
FDU at TREC 2007: opinion retrieval of Blog Track

Qi Zhang, Bingqing Wang, Lide Wu, Xuanjing Huang

Abstract
This paper describes our participation in the opinion retrieval task at Blog
Track 07. The system consisted of the preprocess part, the topic retrieval
part and sentiment analysis part. In the topic retrieval part, we adopted
pseudo-relevance feedback and a novel approach to form a modified query. In
the sentiment analysis part, each blog post was given an opinion score based
on the sentences contained in this post. The subjectivity of each sentence
was predicted by a CME classifier. Then the blog posts were reranked based
on the similarity given by the topic retrieval and the opinion score given by
the sentiment analysis.

1 Introduction

The opinion retrieval task[1] was aimed to explore the information seeking
behaviour in the blogosphere. The large scale test collection, the TREC
Blog06 collection[2], was used again in Blog Track 07.

Our approach to this task was a three-step process. A preprocess was
first conducted to extract the content from the permalink HTML pages.
Lucene1 was used to build the index on the preprocessed corpora. Then in
the topic retrieval part, we retrieved the top 2000 blog posts for each topic.
The expansion terms for a query were extracted by pseudo-relevance feed-
back. A machine learning approach was developed to select the expansion
terms aiming at raising the MAP. In the sentiment analysis part, a CME
classifier was trained to predict the subjectivity of each sentence in a blog
post. Then a SVM classifier gave an opinion score for this blog post based
on the sentence-analysis. Finally, all the blog posts were reranked based on
the similarity given by the topic retrieval and the opinion score given by the
sentiment analysis. The top 1000 blog posts were submitted.

The remainder of this paper is structured as follows. Section 2 provides
an overview of the system. Section 3 describes the topic retrieval part.
Section 4 describes the sentiment analysis part. Section 5 introduces the
submitted runs and the evaluation result. Conclusions are made in section
6.

1http://lucene.apache.org/

1

Figure 1: System Architecture

2 System Overview

The system was composed by the preprocess part, the topic retrieval part
and the sentiment analysis part. The system architecture is shown in Figure
1.

The preprocess part was designed to extract the content of the perma-
link HTML pages, which would be discussed in section 2.1.

The topic retrieval part retrieved 2000 blog posts for each of the 50 top-
ics. Pseudo-relevance feedback extracted expansion query terms from the
initial retrieval result. The top t expansion terms together with the weight
were generated from the top k returned documents. A SVM was trained to
rerank these expansion terms.

The sentiment analysis gave each blog post an OpScore(opinion score).
A CME classifier was trained to predict the subjectivity for each sentence
in a blog post. This CME classifier was trained on the movie review data.
Based on the sentence-level prediction, the OpScore for this blog post was
predicted by a SVM classifier.

Combining the OpScore with the similarity by the topic-retrieval part,
the 2000 blog posts were reranked and the top 1000 were selected.

2.1 Corpus and Preprocess

The TREC Blog06 collection contains the permalinks HTML pages, the feed
file and the blog homepage. We only use the permalink HTML pages for the
opinion retrieval task. These permalinks HTML pages were in different style
and some of them were poorly structured, filled with noisy information.

2

For each blog post, we discarded the hyper-links, the script and the style
information in the web page and filter all the html tags. Some html pages
were damaged and we only filtered the html tags and hyper-links in those
damaged-structure html pages.

Before the preprocess, the permalink HTML pages amounted to about
80G, after the preprocess the cleaned permalink HTML pages amounted to
about 18G.

3 Topic Retrieval

Based on the preprocessed corpora, index was build using Lucene. Pseudo-
relevance feedback modified the original query by adding expansion terms
from the initial retrieval. Expansion terms were further selected using ma-
chine learning approach.

3.1 Pseudo-Relevance feedback

For the vector space model, query expansion approach had been discussed
to reformulate the query so that it could be closer to the term-weight vector
space of relevant documents. The standard Rochio formulation[4] generated
a modified query −→qm as follows

−→qm = α−→q +
β

|Dr|
∑

∀
−→
dj∈Dr

−→
dj −

γ

|Dn|
∑

∀
−→
dj∈Dn

−→
dj

Dr : set of relevant documents among the retrieved documents.
Dn : set of non-relevant documents among the retrieved documents.
α, β, γ are constants.

For the pseudo-relevance feedback in our case, it was assumed that the
top k documents from the initial retrieval made up of the relevant document
set Dr, the non-relevant document set Dn was hard to define and omitted
here. Then the query was reformed as follows

−→qm = −→q + α
∑

∀
−→
dj∈Dr

−→
dj = −→q + α

−→
d

−→q was the original query,
−→
dj represented the term weight vector of doc-

ument j,
−→
dj = (w1,j , w2,j , · · · , wn,j). And

−→
d =

∑
∀
−→
dj∈Dr

−→
dj =

∑
∀
−→
dj∈Dr

(w1,j , w2,j , · · · , wn,j) = (w1, w2, · · · , wn)

wi,j was the term weight of word i in document j, and wi =
∑

wi,j was
the term weight of word i in the local collection Dr. We used a heauristic

3

modified wi,j = tfi,j ∗idfi/sidfi, where sidfi was the idf value of word i in the
local collection Dr, while the idfi was the idf value of word i in the global
collection. This formulation decreased the weight of those terms, which had
similar distribution in the local document set Dr and the global collection.

The vector
−→
d contained the term weight of all the words. α = 0.5

max(wi)

was a factor, which normalized every term weight in
−→
d and made any term

weight lower than 0.5. We assumed that the weight of any expanded term
should be less than the original query.

3.2 Expanded Terms Reranked by SVM

We needed the top t terms together with the weight to form a modified
query. This could be done by ranking all the term weight in

−→
d to find the

top t terms. However, we hoped to find out a machine learning approach
for the expansion term selection. These two approaches were both tried in
our submitted runs.

A SVM was trained to predict on the expanded terms. The advantage
using a machine learning approach was that the expanded term selection
could be conducted more reliable compared with ranking the terms by em-
pirical expression. Our approach provided a method to generate the training
data set, to tell whether one expanded term was more related to the topic
than another expanded term.

The training set of instance-label pairs (xi, yi) were generated from Blog
Track 06. xi ∈ Rn representing the feature vector of the expanded term i and
yi is a label indicating the closeness of this term with the topic. SV M light

was used to train a RBF regression module. The training data was generated
as follows.

1. original query q was retrieved and evaluated by trec eval, the MAP
referred as BaseMAP

2. expanded terms of this query were extracted. (t1, t2, · · ·)

3. for the expanded term ti, build the feature vector xi

4. q and ti form a new query qi, which was retrieved and evaluated by
trec eval, the MAP referred as TermMAPi

5. yi = TermMAPi
BaseMAP , the pair (xi, yi) was an instance of the training data

The feature vector of the expanded term ti, xi ∈ Rn was defined as

xi = (sumtf, avgTf, maxTf, idf, sdf, sidf, (idf−sidf), sumtfidf, sumtf
idf

sidf
)

4

where for expanded term ti, sumtf was the sum of term frequency of every
document in Dr, avgTf was the average term frequency in Dr, maxTf was
the maximum term frequency in Dr, idf was the idf in the global collection,
sdf was the document frequency in Dr, sidf was the idf in Dr.

The label yi = TermMAPi
BaseMAP indicated the relationship of expanded term ti

with the topic. The closeness of the expanded term was calculated by how
much this term could help to raise the MAP when adding it to the original
query. yi > 1 meant this term was useful in raising the performance, while
yi < 1 meant this term was less related.

SV MLight was used to do the RBF regression. Blog Track 06 provided
two kinds of assessment on the run, the opinion retrieval results and the
topic-relevance results. Correspondingly, two kinds of regression module
were trained on these two assessments. The module trained on the topic-
relevance results was aimed to raise the topic-relevance MAP with no senti-
ment analysis feature. The module trained on the opinion retrieval results
was aimed to raise the opinion retrieval MAP, which had sentiment analysis
feature to some extense.

For a topic, empirically, the top 120 documents composed of the Dr,
the top 400 expanded terms were predicted and reranked. The top 200
expanded terms were finally added to the original query to form a new
one. The top 2000 blog posts were returnedby retrieving this new modified
query. Each blog post was assigned a similarity score Sim representing the
relevance of this post with the query.

4 Sentiment Analysis

Sentiment Analysis in opinion retrieval task focused on the classification
between the opinion blog post and non-opinion blog post. First, each sen-
tence of a blog post was given a sentence score indicating the subjectivity
of this sentence. Then, based on all the sentences in this blog post, an
OpScore(opinion score) was given to indicate the subjectivity of this blog
post by SVM. Finally, the OpScore given by the sentiment analysis and
Sim(similarity) given by the topic retrieval was combined to form a final
score.

4.1 Sentence Evaluation and Blog post Evaluation

For the sentence evaluation, each sentence was predicted by a CME classifier.
The training data for the CME classifier was from the movie review data2.
The subjectivity data set v1.0 of movie-review data contains 5000 subjective
and 5000 objective processed sentences. The features for the CME classifier

2http://www.cs.cornell.edu/People/pabo/movie-review-data/

5

were unigram, bigram, whether this sentence contains words in opinion. The
opinion word was detected by General Inquirer Lexicon3.

For the blog post evaluation, a SVM classifier was trained to predict the
OpScore(opinion score) for a blog post based on all the sentences in this
blog post. The training data (xi, yi) were generated from the Blog Track
06. The training data was opinioned relevant documents(labeled as yi = +1)
and non-opinioned but relevant documents(labeled as yi = −1).

The feature xi was generated from all the sentences in the i − th blog
post. A blog post was transformed into a vector. Each element in the vector
corresponded to a sentence. Suppose there were l sentences in a blog post,
each sentence got a sentence score describing the subjectivity or objectivity.
The blog post could be represented as follows,

−→
dO = (s1, s2, · · · , sl),

{
si > 0 sentence i is subjective
si < 0 sentence i is objective

Then, another two vector describing the subjectivity and the objectivity
could be derived from

−→
dO.

−−→
dSub = (s1, s2, · · · , sl),

{
si > 0 sentence i is subjective
si = 0 sentence i is objective

−−→
dObj = (s1, s2, · · · , sl),

{
si = 0 sentence i is subjective
si < 0 sentence i is objective

A sentence was taken as relevant sentence if this sentence contained the
term in the original query. The document was presented as follows

−→
dT = (t1, t2, · · · , tl), ti =

{
1 if sentence contain query term
0 otherwise

Then, a fuzzy relevant sentence vector could be derived from
−→
dT . If the

previous two sentences contained the query term, this sentence could also
be labeled as relevant sentence.

−→
dF = (t1, t2, · · · , tl), ti =

{
1 previous 2 sentences contain query term
0 otherwise

Features xi were generated from the vector dSub, dObj and dT , dF . The
features we used are described as follows.

3http://www.wjh.harvard.edu/ inquirer/

6

Feature Description
subscore relbase dT

Sub · dT

subscore relwin dT
Sub · dF

objscore relbase dT
Obj · dT

objscore relwin dT
Obj · dF

rel base cnt # relevant sentences
rel base cnt # fuzzy relevant sentences
relbase sub cnt # sentences both relevant and subjective
relbase obj cnt # sentences both fuzzy relevant and objective
relwin sub cnt # sentences both relevant and objective
relwin obj cnt # sentences both fuzzy relevant and objective
sim subscore relbase dT

Sub · dT /(1 + |dSub|)(1 + |dT |)
sim subscore relwin dT

Sub · dF /(1 + |dSub|)(1 + |dF |)
sim objscore relbase dT

Obj · dT /(1 + |dObj |)(1 + |dT |)
sim objscore relwin dT

Obj · dF /(1 + |dObj |)(1 + |dF |)

4.2 Similarity and Opinion Score

The opinion score(OpScore ∈ (−1, 1)) given by the SVM classifier was inte-
grated with the similarity(Sim ∈ (0, 1)) given by the topic retrieval.

The opinion score was normalized to (0, 1) by a logistic function, the
logistic opinion score(LogOpScore) was defined as

y =
1

1 + e−λx
,

{
λ = 5 if x < 0
λ = 3 if x > 0

The final score for a blog post was Score = LogOpScore ∗ Sim, all the
blog posts were reranked by the final score.

5 Submission and Evaluation Results

We submitted 6 automatic runs, as follows:

• FDUNoOpTisd: A baseline run only using the pseudo-relevance feed-
back without SVM regression module

• FDUNOpRSVMT: the FDUNoOpTisd with SVM regression module
trained on topic-relevance results

• FDUTisdOpSVM: the FDUNoOpTisd with SVM regression module
trained on opinion retrieval results, this module has some feature of
sentiment analysis

• FDUNoOpTSem: the FDUNoOpTisd run with sentiment analysis

7

• FDUTNRSVMSem: the FDUNOpRSVMT run with sentiment analy-
sis

• FDUTOSVMSem: the FDUTisdOpSVM run with sentiment analysis

Table 1: Opinion Finding Result

Run MAP R-prec b-Pref P@10
baseline 0.2388 0.3011 0.3083 0.3680
FDUNoOpTisd 0.2992 0.3351 0.3357 0.4340
FDUNOpRSVMT 0.3178 0.3447 0.3498 0.4520
FDUTisdOpSVM 0.3179 0.3467 0.3501 0.4540
FDUNoOpTSem 0.3019 0.3382 0.3381 0.4460
FDUTNRSVMSem 0.3141 0.3475 0.3496 0.4620
FDUTOSVMSem 0.3143 0.3465 0.3499 0.4600

Table 2: Topic Relevance Result

Run MAP R-prec b-Pref P@10
baseline 0.3927 0.4520 0.5222 0.6340
FDUNoOpTisd 0.4506 0.4744 0.5272 0.6320
FDUNOpRSVMT 0.4709 0.4888 0.5428 0.6520
FDUTisdOpSVM 0.4714 0.4889 0.5432 0.6540
FDUNoOpTSem 0.4355 0.4626 0.5113 0.6500
FDUTNRSVMSem 0.4484 0.4765 0.5228 0.6620
FDUTOSVMSem 0.4488 0.4768 0.5232 0.6620

The evaluation results of the 6 submitted runs are listed in the table 1
and table 2. All these submitted results were using query expansion tech-
niques, so we added a “baseline” result for comparison. This “baseline” run
didn’t use any query expansion or sentiment analysis module. Our best run
“FDUTisdOpSVM” is emphasized in the table.

From the table above, we can find that the query expansion approach
using SVM to rank the expanded terms could get better performance than
using the empirical expansion.

6 Conclusion

We described our system in this paper. The opinion retrieval task required
the combination of information retrieval techniques and the sentiment anal-
ysis approaches.

8

We developed a pseudo-relevance feedback approach by empirical query
reformulation. A novel approach was developed to rerank the expanded
terms by machine learning method. The sentiment analysis was based on
sentence-level analysis. In future work, we intend to make a further explo-
ration on the expansion approach using machine learning method and the
sentiment classification of a blog post.

Acknowledgements
This work was partially supported by NSF of China under the grant of
60673038.

References

[1] Iadh Ounis, Maarten de Rijke, Craig Macdonald, Gilad Mishne, Ian
Soboroff “Overview of the TREC-2006 Blog Track”, In TREC 2006,
2006

[2] Craig Macdonald and Iadh Ounis. “The TREC Blog06 Collection :
Creating and Analysing a Blog Test Collection” DCS Technical Report
TR-2006-224. Department of Computing Science, University of Glas-
gow. 2006.

[3] Ricardo Baeza-Yates, Berthier Ribeiro-Neto “Modern Information Re-
trieval” pp. 117-118

[4] J. J. Rochio. Relevance feedback in information retrieval. In G. Salton,
editor, The SMART Retrieval System-Experiments in Automatic Doc-
ument Processing. Pretince Hall Inc., Englewood Cliffs, NJ, 1971.

9

