
Research on Enterprise Track of TREC 2007 at SJTU

APEX Lab

Huizhong Duan
1
, Qi Zhou

2
, Zhen Lu

3
, Ou Jin

4
, Shenghua Bao

5
, Yunbo Cao

6
 and

Yong Yu
7

Apex Knowledge & Data Management Lab

308 Yifu Building, 800 Dongchuan Road, Shanghai, P.R. China

{ summer1, jackson2, luzhen3, kingohm4, shhbao5, yyu7}@apex.sjtu.edu.cn,

Microsoft Research Asia

No.49 Zhichun Road, Beijing, P.R. China

 {yunbo.cao6}@microsoft.com

1. Introduction.

This year we (APEX Lab, Shanghai Jiao Tong University) participated in both

Document Search Task and Expert Search Task in Enterprise Track of TREC 2007.

For Document Search Task, we generally applied BM25 formula separately on

different fields of HTML pages: Title, Anchor, H1, H2, Keywords, and Extracted

Body. Various Static Ranking methods are also exploited. Scores are combined

together using linear combination. Among all the techniques we have embedded in

our system, our highlight is the static ranking approaches. Beside this, some data

preprocessing methods and similarity function will also be introduced.

1. Static Ranking Approaches. Page quality is our focus for the task. Thus we

studied various static ranking methods in Enterprise Corpus. Among them,

PageRank[6] and Topic Sensitive PageRank[1], which both generate similar ranks for

most pages, do not work for this Corpus. Then we research on HostRank[5]. The

central problem of using HostRank is to define a host. After realizing that sub-portals

of an enterprise do not necessarily earn a difference, we finally used sub-layers of

sub-portals (AAA.BBB.CCC/DDD) as hosts.

2. Data preprocessing.

 Title Extraction. The title of a web document is a strong indicator of its

topic, but only a small portion of pages are provided with such a manually

written title. To conquer the problem we adopted an automatic Title

Extraction approach to extract multi-level titles of each page.

 Body Detection. Another observation is that most pages contain large

amount of noises, including navigational linkages, related topic linkages and

so on. Filters are then built based on features of these areas, and the system is

hence able to detect the body part of pages.

3. Similarity Matching.

 Position Weighting. Same query appearances in different positions of pages

actually weigh differently. The probability of a page to be a key page in

which the query appears in the beginning of its content is much higher than

that of the page in which the query appears in the end. Illuminated by this,

we use the position of query appearance in documents to boost their scores.

 Query Combination. In our system, each query is transformed into several

forms: Phrase Query, Proximity Query, Ordinary Query, Expanded Query

and Reshuffled Phrase Query. Each query weighs differently and may be

applied to different fields of documents. Scores are finally merged together

linearly. Query Expansion will be introduced in Section 3.4 of Expert Search

Task.

For Expert Search Task, we adhere to the system we built last year[2], which

focuses on Expert Annotation, query formation, two-stage similarity model

development and enabling them in a statistical framework. This year we complement

our system mainly in several aspects, among which, static ranking for expert

candidates deserves underlining. Besides, data preprocessing as well as query

expansion will also be introduced.

1. ExpertRank and Topic Sensitive ExpertRank. Compared to last year, the expert

list is parsed from the corpus and thus may involve large noises. Hence we resort to

static ranking method to handle this. The idea is to let experts vote for each other. A

co-appearance can be viewed as a vote, similar to links in PageRank. In the light of

this we proposed and experimented on ExpertRank and Topic Sensitive ExpertRank.

2. Data preprocessing.

 Parsing Corpus for Expert Name List. To get a list of experts, we parse

email appearances in the corpus. Comprehensive situations like anti-spam

and alias are handled. Names containing single word or host names are

filtered.

 VisualPageRank and Expert Homepage Detection. Different HTML

structures contribute differently in establishing evidences. We propose a

DOM-Tree based VisualPageRank method to distinguish valuable and

valueless HTML pages. Besides, we view name appearances in HTML Title

as homepage signals, and boost the score of these pages as evidences to

support an expert.

3. Query Expansion. We use narrative field of queries for query expansion. Features

used to select words are: Query Similarity and Inverse Document Frequency.

The rest of the report is organized as follows. Section 2 and 3 records the technique

highlights of Document Search and Expert Search tasks separately. Section 4 shows

the preliminary experimental results of the submitted runs of both the two tasks.

2. Document Search

2.1 Static Ranking Approaches

For this part, firstly, we tried PageRank algorithm to compute the importance of each

web page. However, the web graph is not complete in our corpus due to the

sparseness of data. Thus PageRank does not perform well here. Similarly, Topic-

Sensitive PageRank is not a good choice for this task, either. Then we tried HostRank

to calculate web page importance.

HostRank algorithm starts from computing the importance of a host. And the

hierarchy structure of the host is then used to distribute the host’s importance to web

pages within the host.

The HostRank algorithm consists of 2 steps:

 Calculate the Host’s importance

Similar to PageRank algorithm, HostRank algorithm treats each host as a page in

PageRank algorithm. Here we define hosts as the sub-layers of sub-portals like

“http://www.csiro.au/science” , “https://www.bioinformatics.csiro.au/GeneRave”.

This is because they are the highest level of URL whose importance should be

distinguished.

 Propagation of the host’s importance

After obtaining the importance of hosts, we can propagate the importance along the

hierarchy of these hosts. Some factors should be taken into account when

processing a page: depth of URL (indicating the inside linking structure); whether

the page is an index page or a content page; links pointing to the page from outside

hosts.

More specifically, if page 𝑃𝑖 is pointed to by its ancestor page 𝑃𝑗 in a hierarchy

of a host, we have 𝑃𝑖 ’s importance 𝐻𝑜𝑠𝑡𝑅𝑎𝑛𝑘(𝑃𝑖) calculated by Equation (1).

𝐻𝑜𝑠𝑡𝑅𝑎𝑛𝑘 𝑃𝑖 = 𝜔𝑖 ∙ 𝐻𝑜𝑠𝑡𝑅𝑎𝑛𝑘 𝑃𝑗 (1)

Where the weight 𝜔𝑖 is defined as:

𝜔𝑖 = 𝜃 ∙ 𝐿𝑖𝑛𝑘 𝑃𝑖 + 1 − 𝜃 𝐼𝑛𝑑𝑒𝑥(𝑃𝑖) (2)

𝐼𝑛𝑑𝑒𝑥(𝑃𝑖) is a Boolean value denoting whether the page is an index page. We use

rules to discriminate index pages. If the URL of a page contains “index” or

“default”, or end up with “/”, it is viewed as an index page.

𝐿𝑖𝑛𝑘(𝑃𝑖) is defined as the percentage of the inlinks of page 𝑃𝑖 , which is calculated

in equation (3).

𝐿𝑖𝑛𝑘 𝑃𝑖 = 𝛽 ∙
𝑂𝐼𝐿(𝑃𝑖)

 𝑂𝐼𝐿(𝑃𝑘)𝑃𝑘∈𝐻𝑜𝑠𝑡 (𝑃𝑖)

+ (1 − 𝛽) ∙
𝐼𝐼𝐿(𝑃𝑖)

 𝐼𝐼𝐿(𝑃𝑘)𝑃𝑘∈𝐻𝑜𝑠𝑡 (𝑃𝑖)

(3)

Here 𝑂𝐼𝐿(𝑃𝑖) is the number of hyperlinks from pages outside the host to page 𝑃𝑖 ,

and 𝐼𝐼𝐿(𝑃𝑖) is the number of hyperlinks from inside the host to the page 𝑃𝑖 .

𝐻𝑜𝑠𝑡 𝑃𝑖 is the host containing page 𝑃𝑖 .

2.2 Data Preprocessing

2.2.1 Title Extraction

Title field of web documents has been proved to be a high-quality information source

in web search Tracks at TREC. From observation, half of the documents in our corpus

lacks the title field or leave the field as “untitled”. Therefore, we extract not only the

<TITLE> tag of html pages but also the titles from the body content by exploring

<H1>, <H2> tags. Then a Multi-Level Title field is obtained.

From the preliminary results of our evaluation over test query, using the VSM model

to perform search on title field can improve the performance dramatically.

2.2.2 Body Detection

Here Bodies of documents are defined as the main content of a document, which is

the most important information source of a page. Through our observation, body

fields usually contain head tags like <H1>, <H2>…<H6>, while non-body fields like

navigator or templates usually have a higher percentage of links. Thus we develop our

2-step algorithm as follows.

 Dividing the page based on DOM tree structure.

1. If the length of text of a node is 0, ignore this node.

2. If the maximum length of text of a node’s children is less than 30%

of the page, then keep it as a part.

3. Divide other DOM nodes.

 Filtering divided parts.

1. If a head tag is found in a part, then keep this part.

2. If no head tags are found and the percentage of link text to the total

text is greater than 70%, delete this part.

3. Keep other parts.

By this method, many navigators and useless templates have been removed, while

most of the useful information has been kept.

2.3 Similarity Matching

2.3.1 Position Weighting

Sometimes a page contains certain relevant information about a topic, but it is not a

key page to the topic (e.g. News Summaries). The position of query terms’

appearances in a page is a good feature to judge whether this is key page or not. Thus

we exploit Position Weighting for queries and documents.

For query Q and document D, the Position Weight can be calculated as:

𝑃𝑊 𝑄, 𝐷 =
1

 𝑄

𝐿𝑒𝑛(𝐷)

𝑃𝑜𝑠(𝑞𝑖 , 𝐷)
𝑞𝑖∈𝑄

(4)

Here 𝑄 is the number of different query terms in 𝑄 , 𝑃𝑜𝑠(𝑞𝑖 , 𝐷) is the first

appearing position of query term 𝑞𝑖 in 𝐷 and 𝐿𝑒𝑛 𝐷 is the length of 𝐷. This

score is finally combined to the Similarity Score after scaling.

2.3.2 Query Combination.

Query preprocessing is adopted in our system. Each query is transformed into several

forms: Phrase Query, Proximity Query, Ordinary Query, Expanded Query and

Reshuffled Phrase Query. Each query form weighs differently and may be applied to

different fields of documents. Query Expansion technique will be introduced in

Section 3.4; Reshuffled Phrase Query denotes the Phrase Query formed by reshuffling

the query terms; others are similar to [2].

Our system uses the OKAPI BM25 [3] model to compute the Similarity Score

between queries and documents’ title, keywords, anchor text, H1, H2 and extracted

body field respectively. Each field is calculated under five kinds of query formats

mentioned above. The scores are combined linearly after normalization.

In order to achieve a combinable Similarity Score for different queries and document

fields, we normalize each score into a value between [0, 1]. All the BM25 scores are

obtained by using a form of standard BM25 formula with parameters k1 set to 1.2 and

k2 to 20.

𝑆𝑏𝑚25(𝑄, 𝐷) = 𝐼𝐷𝐹(

𝑞𝑖∈𝑄

𝑞𝑖) ∙
𝑇𝐹 𝑞𝑖 , 𝐷 ∙ (𝑘1 + 1)

𝑇𝐹 𝑞𝑖 , 𝐷 + 𝑘1 ∙ (1 − 𝑘2 + 𝑘2 ∙
𝐿𝑒𝑛(𝐷)

𝐴𝑣𝑔𝐿𝑒𝑛(𝐷)

(5)

We use the normalization introduced by [4].

After obtaining the combined score, we use HostRank score to re-rank the documents.

The re-ranking formula is:

𝑆𝑟𝑒𝑟𝑎𝑛𝑘 𝑄, 𝐷 = 𝑆𝑏𝑚 25𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
 𝑄, 𝐷 ∙ 𝑃𝑊(𝑄, 𝐷) ∙ (1 + 𝛼 ∙ 𝐻𝑜𝑠𝑡𝑅𝑎𝑛𝑘 𝐷) (6)

Where 𝑆𝑏𝑚 25𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
 𝑄, 𝐷 is the combined BM25 score and 𝐻𝑜𝑠𝑡𝑅𝑎𝑛𝑘 𝐷 is

the HostRank score computed within the corpus.

3. Expert Search

3.1 ExpertRank and Topic Sensitive ExpertRank

Compared to last year, the expert list is parsed from the corpus and thus may involve

large noises. Hence we resort to static ranking method to handle this.

The idea of ExpertRank is to let experts vote for each other. A co-occurrence of two

experts would contribute two directed links between them, one pointing from the first

expert to the second and the other from the second back to the first. After this a

directed graph is constructed, of which each vertex represents an expert candidate and

each edge indicates a certain propagation of importance from the source to the target

node. Then we can apply the ExpertRank algorithm to the expert graph. The

algorithm is basically the same with PageRank algorithm, but different in the sense

that here edges from one expert candidate to another are weighted. This is because

two experts co-occurring regularly are meant to share much more importance with

each other than with others. Below we describe the algorithm in detail. Some of the

concepts and formulas are derived from [1].

3.1.1 Expert Rank

Consider expert candidate c and c’ pointing to c, P(c) represents the set of all possible

c’. Let W(c’,c) be the weight of the edge from c’ to c, and W(c’) be the sum of

weights of outgoing edges of c’. Also the rank value of candidate c is regarded as

Rank(c). For the initialization, Rank(c) for every candidate is set to 1/N, where N is

the total number of expert candidates. Then the iteration of propagation is started until

convergence. In each iteration i, the rank of each candidate c is re-computed as

equation (7):

𝑅𝑎𝑛𝑘𝑖 𝑐 = 𝑅𝑎𝑛𝑘𝑖−1 𝑐
′ ∙ 𝑊(𝑐 ′, 𝑐)/𝑊(𝑐 ′)

𝑐 ′∈𝑃(𝑐)

(7)

The computation can also be explained as eigenvector calculation as expressed by [1]:

𝑅𝑎𝑛𝑘 = 𝑀 × 𝑅𝑎𝑛𝑘 (8)

From this point of view, we did not really do the iteration in practice. Since the expert

graph we built is symmetrical, it is easy to solve equation (8). The solution is:

𝑅𝑎𝑛𝑘 𝑐 = 𝑐𝑜𝑜𝑐𝑐𝑢𝑟(𝑐, 𝑐 ′)

𝑑∈𝐷𝑐′≠𝑐

(9)

Here 𝐷 is the entire document collection. 𝑐𝑜𝑜𝑐𝑐𝑢𝑟(𝑐, 𝑐 ′) is 1 if 𝑐 and 𝑐 ′ co-occur

in document 𝑑. After normalizing 𝑅𝑎𝑛𝑘
1
 to 1, it yields the final ExpertRank.

𝑅𝑎𝑛𝑘𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐 =
𝑅𝑎𝑛𝑘(𝑐)

 𝑅𝑎𝑛𝑘
1

(10)

3.1.2 Topic Sensitive ExpertRank

The intention of Topic Sensitive ExpertRank is that, the distributions of expert

importance over different topics are not similar, and it’s unreasonable to compare the

importance of experts in different fields. Thus the rank value calculated by the global

propagation is very rough. To perform more accurate statistic ranking and better

approximate the importance of the expertise of experts, we clustered the entire corpus

into 70 topic related categories by URL analysis. The clustering method is to first

build a suffix tree of all URL hosts (together 100 in all) in the CSIRO corpus, and cut

the tree at level 3.

au

csiro

atnf ffp

atoa vo

www

reprints

em
Cutting Level

Fig. 1. A Sample of URL Suffix Tree

For each category (topic) Tk, we bias the ExpertRank vectors using equation (11).

𝑅𝑎𝑛𝑘𝑘 𝑐 = 𝑐𝑜𝑜𝑐𝑐𝑢𝑟(𝑐, 𝑐 ′)

𝑑∈𝑇𝑘𝑐′≠𝑐

 (11)

By performing ExpertRank algorithm on each category k, we obtain 70 ExpertRank

vectors biased by 70 different topics.

Besides, the term vector of each category is calculated and indexed. The real time

computation of an expert candidate’s final rank value involves the conditional

probability 𝑃(𝑇𝑘 |𝑞) , where q is the given query. 𝑃(𝑇𝑘 |𝑞) is calculated using

equation (12).

𝑃 𝑇𝑘 𝑞 =
𝑃(𝑇𝑘) ⋅ 𝑃(𝑞|𝑇𝑘)

𝑃(𝑞)
∝ 𝑃(𝑇𝑘) ⋅ 𝑃(𝑞𝑖|𝑇𝑘)

𝑖

(12)

Here qi is the ith term of query q. In practices we use Query Expansion to better

approximate the distribution of queries over the vocabulary.

The final rank value of candidate c, Rank(c), is computed by equation (13).

𝑅𝑎𝑛𝑘 𝑐 = 𝑃 𝑇𝑘 𝑞 ∙ 𝑅𝑎𝑛𝑘𝑘(𝑐)

𝑘

(13)

The Topic Sensitive ExpertRank is later multiplied to the similarity ranking value to

yield the score of expert candidates. In the submitted runs we use Topic Sensitive

ExpertRank instead ExpertRank.

3.2 Data Preprocessing

3.2.1 Parsing Corpus for Expert Name List

Using the full name as email address is recommended in many enterprises for easily

management. Benefited from this, we match emails to expert names by extracting

them directly from the email address. Two problems calls for attention in the process

of parsing email appearance. The first is how to handle anti-spam formats while the

second is how to recognize the emails that are not dedicated for a single person.

Table 1. Example of anti-spam formats

Email Anti-Spam Format

Tom.McGinness@csiro.au Tom . McGinness @ csiro . au

Tom DOT McGinness AT csiro DOT au

firstname.lastname@csiro.au (Tom McGinness shows

in the same page.)

Our method firstly replaces all the tokens such as “dot”, “at” and “atmark” by the

corresponding symbols. Then we use an enhanced regular expression to detect all the

emails from context. We also extract emails containing “first” as a substring, such as

firstname.lastname and firstname.surname. Named Entity Recognization Tool is used

to extract all the names in the context of these emails to complete the candidate list.

To handle the problem of non-personal emails and build a clean expert name list, we

construct several filtering rules:

 Filter out emails that do not end with the host name of the organization.

 Filter out emails containing numbers.

 Filter out emails with host names appearing in the person name part. Host names

are extracted from the URL hosts. (e.g. If URL http://www.bio.csiro.au/* exists

in the corpus, the email xxx.bio@csiro.au should be filtered.)

 Filter out emails with single letter in its person name part.

After this a list of expert candidates (both names and their corresponding emails) is

obtained, and we are able to perform the expert identification algorithm[2] we

proposed last year to index all the appearances of expert candidates in the corpus.

3.2.2 VisualPageRank and Expert Homepage Detection

The intention of VisualPageRank is to recognize and degrade pages that are unhelpful

or too noisy to establish a good evidence for expert search, while Expert Homepage

Detection contributes in the opposite way by detecting and upgrading highly possible

expert homepages to support the correspondent experts.

Through observation we find that unhelpful or noisy pages come from either too

simple or too complicated pages. So we explore into the HTML structure of web

pages. A Vision based content tree is built by separating texts using a group of tags.

Thresholds are set to the number of blocks and total depth of the tree. By degrading

the score of pages that are below the lower threshold or above the upper threshold, we

are able to reduce their influences to the task.

For Expert Homepage Detection, since we only want to utilize the highly possible

expert homepages, we simply run the expert name identification algorithm[2] on title

field of pages, and filter out pages that contain only low confidence name masks[2] or

multiple expert candidates. The left pages are viewed as the homepage to the

corresponding expert in its title, and their support to the homepage owner are boosted.

Note that the score of a page here denotes to Qd in [2].

3.3 Query Expension

As mentioned above, to better approximate the distribution of queries over term

vocabulary, we adopt Query Expansion in our system. Query Expansion is used in

two ways in the system, the first is to serve as one additional query format for the

computation of Qq in [2], the other is for calculating 𝑃 𝑇𝑘 𝑞 in equation (8).

The candidate terms of Query Expansion comes from the narrative fields of given

topics. There are two approaches for selecting terms. The first is quite straight

forward, by calculating the inverse document frequency of each word. Three terms

with the highest score are added into the original query term bag. The second

approach we try is to extract a window based context vector in the corpus for each

candidate term, and calculate the cosine similarity between the context vector and the

query vector. Also three words with the highest score are then selected. The idea of

this approach is to keep the topic of the query focused during the expansion. Finally

the first is adopted among the final runs, since the window size for context extraction

is very hard to determine lacking training data.

4. Experiment Result

Here we list the evaluation results of the 4 Document Search runs and 4 Expert Search

runs we submitted from TREC committee. Table 2 and Table 3 show the results of

Document Search and Expert Search respectively.

Table 2. Evaluation of Document Search Runs

Run ID DS-BASE RS-PQ STEM MAP R-PREC

SJTUEntDS01 Y N N 0.3130 0.3365

SJTUEntDS02 Y Y N 0.3793 0.3934

SJTUEntDS03 Y N Y 0.3222 0.3395

SJTUEntDS04 Y N N 0.3295 0.3454

Here DS-BASE includes all the techniques we mentioned in Section 2 except

Reshuffled Phrase Query (denoted here as RS-PQ). STEM stands for stemming of

words before indexing. Run SJTUEntDS04 is different from SJTUEntDS01 since it’s

a feedback run which uses given key pages to perform further Query Expansion.

Table 3. Evaluation of Expert Search Runs

Run ID ES-BASE TS-ER HP-DT MAP MRR

SJTUEntES01 Y N N 0.4395 0.6140

SJTUEntES02 Y Y N 0.4343 0.6039

SJTUEntES03 Y N Y 0.4427 0.6131

SJTUEntES04 Y Y Y 0.4410 0.6146

Here ES-BASE includes the Email Parsing, VisualPageRank, Query Expansion and

the system last year[2] excluding Cluster Based Re-ranking. The exclusion is because

the clustering of automatically parsed expert list is very inaccurate compared to the

predefined list last year. TS-ER stands for Topic Sensitive ExpertRank while HP-DT

refers to Homepage Detection.

5. Reference

[1] T. Haveliwala: Topic-Sensitive PageRank. In: Proceedings of WWW2002, 2002.

[2] S. Bao, H. Duan, Q. Zhou, M. Xiong, Y. Cao and Y. Yu: Research on Expert

Search at Enterprise Track of TREC 2006. In: proceedings of 15th Text Retrieval

Conference (TREC 2006), 2006.

[3] S.E. Robertson, S. Walker, M. Hancock-Beaulieu, M. Gatford: Okapi at TREC.

In:Text REtrieval Conference.

[4] R. Song, J.-R. Wen, S. Shi, G. Xin, T.-Y. Liu, T. Qin, X. Zheng, J. Zhang, G. Xue,

W.-Y. Ma: Microsoft Research Asia at Web Track and Terabyte Track of TREC. In:

proceedings of the Thirteenth Text Retrieval Conference Proceedings (TREC-2004),

2004.

[5] G. Xue, Q. Yang, H. Zeng, Y. Yu, Z. Chen: Exploiting the Hierarchical Structure

for Link Analysis. In: Proceedings of SIGIR2005, 2005.

[6] L. Page, S. Brin, R. Motwani, T. Winograd. The PageRank citation ranking:

Bringing order to the web. Technical report, Stanford Digital Library Technologies

Project, 1998. Paper SIDL-WP-1999-0120 (version of 11/11/1999).

