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Abstract  
For the TREC-2007 Genomics Track [1], we explore 
unsupervised techniques for extracting semantic 
information about biomedical concepts with a retrieval 
model for using these semantics in context to improve 
passage retrieval precision.  Dependency grammar analysis 
is evaluated for boosting the rank of passages where 
complementary subject/object concept pairs can be 
identified between queries and sentences from candidate 
passages. 
In our model, a concept is represented as a set of 
synonymous terms and a concept-word distribution. 
Concept terms are identified using an information 
extraction technique relying on shallow sentence parsing, 
external knowledge sources, and document context.  
The system combines a dimensional data model for 
indexing scientific literature at multiple levels of document 
context, with a rule-based query processing algorithm. The 
data model consists of two hierarchical indices: one for 
individual words and a second for extracted concepts. The 
word index provides retrieval of single or multi-word 
terms. The concept index provides efficient retrieval of 
single or multiple independent concepts.  
A retrieval function combines concepts with term statistics 
at multiple levels of context to identify relevant passages. 
Finally, we boost the relevance score of sentences 
identified within a passage where we can identify term 
dependencies that complement subject/object pairs between 
query and passage sentences via dependency grammar 
analysis.  
Our objective for this year’s forum was to improve passage 
retrieval precision. We submitted three automatically 
generated results for three variations of our retrieval model 
to the TREC forum. The three results exceeded the track 
median for character based passage retrieval by 75 to 93%. 
The mean average precision (MAP) for our top passage 
retrieval model was 0.0940 which compares favorably to 
the top result of 0.0976.  

1. Introduction 
Information retrieval in the genomics literature domain is 
challenging due to the wide variation of synonymous 
terms, acronyms, and morphological variants used for 
identifying the same biological concepts. In addition, 
acronyms frequently have multiple meanings (polysemy) 
and require contextual clues for accurate disambiguation. 
For example, the terms “bovine spongiform 
encephalopathy”, “BSE”, and “Mad Cow Disease” are all 
different terms representing the same named entity or 
concept. Search terms also have much higher relevance 
when matched against document terms when occurring 
within the local context of a phrase, sentence, or passage of 
text. An acronym like “IP” could represent 
“immunoprecipitant” or “ischemic precondition.” In this 
case, context captured at the paragraph or document level 
where an acronym is defined can help disambiguate its 
meaning [2].  
Databases from the National Center for Biotechnology 
Information (NCBI) [3] and other sources can be helpful in 
providing semantic evidence supporting identification and 
extraction of named biological entities. However, it is 
important to recognize that no knowledge source can fully 
capture the complexities of human language let alone be 
fully up-to-date with the dynamic vocabulary of an 
evolving science.  In most cases, there are varying levels of 
semantic evidence which can make accurate identification 
of biological concepts difficult. In these cases, optimal 
retrieval solutions need to integrate additional sources of 
evidence including identification of key phrases and terms 
within context. 
We propose that effective search requires a systematic 
approach for combining semantic and contextual evidence. 
Our approach relies on an indexing model that supports 
search of single and multi-word terms to support 
identification of concept term variants, search at different 
levels of document structure for identifying terms and 
concepts within context, and integration of external 
knowledge sources to aid in the identification and 
resolution of named biological entities and related 



    

synonymous terms.  
We first describe our indexing model, followed by the 
indexing process, query processing, our methods, results, 
and a discussion of related work.  

2. Dimensional Data Model 
Paragraphs, sentences, and terms, representing complete 
topics, thoughts, and units of meaning respectively, provide 
a logical breakdown of document lexical structure into 
finer levels of meaning and context. We capture these 
hierarchical relationships within a search index based on a 
dimensional data model. As shown in Figure 1, the 
dimensional index has a dimension table for each level of 
document structure (document, paragraph, sentence, term) 
and one central fact table or postinglist. The postinglist 
represents a single mapping table, containing foreign key 
fields that map the relations between all dimensions. The 
“grain”, i.e., the smallest non-divisible element of the 
database, is the individual word. Sentences aggregate 
words in sequence by position, paragraphs aggregate 
sentences, and documents aggregate paragraphs. In the data 
warehousing literature, this  model is refered to as a star 
schema [4,5].  
Figure 1. Search index based on dimensional model. 

 
The postinglist includes a term’s position within a 
sentence, textual representation, as well as term and 
morphological variants.  The dimensional indexing model 
can be extended to include additional dimensions, and 
allows for efficient formulation of SQL search queries.  By 
indexing each individual word, queries can be developed 
for searching single- and multi-word terms, and term 
statistics can be aggregated over different levels of 
document structure. 

3. System Description 
Indexing, retrieval, and analysis applications were 
developed in Java and the system utilizes the Oracle 10g 
Personal Edition database. The system is platform and 
database independent. TREC retrieval runs were performed 
on a 3.1GHz Pentium 4 PC with 2 GB of main memory. 

4. Indexing Process 
The indexing process includes the following:  

1. Lexical Partitioning: Documents are parsed into 
paragraphs. Paragraphs are parsed into sentences. 
2. Acronym identification:  Acronyms and their long-
forms are identified during indexing using the 
Schwartz and Hearst algorithm [6]. A long-short form 
would include “vasoactive intestinal peptide (VIP)”, 
and a short-long form would include “VIP (vasoactive 
intestinal peptide)”. The algorithm works backwards 
through the long form text and attempts to identify 
corresponding letters in the acronym. Acronyms and 
their long-forms are added to an acronym table to help 
with disambiguation. Long-form variants are added to 
the same indexing location as acronyms during 
indexing (and vice versa). This technique helps 
disambiguate acronyms, and allows identification of 
passages using either the short- or long-form of an 
entity. 
3. Tokenization:  Sentence terms are tokenized, stop 
words removed, and lexical variants of gene and 
protein names are generated [7].  Porter stemming [8] 
is used on each token with the following exceptions: 
gene names (as defined by the Entrez Gene database); 
all upper case, mixed case, alpha-numeric terms; and 
non-gene terms that would become a gene name after 
being stemmed. Small “s” is also stripped from all 
upper-case terms. 
4. Indexing: Each term along with its long-form 
expansion and lexical variants are stored in the index 
with the same positional information. 

5. Query Processing 
Structured query generation is illustrated with the 
following query: “Provide information about the role of 
the gene PRNP (prion protein) in the disease Mad Cow 
Disease”. 

1. Sentences are extracted, acronyms and their long 
forms are identified: PRNP (PRioN Protein). 
2. Part-of-speed tagging is performed using our 2nd 
order statistical Hidden Markov Model tagger: … 
role_NN of_II the_DD gene_NN PRNP_NN (_( 
prion_NN protein_NN )_) in_II the_DD disease_NN 
Mad_NN Cow_NN Disease_NN.   



    

3. Stop and function words are removed from further 
processing.  
4. Candidate entities are identified by locating non-
recursive noun phrases (“noun chunks”): [gene 
PRNP], [prion protein], [Mad_NN Cow_NN 
Disease_NN]. 
5. Candidate entities are verified in the index, and 
resolved using the UMLS Metathesaurus®, OMIM™ 
(Online Mendelian Interface to Man), MeSH (Medical 
Subject Headings), and Entrez Gene databases. If an 
entity is successfully resolved, all synonyms and one 
level of hyponyms, i.e., child terms, are identified.   

Prior to including synonyms as a concept term variant, its 
level of ambiguity is determined. If the synonym is 
considered ambiguous it is not included. We consider a 
term ambiguous if either of the following tests is met: 

1. The synonym’s normalized inverse document 
frequency (NIDF) is < 0.1. Where NIDF is the IDF=log 
(N/df) normalized to between 0 and 1. 
2. The synonym correlates with the correct long-form 
in less than 50% of all instances within the acronym 
table 

Resolved concepts and corresponding synonyms are shown 
in Table 1. Resolved concept instances are added to a 
concept index with the same structure and fact tables as the 
dimensional term index described in Figure 1, except the 
postinglist table is replaced with a conceptlist. 
Table 1 – Retrieval function weighting and similarity coefficients 

Resolved concepts Synonyms 

[Encephalopathy, Bovine 
Spongiform] 

[Mad Cow Disease] 
[MCD] 
[BSE] 
[Creutzfeldt-Jakob disease] 
[CJD] 

[PRNP gene] [prion protein] 
[prnp] 

Search can be performed within the context of an 
individual term/phrase, sentence, paragraph, or document.  
For TREC, we first perform paragraph-level searches using 
the probabilistic BM25 retrieval function [9] shown in 
equation (1) implemented in standard SQL [7, 10].  

BM25:          (1) 
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Note: We used k1=1.4, k2=0, k3=7, and b=0.75 [7]. 

Next, using the top 1000 paragraphs we perform a concept search 
as follows:  

1. The position of all term variants of each concept is 
retrieved from the dimensional index by paragraph. 
2. A concept graph is constructed by creating an 
adjacency list using each concept term as a vertex. 
3. A minimum-spanning tree is constructed from the 
adjacency list by determining the maximum number of 
distinct concepts within the shortest lexical distance. 
Distance measurements are weighted such that terms 
within a lexical unit, e.g., a sentence, are always closer 
than terms in separate units. 
4. Finally, the passage boundary based on the first 
and last occurrences of distinct concepts is expanded 
out to include sentence boundaries. 

Passage level concept search is further illustrated with the 
following query: “Exact reactions that take place when 
you do glutathione S-transferase (GST) cleavage during 
affinity chromatography”. 

First, the following concepts and term variants (shown in 
stemmed form) are identified:  

• Cleavage: [[cleavag], [merogenesi], [cytokinesi]]  
• Affinity purification: [affin, purif], [affin, chromatographi]]  
• Glutathione S-transferase: [[glutathion, s, transferase], [gst]] 

Second, the index is searched for all term variants of each 
concept. The following query searches for the concept term 
variant “affinity, chromatography”: 

select i1.term as term1, i2.term as term2, p1.docid, 
        p1.parid, p1.sentid, p1.startpos, p1.endpos    
from invertedindex i1, invertedindex i2, postinglist p1,  
 postinglist p2      
where i1.term='affin' and i2.term='chromatographi'       
and i1.termid=p1.termid and i2.termid=p2.termid     
and p1.docid=p2.docid and p1.parid=p2.parid  
and p1.sentid=p2.sentid and abs(p2.seq-p1.seq)<=2;      
 

Third, passages are identified: “affinity chromatography, 
and purified Mce1A and Mce1E, free of the fusion partner, 
were recovered following specific proteolytic cleavage of 
the GST” 
Finally, passages are expanded to sentence boundaries: 
“The fusion proteins were purified to near homogeneity by 
affinity chromatography, and purified Mce1A and Mce1E, 
free of the fusion partner, were recovered following 
specific proteolytic cleavage of the GST portion by 
thrombin protease.” 
The following similarity coefficients (SC) are identified for 
each candidate passage: 
• Number of distinct concepts for the entire passage 

weighted by the likelihood of the words in the 
sentence containing the concept. 



    

• The normalized sum of the normalized IDF’s of each 
concept within the passage. 

• Number of distinct concepts for the top sentence 
within the passage weighted by the likelihood of the 
words in the sentence containing the concept. 

• The normalized sum of the normalized IDF’s of each 
concept within the top sentence within the passage. 

A linear weighted sum (2) is used to generate various 
retrieval models by weighting and combining similarity 
coefficients (SC) for each passage.  

 SCcomposite = w1SC1 + w2SC2 + …+ wnSCn                      (2) 

Passages with the same SCcomposite are ranked by the 
passage’s lexical distance, i.e., the width of the MST of 
distinct concept instances.  
Finally, we apply Stanford’s dependency grammar parser 
to identify subject/object complements between queries and 
passage sentences [11]. Dependencies are motivated by 
grammatical function, i.e., syntactically and semantically. 
A word depends on another if it is either a complement or a 
modifier of the latter. If we can identify the modifier of the 
object of the original query, we increase the likelihood of 
answering the query. For example, for query 201: What 
[mutations] in the Raf gene are associated with cancer? 
We retrieved the following passage MST: …melanoma cell 
lines with B-RAF and N-RAS mutations… for which we can 
identify dependencies between the modifiers B-RAF and N-
RAS and the object of the sentence mutations which was 
the subject of the original query. 

6. Results 
Retrieval model weighting and similarity coefficients for 
each submitted run are summarized in Table 2. IITx1 
emphasizes passage level weighting, while IITx2 
emphasizes weighting the top scoring sentence for each 
passage.  IITx2 also used dependency grammar rank 
boosting. IITx3 used the IITx1 retrieval model with 
dependency grammar boosting. 
The results for are three automatically generated runs are 
summarized in Table 3. All three results significantly 
outperformed the median results for the track, including the 
character-based passage retrieval measurement we sought 
to optimize. We believe the heavy emphasize of our 
retrieval functions on identifying distinct biological 
concepts helped precision for passage retrieval, but 
otherwise reduced recall for document, aspect, and the 
passage2 measurement. Integrating the query term density 
measurement we utilized with last year’s track [2] would 
most likely improve these scores.  
We also discovered an error in our database software 
where frequently occurring terms were not stored in our 
index.  Such terms included gene and protein.  The 
corrected results for IITx3 are shown in Table 4. 

Table 2 – Retrieval model weighting and similarity coefficients 

Run Retrieval Function 

iitx1 

0.45*distinct number of passage concepts + 
0.05*distinct number of sentence concepts + 
0.45*passage norm IDF sum +  
0.05*sentence norm IDF sum 
no dependency grammar passage rank boost 

iitx2 

0.05*distinct number of passage concepts + 
0.45*distinct number of sentence concepts + 
0.05*passage norm IDF sum +  
0.45*sentence norm IDF sum 
dependency grammar passage rank boost 

iitx3 

0.45*distinct number of passage concepts + 
0.05*distinct number of sentence concepts + 
0.45*passage norm IDF sum +  
0.05*sentence norm IDF sum 
dependency grammar passage rank boost 

Table 3 - Results for runs submitted to TREC (% above track median) 

Run Document 
MAP Aspect MAP Passage 

MAP 
Passage2 

MAP 

iitx1 0.2454 
(31.15%) 

0.1272 
(18.06%) 

0.0852 
(75.27%)  

0.0388 
(39.82%) 

iitx2 0.2462 
(31.60%) 

0.1166 
(8.16%) 

0.0926 
(90.38%) 

0.0335 
(20.56%) 

iitx3 0.2414 
(28.99%) 

0.1253 
(16.25%) 

0.0940 
(93.22%) 

0.0443 
(59.30%) 

Table 4 – Corrected run  

Corrected 
Run 

Document 
MAP Aspect MAP 

Passage 
MAP 

Passage2 
MAP 

iitx3 0.2670 0.1662 0.1060 0.0616 
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