
1

Collection Selection Based on Historical Performance for
Efficient Processing

Christopher T. Fallen and Gregory B. Newby

Arctic Region Supercomputing Center
University of Alaska Fairbanks

Fairbanks, Alaska

{fallen,newby}@arsc.edu

ABSTRACT

A Grid Information Retrieval (GIR) simulation was used to
process the TREC Million Query Track queries. The GOV2
collection was partitioned by hostname and the aggregate
performance of each host, as measured by qrel counts from the
past TREC Terabyte Tracks, was used to rank the hosts in order of
quality. Only the 100 highest quality hosts were included in the
Grid IR simulation, representing less than 20% of all GOV2
documents. The IR performance of the GIR simulation, as
measured by the topic-averaged AP, b-pref, and Rel@10 over the
TREC Terabyte-Track topics is within one standard deviation of
the respective topic-averaged TREC Million Query participant
median scores. Estimated AP of the Million Query topic results is
comparable to the topic-averaged AP of the Terabyte topic results.

1. INTRODUCTION
One goal of the ARSC multisearch experiment for the 2007 TREC
Million Query Track is to estimate a practical upper bound of the
number of document collections that can be independently
searched in a distributed information retrieval application, while
simultaneously completing Track requirements. The specific
question is: if a set of internet hosts, each providing its own local
search service, are to be chosen nearly at random, how many hosts
can be chosen if 10,000 queries are to be processed in about 100
hours? A secondary goal is to answer or at least reduce the scope
of the question: how should those hosts be chosen so as to
maximize the IR performance while simultaneously minimizing
the number of hosts searched?

2. Grid Information Retrieval
One of the main inspirations for this work is our continued
interest in distributed information retrieval systems. The authors
and colleagues are involved with the Open Grid Forum's standards
working group on Grid Information Retrieval. The WG is striving
to develop standards for distributed search in grid computing
environments [10].

GIR spans several major themes: distributed indexing, transport
methods for queries and result sets, human interface, and methods
for query persistence. For TREC purposes, though, the emphasis
is on result set merging. The issue is that different IR systems,
with different collections or subcollections, each produce their
own results for a given query in a distributed IR system. How can
these different sets of results (each ordered by relevance, as
produced by the independent IR systems), be effectively unified
into one set? This issue was investigated for TREC 2006 [9].
Rather than ranking arbitrarily, GIR seeks to produce a single
relevance-ranked set, with ordering that indicates the relative
relevance of each document, regardless of which IR system it
came from. In recognition of the vast number of potential
collections (every Web host; every database server; etc.), the
current work examines the potential for automatically selecting a
sestet of collections to query. This investigation is highly relevant
to GIR, where collection selection is viewed as a necessary early
phase of any search.

3. Host Quality and QREL Density
One criterion that may help to automatically decide which of
many hosts to search for a particular query is past performance of
each host for similar queries. The qrels from the TREC Terabyte
Tracks are an available data set of past host relevance and were
used to pick a subset of presumably high-quality hosts over which
to process the 10,000 queries in the Million Query Track. The
analysis in the remainder of this section also appears in [7] but is

Table 1: Total count, mean and standard deviation over
149 topics of GOV2 Terabyte Track qrels

Relevance
Score ∑ µ σ

Not Relevant 108,434 728 335
Relevant 22,566 151 136
Very Relevant 4351 29 49

Total 135,351 908 342

2

included here for completeness. Each TREC Terabyte topic
consists of an identifying number, a title, a description, and a
narrative that encapsulates possible search keywords, an idea of
the information desired, and a criterion for determining the
relevance of a document to the topic. Participants could submit
several runs of ranked result sets for the annual set of 50 topics.
About 100 of the top documents from each of up to two runs were
added to the judgment pool. The method of pooling to estimate
the performance of an IR system on a large test collection is
described in [11]. Assessors assign

topic,document() pairs in the

judgment pool to relevance scores of 0, 1, or 2 to not relevant,
relevant, or highly relevant pairs. The information contained in
the topic is used by the assessor to determine relevance [5]. For
the purpose of discussion, a qrel or relevance judgment will be
defined as the triplet

topic,document,relevance score() . The

distribution of relevance judgments according to relevance score
is summarized in Table 1.

From the perspective of distributed information retrieval, the set
of relevance judgments for a topic can be partitioned by the
document field into disjoint subsets corresponding to Web domain
names. By assuming that the set of the top documents retrieved
by the monolithic IR systems used in the TREC Terabyte track is
about the same set of documents that would be returned by local
IR search nodes at each Web host, the number of relevance
judgments binned by Web domain name and topic can be used to
estimate the number of domains that would respond to a given
topic. Table 2 lists the number of hosts that contain the set of
relevance judgments partitioned by relevance score. Many hosts
that return relevant documents also return non-relevant documents
so the total number of hosts responding to a query is about the
same as the number of hosts retrieving non-relevant documents.

Hundreds of hosts in GOV2 contain non-relevant qrels for each
topic and generally only tens of hosts contain relevant qrels [7].
Using a priori statistical or experience-based knowledge like
term-document frequencies or past performance of similar queries
to identify the Web domain names most likely to retrieve
documents relevant to a particular topic before transmitting the
search query to remote search nodes is one way to reduce the
bandwidth used during the distributed search. However, this is
not viable in practice because a priori knowledge of which hosts
contain documents that are relevant to a topic is not easily
available and most hosts do not contain relevant documents for
any particular topic.

Over the union of all the TREC Terabyte Track topics, only 2704
hosts out of the 6353 hosts represented in the judgment pool
retrieved at least one relevant or very relevant document. As with
the distribution of documents among hosts described in [7], the
distribution of relevant or very relevant qrels among hosts in the
judgment pool appears to follow a Zipfian distribution as
illustrated in Figure 0. Quantitatively, 20% of the hosts in the
judgment pool that retrieved a relevant document for any topic
contain more than 78% of all the relevant and very relevant qrels.
And more than 80% of the hosts that contain relevant (or very
relevant) qrels for any TREC topic contain 10 or fewer relevant
qrels for all topics. The qualitative similarity between the
distribution of topic-aggregated relevant qrels and the distribution
of documents among hosts is the premise of a model of relevance,
described in [7], postulating that the number of relevant
documents retrieved from a host that contains relevant documents
for a topic is approximately, over many topics and hosts,
proportional to the total number of documents contained in the
host. This model may then be used to improve the efficiency of a
distributed search. In the 2007 TREC Million Query Track where
it was not practical to search every sub-collection for every query,
only the sub-collections with the most relevant qrels in the
previous TREC Terabyte Tracks were chosen to search. This
decision is approximately equivalent to deciding to search only
the largest GOV2 hosts.

4. EXPERIMENT DESCRIPTION
4.1 Search Software
Simple index and search applications were constructed from the
demo classes of the Apache Lucene 2.1 toolkit. The Lucene
framework has been used by the ARSC distributed IR group in a
previous TREC Terabyte Track as described in [8].

Table 2: Total count of Web hosts containing the Terabyte
Track qrels out of the 17,186 GOV2 hosts

Relevance score ∑

Not relevant 6109
Relevant 2553
Very relevant 970

Any 6353

Figure 0: Zipf plot of the host frequency vs. the total number
of contained relevant and very relevant qrels over all TREC
topics

3

4.2 Search Hardware
ARSC’s Cray XD1 (“Nelchina”) was used to index the GOV2
collection and process the queries. This system was used in the
2006 TREC Terabyte Track [9] with Amberfish software [13] and
this is the first year that the ARSC distributed IR group has used
the Lucene toolkit on the XD1 to complete a TREC Track.

Nelchina features 108 2.6Ghz Opteron processor cores with 4GB
of memory each, the PBS Pro scheduler, and Cray’s variation on
the SuSE Linux operating system. A disk subsystem, provided by
Direct Data Networks (DDN), provides 18TB of high
performance disk space for temporary storage via the Lustre
cluster file system. Results from informal experiments at ARSC
have revealed that five to ten simultaneous indexing or searching
threads on dedicated nodes can operate simultaneously before the
overall aggregate performance decreases.

4.3 Host Collection and Selection
The GOV2 collection was stored on the shared file system on the
DDN disk and then partitioned into disjoint sub-collections at
index-time according to hostname as described above and in [8]
and [9]. The indexes were constructed using a simple Lucene-
based index application and stored on the shared file system. For
performance considerations, GOV2 source text was placed on a
different physical disk than the target index.

Only a small fraction of the indexes were used to process all
10,000 queries. About 100 hosts or indexes could be
independently searched within TREC time constraints using the
software and hardware described above. The indexes chosen
corresponded to the GOV2 hosts that contained the most relevant
and very relevant qrels over the TREC Terabyte Tracks.

First the relevant and very relevant qrel counts were binned
according to topic and containing host, so let

N

r
(t, H) be the

total number of relevant and very relevant qrels for TREC
Terabyte Track topic number t and host H , defined as the set of
documents in the GOV2 collection contained in the host. Then
the qrel counts were summed over the topics

!N
r
(H) = N

r
(t, H)

t=701

850

!

The hosts were then sorted in descending order of the topic-
summed qrel counts creating a sort permutation ! so that

!N
r
(H

! i()
) is a monotonically decreasing function of i . Each

topic was processed using the Lucene-based search application for

every host in the set

H
! i(){ }

i" 1,…,100{ }
. The cumulative proportions

of relevant and non-relevant qrels

!N
r,nr{ }

H
! i()()

i=1

m

" !N
r,nr{ }

H
! i()()

i=1

6353

"

are plotted in Figure 1 against the number m of (relevant-qrel
sorted) hosts. Similarly, the cumulative proportion of documents
contained

H
! i()

i=1

m

" H
! i()

i=1

6353

"

is plotted in Figure 2 against m where

H denotes the

cardinality or size of the set or host H . Note that the 100 hosts
chosen in this experiment contain 19% of the documents in the set

Figure 1: Cumulative relevant and non-relevant qrels
contained vs. qrel-sorted GOV2 Hosts

Figure 2: Cumulative proportion of documents contained
vs. relevant qrel-sorted hosts

4

of 6353 hosts sampled in the TREC Terabyte Track judgment
pool and 18% of the documents in all the GOV2 hosts. Plotted in
Figure 3 is the ratio of cumulative sums of relevant to non-
relevant qrels

!N
r

H
! i()()

i=1

m

" !N
nr

H
! i()()

i=1

m

"

as a function of m . The steady downward trend following the
initial noise in the function of qrel-sorted hosts may indicate that
only the first 300 or so most relevant hosts, just under 5% of all
the hosts represented in the TREC Terabyte Track judgment pool
or 27% of all GOV2 documents, can be included in distributed
searches before the number of non-relevant documents likely to
be found in the remaining hosts increases faster than the number
of relevant documents likely to be found. Or in other words, the
judgment pool sample of the aggregate performance of many
systems over many topics begins to decrease as more hosts are
included in the pool, where performance is defined by the total
number of relevant documents found relative to the non-relevant

documents. Therefore, it may be possible to increase the
efficiency of a distributed, or even monolithic, search by
restricting the search to only those hosts that performed well, i.e.
to those hosts that contained the most relevant documents in the
TREC Terabyte Track judgment pool drawn from the top
documents from each system [4], over a sufficient number of
topics without sacrificing IR performance of the search or
perhaps even improving it.

Note that the results and inferences made here are based on
general observations of judgment pool results sampled and
contributed over many topics from a wide variety of systems and
may not hold true for a single system or topic applied to a
restricted domain. The number of topics in the TREC Terabyte
Track is small relative to the number of likely topics a typical IR
system may process. Results from the Million Query Track may
help to distinguish how much of the aggregate trends can be used
to improve the performance of a single system over most topics
and how stable the trends are over many more topics.

4.4 Batch Query Processing Method
Between six to twelve search processes were started on three to
six, respectively, dual processor-core nodes on Nelchina. A 48-
hour job wall-clock limit is enforced on Nelchina, a shared
resource at the Arctic Region Supercomputing Center, so several
jobs were needed to process the entire 10,000 query Million
Query set. The number of nodes used for any particular job
depended strongly on the number of nodes available at the start of
the job. Each search process selected queries from a query queue
and ran the queries against the 100-host collection described in
Section 4.3, saving the results to disk. After processing the entire
set of queries, the TREC-formatted results from the jobs were
concatenated to the final set of results and submitted to NIST.

5. IR PERFORMANCE RESULTS
Aggregate topic-averaged IR performance measures of the results
submitted during this experiment, labeled ffind07d, and those
submitted by MQ participants are presented in Table 3. The IR
performance was calculated relative to the TREC Terabyte topics
and qrels. Note that the performance of ffind07d is within one
standard deviation of the MQ participant median even though
nearly 81% of the GOV2 collection was discarded at search time.
While it is not very surprising when commercial-quality IR
software performs reasonably well at searching a fraction of the
GOV2 collection already known to contain many documents
relevant to the topics, it might be surprising if searching the same
fraction of GOV2 over many new MQ topics yielded comparable
IR performance results. A judgment pool constructed by MQ

Figure 3: Ratio of cumulative sums of relevant to non-
relevant qrels contained vs. relevant-qrel sorted hosts

Table 3: Mean and standard deviation of AP, bpref, and REL@10 over the 149 TREC Terabyte Topics

 MQ participant
 worst median best ffind07d

 µ σ µ σ µ σ µ σ

AP 0.0101 0.0302 0.2219 0.1529 0.3956 0.1787 0.1360 0.1298

bpref 0.0230 0.0477 0.2958 0.1845 0.4697 0.1854 0.2253 0.1760

REL@10 0.3423 0.9283 4.7718 2.6256 7.9262 2.4192 2.6510 2.5809

5

Track organizers using the expected AP method [3] and the
statistical evaluation method [1] will be used to evaluate MQ
system performance. The mean average precision of ffind07d
estimated by the statistical evaluation method was 0.1633 over
1083 valid MQ topics and is within one standard deviation of the
MAP calculated over the 149 Terabyte Track Topics. This is at
least a promising indication that a distributed GIR search
application could currently be constructed with IR performance
comparable to that currently obtained by monolithic search
applications provided that a relatively small number of likely
relevant document collections can be pre-selected at search time.
It is of additional interest to note that the estimated MAP of the
system on the 1083 valid MQ topics is near the calculated MAP of
the system on the 149 Terabyte topics even though the document
collection searched over all topics corresponded to just 100 out of
over 17,000 hosts in GOV2 that contained many relevant
documents for the Terabyte topics. A stronger inference may be
possible after comparing the statistical evaluation method
estimated MAP here to the estimated MAP of other MQ
participant systems.

6. TOWARD A GOV2 HOST SPACE
Due to bandwidth and other IR performance constraints inherent
in any loosely coupled distributed information retrieval task like
multisearch, an Internet-scale Grid IR application that effectively
and dynamically relevance-ranks entire collections relative to a
user query will tend to provide superior performance to the user in
both search quality and bandwidth cost relative to a Grid IR
application that searches all available collections for every query
[12]. The vector space or document configuration space model
[15, 16] for relevance-ranking documents with respect to a query
has been enormously successful, and variations of it are used to
some extent in nearly every IR application available today.

Conceptually, there are many seemingly reasonable and
straightforward ways to extend a vector space model for
automatic indexing of documents to the automatic indexing of
entire hosts or other subsets of documents such as relevance-
ranked result-sets for the purpose of collection ranking and result-
set merging. Practical considerations ranging from the
cooperativeness of the distributed document collections [17] to
user expectations and requirements, however, will inevitably
narrow the range of models that may be considered reasonable
and possibly even preclude straightforward extensions of a typical
document vector space model entirely. Vector space models for
the automatic indexing and query relevance ranking of entire sub-
collections include the “big document” approach briefly
summarized in [17] where a union of documents in a collection is
used to represent the collection as a single document, but may also
include host vector spaces that are constructed dynamically at
query time. One possible method may be to extract cluster
descriptor terms from each of the collection subsets [6] and use
those to define the basis of a coarse sub-collection configuration
space. A simple similarity measure based on the cardinality of
the intersection of descriptor sets may allow the Cluster
Hypothesis [14] to be tested on collection subsets analogous to
how it has been tested on documents. Broad but shallow
judgment pools as constructed in the TREC Million Query Track
will help to test this hypothesis as any subset similarity measure
implemented in an efficient Grid IR application will likely need to

operate on collection result-sets comparable in size to the single
page of results.

6.1 Host Space Configuration Model
Consider the set G of GOV2 documents and let

H be a partition

of G defined by the equivalence relation “is contained in the
same web host as”. An element

H !H is a host or subset of G

containing the documents available to the local search service of

the host. Define the host space

V

H
 as a subspace of R

H where

H is the number of documents or elements in the document

set H . Put the documents of H in correspondence with the
elements of the natural or canonical basis

V

H
 of

V

H
. Weighted

sums of the documents or basis elements of

V

H
 can be associated

with ranked result-sets or other arbitrary subsets of H .

Similarly, define the document space

V

T
H

 as a subspace of R
T

H ,

where

T

H
 is set of stemmed and stop-filtered index terms of

 H and

T

H
 is the number of terms. Initially assume that the

index terms are conceptually independent or orthogonal so each
term can be put in correspondence with an element in the
canonical or natural basis

V

T
H

 of

V

T
H

. A multi-term query

submitted by a user can be represented as a point in

V

T
H

 by

summing the associated basis terms or elements in

V

T
H

. The

document space

V

T
H

 as defined above is similar in concept to the

classic document space configuration in [15]. When considering
problems of distributed information retrieval it will be convenient
to treat document subsets such as result-sets from hosts or other
collections as vectors in the host space

V

H
 so that measures of

similarity, akin to vector space similarity measures between
documents, between result-sets from a host collection can be
defined as functions of points in a vector space.

6.2 Example: Local result-set optimization
For instance, a local search service of host H can be represented
as a map

s

H
:V

T
H

!V
H

 that sends a query, say of two terms

q

H
= ê

T
H

1
+ ê

T
H

2
 from the basis

V

T
H

 to a result set of, say three

documents

d

H
= ê

H
1
+ ê

H
2
+ ê

H
3
 from the basis

V

H
. A user that

wishes to search multiple hosts

H
!{ }

!
 simultaneously for a

query will submit the query to a query processor or search portal

that sends queries

q
H

!
{ }

!

 to the respective search services

s
H

!
{ }

!

 and then will be presented with multiple result sets

d
H

!
{ }

!

 that will likely be merged into a single ranked list of

results. Each result set

d

H
!

 will typically contain many more

non-relevant documents than relevant documents so truncating or
renormalizing the result set before transmitting it to the user is
often desirable for efficiency [7] or search quality [2]. Then

6

finding result sets in

V

H
!

 near to but shorter than

d

H
!

 or perhaps

to a set of host documents known a priori to be relevant could be
accomplished with a suitable similarity measure of result sets.

7. REFERENCES
[1] J. A. Aslam and V. Pavlu, A Practical Sampling

Strategy for Efficient Retrieval Evaluation, Northeastern
University, 2007.

[2] A. L. Calvé and J. Savoy, Database merging strategy
based on logistic regression, Information Processing
and Management, 36 (2000), pp. 341-359.

[3] B. Carterette, J. Allan and R. Sitaraman, Minimal Test
Collections for Retrieval Evaluation, 19th annual
international ACM SIGIR conference on Research and
development in information retrieval, ACM Press,
Seattle, Washington, USA, 2006.

[4] C. L. A. Clarke, N. Craswell and I. Soboroff, Overview
of the TREC 2004 Terabyte Track, The Thirteenth Text
REtrieval Conference, NIST Special Publications,
Gaithersburg, Maryland, USA, 2004.

[5] C. L. A. Clarke and F. Scholer, The TREC 2005
Terabyte Track, The Fourteenth Text REtrieval
Conference, NIST Special Publications, Gaithersburg,
Maryland, USA, 2005.

[6] D. Dubin, Structure in Document Browsing Spaces,
University of Pittsburgh, Pittsburgh, 1996.

[7] C. T. Fallen and G. B. Newby, Distributed Web Search
Efficiency by Truncating Results, JCDL '07, ACM,
Vancouver, British Columbia, Canada, 2007.

[8] C. T. Fallen and G. B. Newby, Logistic Regression
Merging of Amberfish and Lucene Multisearch Results,
The Fourteenth Text REtrieval Conference, NIST

Special Publications, Gaithersburg, Maryland, USA,
2005.

[9] C. T. Fallen and G. B. Newby, Partitioning the Gov2
Corpus by Internet Domain Name: A Result-set
Merging Experiment, The Fifteenth Text REtrieval
Converence, NIST Special Publications, Gaithersburg,
Maryland, USA, 2006.

[10] K. Gamiel, G. B. Newby and N. Nassar, Grid
Information Retrieval Requirements (GFD.27), Global
Grid Forum, Lamont, IL, 2003, pp. 18.

[11] K. S. Jones and C. V. Rijsbergen, Report on the need for
and provision of an "ideal" information retrieval test
collection, Technical Report, Computer Laboratory,
University of Cambridge, 1975.

[12] W. Meng, C. T. Yu and K.-L. Liu, Building efficient
and effective metasearch engines, ACM Computing
Surveys, 34 (2002), pp. 48-49.

[13] N. Nassar, Amberfish at the TREC 2004 Terabyte Track,
The Thirteenth Text REtrieval Conference, NIST
Special Publications, Gaithersburg, Maryland, USA,
2004.

[14] G. Salton, Automatic Text Processing, Addison-Wesley,
Reading, MA, 1989.

[15] G. Salton, A. Wong and C. S. Yang, A Vector Space
Model for Automatic Indexing, Communications of the
ACM, 18 (1975), pp. 613-20.

[16] J. W. Sammon, Some Mathematics of Information
Storage and Retrieval, Griffis Air Force Base, New
York, 1968.

[17] L. Si, Federated Search of Text Search Engines in
Uncooperative Environments, Language Technology
Institute, Carnegie Mellon University, 2006.

