 

of  G  defined by the equivalence relation “is contained in the 
same web host as”.  An element 

  
H !H  is a host or subset of  G  

containing the documents available to the local search service of 

the host.  Define the host space 
 
V

H
 as a subspace of   R

H  where 

 
H  is the number of documents or elements in the document 

set H .  Put the documents of  H  in correspondence with the 
elements of the natural or canonical basis 

  
V

H
 of

 
V

H
.  Weighted 

sums of the documents or basis elements of 
  
V

H
 can be associated 

with ranked result-sets or other arbitrary subsets of H . 

Similarly, define the document space 
 
V

T
H

 as a subspace of  R
T

H , 

where 
 
T

H
 is set of stemmed and stop-filtered index terms of 

 H and 
 
T

H
 is the number of terms.  Initially assume that the 

index terms are conceptually independent or orthogonal so each 
term can be put in correspondence with an element in the 
canonical or natural basis 

  
V

T
H

 of
 
V

T
H

.  A multi-term query 

submitted by a user can be represented as a point in 
 
V

T
H

 by 

summing the associated basis terms or elements in
  
V

T
H

.  The 

document space 
 
V

T
H

 as defined above is similar in concept to the 

classic document space configuration in [15].  When considering 
problems of distributed information retrieval it will be convenient 
to treat document subsets such as result-sets from hosts or other 
collections as vectors in the host space 

 
V

H
 so that measures of 

similarity, akin to vector space similarity measures between 
documents, between result-sets from a host collection can be 
defined as functions of points in a vector space. 

6.2 Example:  Local result-set optimization 
For instance, a local search service of host  H  can be represented 
as a map 

  
s

H
:V

T
H

!V
H

 that sends a query, say of two terms 

   
q

H
= ê

T
H

1
+ ê

T
H

2
 from the basis 

  
V

T
H

 to a result set of, say three 

documents 
   
d

H
= ê

H
1
+ ê

H
2
+ ê

H
3
 from the basis

  
V

H
.  A user that 

wishes to search multiple hosts 
 

H
!{ }

!
 simultaneously for a 

query will submit the query to a query processor or search portal 

that sends queries 
  

q
H

!
{ }

!

 to the respective search services 

  

s
H

!
{ }

!

 and then will be presented with multiple result sets 

  

d
H

!
{ }

!

 that will likely be merged into a single ranked list of 

results.  Each result set 
  
d

H
!

 will typically contain many more 

non-relevant documents than relevant documents so truncating or 
renormalizing the result set before transmitting it to the user is 
often desirable for efficiency [7] or search quality [2].  Then 
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finding result sets in 
 
V

H
!

 near to but shorter than 
  
d

H
!

 or perhaps 

to a set of host documents known a priori to be relevant could be 
accomplished with a suitable similarity measure of result sets. 
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