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Abstract  
This paper introduced the four tracks that WIM-Lab 
Fudan University had taken part in at TREC 2007. 
For spam track, a multi-centre model was proposed 
considering the characteristics of spam mails in 
contrast of traditional 2-class classification 
methodology, and the incremental clustering and 
closeness-based classification methods were applied 
this year. For enterprise track, our research was 
mainly focused on ranking functions of experts and 
selecting correct supporting documents regarding to a 
given topic. For legal track, the effects of word 
distribution model in query expansion and various 
corpus pre-processing methods were mainly 
evaluated. For genomics track, three score methods 
were proposed to find the most relevant text snippets 
to a given topic. This paper gives an overview of the 
methods employed for each sub tasks, and compares 
the results of each track. 

1. Introduction 
For spam track, in real world there could be several 
different genres in the spam category. There was a 
great diversity within the single spam class, while at 
the same time they might be similar to some certain 
kinds of ham mails. For this reason, in addition to the 
traditional 2-class classification methodology, we 
proposed a multi-centre model and applied the 
incremental clustering and closeness-based 
classification method to the Spam Track tasks this 
year. We applied character-level model and online 
linear classifier as our basic classification method, 
then we adopted a multi-centre model to treat the 
mails that were equivocal to the basic classifier. This 
method was evolved from the idea once used in [7] 
for expanding a credible negative sample set from the 

unlabeled training corpus. We developed this idea to 
make it compatible to the spam-filtering task. 

For enterprise track, we participated in both 
tasks for the track. A new enterprise corpus was 
introduced in the track this year, CSIRO repository 
instead of W3C repository, which makes great 
difference in the tasks and the topics for the tasks 
were provided by science communicators which are 
of great real meaning. However, chances always 
come from the challenges. Some new methods are 
used to accomplish the tasks. 

For legal discovery track, our team submitted 5 
runs finally (1 manual + 4 autos). The objective of 
Legal Track is to evaluate the efficacy of automated 
support for review and production of electronic 
records in the context of litigation, regulation and 
legislation. The corpus consists of 650 xml files, 
60G+ after unzipped. Each file contains multiple 
documents. In the document, 61 types of xml leave 
nodes form all textual information. Since legal corpus 
is converted from OCR format by program 
automatically, corpus may contain lots of 
meaningless text blocks and latent data inconsistency, 
which makes it a challenge for lawyers to lookup 
related documents supporting their quoting. The 
query of each topic is give by xml format as well. 
Participating teams can build queries in any way they 
like, using materials provided in the complaint, the 
production request, the boolean query, and any 
external resources that they have available. 

For genomics track, the system was required to 
extract the relevant passages of text that answers the 
topic questions [10]. It’s similar to the task of 
Genomics Track 2006 except the question types. Our 
group submitted three runs based three different 
score models. Three methods had the same process 
which extracted the concepts for followed scoring 
process. 
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2. Spam Track 

2.1. Overview 
Many traditional spam filters regarded anti-spam 
challenge as a 2-class classification problem, yet 
there was a potential premise for us to use common 
2-class classification methods to solve this problem. 
The premise was that samples in the same class were 
quite similar while samples in different classes had a 
distinct difference. Common 2-class classification 
methods could somehow extract some implicit 
features to predict whether a mail was ham or spam. 
But empirically the border between spam and ham 
was not so clear even for manual recognition. And 
there was also a great diversity within the single 
spam or ham class. For instance, there could be 
several different genres in spam, such as automated, 
list, newsletter, phishing, sex, virus and etc. Various 
kinds of spam mails were quite different to each 
other, while at the same time they might be similar to 
some certain kinds of ham mails. 

For this reason, in addition to the traditional 
2-class classification methodology, we proposed a 
multi-centre model and applied the incremental 
clustering and closeness-based classification method 
to the Spam Track tasks this year. And we tried to 
evaluate whether this method could make some 
further improvements to the precision of the spam 
filters.  

We applied character-level model and online 
linear classifier as our basic classification methods, 
which were inspired by IJS [5] and Tufts [6] in last 
two years’ tasks. Then we adopted a multi-centre 
model to treat the mails that were equivocal to the 
basic classifier. This method [7] was evolved from 
the idea once used for expanding a credible negative 
sample set from the unlabeled training corpus, and 
worked well on the TREC 2005 Genomics Corpus. 
We developed this idea to make it compatible to the 
spam-filtering task.  

2.2. Methods 
The “FDW” filter we submitted had a two-layer 
structure. We used character-level model and linear 
classifier as the first-layer filter. During the “classify” 

period, each mail processed through the first-layer 
filter would be given a spamminess to denote the 
likelihood to be a spam or not. Mails with a relatively 
extreme spamminess score would skip the 
second-layer filter and were put into the spam or ham 
class directly, while those with moderate scores 
would go to the next-layer filter. The second-layer 
filter used a multi-centre model. We applied a 
closeness-based text classification method on it to get 
an adjustment score of the mail. Finally, we 
integrated the scores of the two layer filters together 
to determine if the incoming mail was a spam. 

During the “train” period, the parameters of the 
first-layer filter were adjusted according to the online 
linear classifier mechanism. We choose part of the 
mails by the spamminess score given by the 
first-level filter, and then use incremental clustering 
method to establish and update a multi-centre model 
for the second-layer filter. The details of these 
methods were described in the following subsections. 
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2.2.1.Character-Level Matching and Linear 
Classification 
Character-level spam filters had the advantage to 
avoid the vulnerability of the key-word escape 
attacking by spammers compared with those 
bag-of-words filters. [5] and [6] had shown this 
advantage on the basis of the experimentation in last 
two years’ Spam Track. We designed our first-layer 
filter referring to the inexact word matching idea by 
[6], but made some changes. 

The first difference was that we used a fuzzy 
weighting strategy to denote the similarity of the 
character-level matching instead of giving a binary 
score to each explicit string feature, since one certain 
string in the feature space might have tens of 
transformed forms by the inexact matching method, 
and from the empirical view most of them would 
have a relation with the target string but weaker than 
the exact matching. The related weighting method 
was once proposed in [9]. The method introduced a 
decay factorλ∈(0,1) to weight the presence of a 
certain feature in a text. The weight of each 
dimension is λn, where n is determined by the 
similarity between the incoming text and the string in 
the feature space. In our system, as we only 
considered one-character obfuscation as [6] did. We 
simplify our fuzzy weighting strategy as follows:  

matching condition weighting score
exact matching 1 
inexact matching λ 
no matching 0 

The second difference was that we used a fixed 
length of string feature space instead of limiting of 
the string length in an optional range. This would 
save some computational cost and empirically too 
short length of string would do little benefit but bring 
noise to the filter. 

After the character-level feature mapping, we 
applied the Perceptron classifier to do the first-layer 
filtration. 
2.2.2. Incremental Clustering and Closeness Based 
Classification 
There were two hypotheses for us to think of using 
the multi-centre model in our system.  

The first hypothesis was that in one hyperspace, 
the spam and the ham were not distributed as two 

single clusters. By practical experience, we found 
that there were a variety of types of mails in the spam 
category in the real world. Each type of mails had 
their own characteristics and was quite different from 
each other type. So we suggested a model that spams 
were represented in scattered clusters while hams still 
in one single cluster. Later we would evaluate if this 
model would be more reasonable to represent the 
spam and ham distribution by experiments.  

The second hypothesis was that for a practical 
spam filter, a low hm% misclassification rate was 
more important than sm%. So a misty mail would be 
judged spam only when it was a credibly spam 
sample in the multi-centre model. 

For these two hypotheses, we applied 
incremental clustering and closeness based 
classification methods to our system. 

The similar methods were originally proposed 
by [7], and had produced effective results for the 

classification task on TREC 2005 Genomics Corpus. 
The scenario of the method was that there was a 
corpus with some pre-labeled credible positive 
samples and only a few credible negative samples 
extracted by the Rocchio classifier, and then it was 
needed to expand the negative sample set to facilitate 
further classification. The methods were overviewed 
as follows.  

Firstly it used the k-means algorithm to divide 
the previously-produced credible negative sample 
sets into k clusters to generate a multi-centre model. 
Next a closeness-based classification method is 
applied to expand the negative sample sets. We 
denoted the k clusters of the credible negative set 

with 1 2, ,..., kN N N , and denoted the centers of them 

as 1 2, ,..., kC C C . 

The closeness of each cluster represents the 
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average similarity of the samples within a cluster, it 
was represented as: 

1( ) ( , )
j i

i j i
d Ni

Cl N S d C
N ∈

= ∑
 

The average closeness of the negative sample set 
(including k clusters) was: 

1

1( ) ( )
k

negative i
i

Cl N Cl N
k =

= ∑
 

And the difference between the similarity within 
the negative set and the similarity between the 
positive and negative sets was defined as: 

1

1 1( ) ( , )
j i

k

negative j positive
i d Ni

Df Cl N S d C
k N= ∈

= − ∑ ∑
 

For an incoming sample text d, there were two 
requirements need to be filled to be regarded as a 
negative sample: 

1...max { ( , ) ( , )}
ii k N positiveS d C S d C Df= − >  

1..max { ( , )} ( )
ii k N negativeS d C Cl N= >

 

The closeness based method mainly solved two 
problems. One was that it was compatible to the 
situation that the samples in the hyperspace are not 
distributed centralized and well-proportioned. The 
second point was that it made the expanding negative 
samples credible and left those misty samples 
untreated. 

These two points were actually suitable to the 
situation we met in the anti-spam scenario. While in 
our hypotheses proposed above, the spam mails were 
distributed in several scattered clusters, and moreover, 
we needed to be more careful to judge a mail as spam 
than ham in order to avoid the risk of losing 
important messages.   

Here was an analogy between the scenarios in 
the Closeness based method to expand negative 
sample sets [7] and in the Spam Track. 

 
As for the common benefits the idea of [7] 

would bring, we inherit the idea in our second-layer 
filter but made some changes to make it adaptive in 
our system. The main challenge we face was the 
computational cost of the system since an online 
spam filter has many limits on time and space 
requirements. 

For the “train” aspect, the main task was to 
establish a multi-centre model and update the related 
information of each clusters when new mails coming. 
As the mails were coming in a stream form and 
considering the time limit for the system, it was 
unacceptable to apply a k-means or some other static 
clustering methods to the system. We adopt two 
measures to solve this problem. First we limit the 
number of mails to be trained in the second-layer 
filter. We set a score range r and only the mails 
whose first-layer filter score were accepted by the 
range were regarded as valuable to be trained in the 
next-layer filter. Secondly we applied an incremental 
clustering method to build and update the 
multi-center model. 

The pseudo code was as follows. 
 

Closeness based method to 
expand negative sample sets 
[7] 

Our System 

Credible Negative samples Known Spam mails 

Labeled Positive samples Known Ham mails 
Unhandled samples needed to 
be judged if it belonged to the 
expanding negative sets 

Incoming messages 
to be judged as ham 
or spam 

Negative examples were not 
distributed well-proportioned 
and needed to be clustered 

Spams were 
multi-centered 

Only credible negative texts 
would later be included in the 
negative sets 

Low hm% is more 
important than sm% 
in real world 
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Second-layer Training 

1.   if (message.first_layer_score ∈ r) 

2.     if (message.judge=ham) 

3.         add message to ham cluster 

4.         update Cpositive, Df 

5.       end if 

6.    else if (message.judge=spam) 

7.     if (distance(message,nearest cluster centre Ci)<t) 

8.        add message to the specific cluster Ni   

9.        update Ci, Cl(Ni), Cl(Nnegative),Df 

10.     end if 

11.     else if (distance(message,nearest cluster centre)>=t) 

12.        create new cluster Nk+1   

13.        update Ck+1, Cl(Nk+1), Cl(Nnegative),Df 

14.     end if 

15.    end if 

16.   end if 

Considering the computational cost, we changed 
the calculation of some attributes into an approximate 
form to make it adaptive for incremental 
computation. 

[ ( 1) ] /new oldC C N d N≈ × − +  

( ) [ ( ) ( 1) ( , )] /
newi new i old i N iCl N Cl N N S d C N≈ × − +

1

1( ) ( , )
k

negative i positive
i

Df Cl N S C C
k =

≈ − ∑
 

And the parameter t also played an important 
role to control the number of clusters and the effect 
of the second-layer filter. 

During the experiments we found that the 
computation of closeness Cl and difference Df would 
bring little benefit to this filtering scenario, so a more 
simplified method was used in our submitted 
versions. We only computed and updated the cluster 
centre C of each cluster during the clustering. And 
the filtering results were determined by:  

1...max { ( , ) ( , )}
ii k N positiveS d C S d C= −  

Finally we integrated this score and the 
first-layer score together with certain weights to work 
out the final spamminess score. 

2.3. Systems submitted for Trec 2007 

2.3.1. Active Learning Mechanism 
This year we didn’t put much emphasis on the active 
learning mechanism. We proposed a naïve 
mechanism as follows: We tried to train the mails as 
early as possible, and we assumed that mails with 
extreme spamminess score were credible for training. 
To implement this mechanism under the Spam Track 
Framework, we simply gave those mails with 
moderate spamminess scores “Label N” labels, and 
gave those mails with extreme spamminess scores 
“Label B” labels.    
2.3.2. System Configuration 
This year we submitted four filters to participate in 
the Spam Track. The configurations of the filters 
were as follows: 
Filters/Methods Closeness 

Based 

Clustering 

Inexact 

Matching 

Fuzzy 

Weighting

Upper 

Limit of 

Characters 

to Process 

Fdw1 Yes Yes Yes 5000 

Fdw2 No Yes Yes 5000 

Fdw3 Yes Yes Yes 3000 

Fdw4 No Yes No 5000 

2.4 . Results and Future Works 
Here is the (1-ROCA)% statistics of our submitted 
filters on this year’s tasks:  

From the comparison between Fdw2 and Fdw4, 
we found the fuzzy weighting method could make 
some improvements to the filter. From the 
comparison between Fdw1 and Fdw3, we found in 
intermediate tasks Fdw3 performs as well as or even 
better than Fdw1, while in delayed and active 
learning tasks, Fdw1 has some obvious advantages. 
Yet how the maximum length for each mail to be 
processed could affect the filter performance was still 
not determined by our experiments. And from the 
comparison between Fdw1 and Fdw2, which actually 

Tasks/Filters Fdw1 Fdw2 Fdw3 Fdw4 Median Best 

Trec07p-full 0.0198 0.0195 0.0157 0.0109 0.03 0.003

Trec07p-delay 0.0223 0.0159 0.0367 0.0229 0.1 0.01 

Trec07p-partial 0.1066 0.0921 0.1109 0.1151 0.1 0.03 

Trec07p-active1000 0.0641 0.0881 0.1629 0.2029 0.1 0.01 

Mrx3-immediate 0.0155 0.0147 0.0154 0.0255 0.1 0.003

Mrx3-delay 0.0747 0.0751 0.1062 0.1258 0.3 0.03 
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shows the filter performance with multi-centre model 
and without multi-centre model. They both perform 
well, but we haven’t found obvious improvements by 
applying the model to the filter.  

So far we still have several problems to solve in 
our future work. As for the multi-centre model itself, 
we think it has some reasonable factors to solve the 
spam filtering scenario; this is an attempt during the 
beginning phase of our work and we would try to 
improve our methods more considerately. And 
another crucial point in our further work would be 
how to control the computational cost of the spam 
filtering method. As the mail streams arrived 
continuously, it is a realistic problem to control the 
expanding scale of temporal and spatial cost, 
especially for the multi-centre and clustering related 
methods. So we would focus the study on making our 
spam filtering methods more adaptable to huge 
volume stream data in real world. 

3. Enterprise Track 

3.1. Candidate profiling and searching 
For the expert search task, as no candidate list was 
provided, the first thing we did was to recognize 
emails using the pattern “first.last@csiro.au” as 
expert identifiers and found candidates’ full names in 
the context of emails. However, we got almost 4000 
candidates and the list seemed too big. As key people 
were CSIRO staff members who were the correct key 
contacts for this topic e.g. the project leader 
according to the guideline, we filtered the candidate 
list by the rule that the candidate should be contact on 
some project at least once. In addition, to evaluate the 
relationship between expert and page, we also gave 
higher weight if the candidate appeared in the 
document as a contact for he was more responsible 
for the document than other candidates. Since the tie 
between the email and the name can not be 
completely accurate. We separately calculated the 
score for each candidate’s identifier on each topic, 
one for the candidate's name and another for his 
email. We added the two scores in some proportion 
to get the candidate’s final score. 
 

3.2. Document grouping and categorizing 

The enterprise track had two big changes from last 
year: new corpus and no candidate list for the expert 
search task. However, some example pages were 
listed for each topic to simulate the pages which were 
often clicked according to the click log. We found 
that the most example key pages were of same kind: 
home project pages which were preferred for the task. 
So our system made feedback runs based on the page 
structure to find the same kind pages as example key 
pages. We analyzed the page, got out the id from 
html elements, for example <table 
id=”expertTable” ….> ….</table>, and made all ids 
stable and hash them up. Using the hash value as the 
key in the dictionary, every single page had the hash 
value as the recognizing of the “type” of it. When we 
found those pages, we gave those pages higher 
weight to improve the rank of the documents relevant 
to the topic. 

3.3. Overview, strategies and runs 
Document Search Task was the first enterprise track 
experiment involving document search over a full 
crawl. As our users were science communicators, 
retrieved documents should be those that help them 
create an overview page in the given topic area, 
which was quite different from the general document 
search task [1]. These “key” pages would tend to be 
authoritative pages such as project homepages and 
documents dedicated to the topic, rather than pages 
that made passing mention of the topic. For 
document search, we submitted four runs. First, 
FDUBase was query only run. We used Lemur as the 
search engine to index and query the topics. We 
added the score of the document by analyzing the 
pages which linked to this document. Second, we use 
auto term expansion mehod in FDUExpan run. By 
analyzing the narrative field, we automatically chose 
candidate expansion terms for topics and calculate 
the frequencies of the terms in the first five 
documents in the search result by Lemur. We used 
those high frequency terms as query terms for the 
second time search. Then we added the score of the 
document by analyzing the pages which linked to this 
document. Third, we used html tag as classification 
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evidence in FDUFeedT run. We used FDUBase as 
the basic result. Then we analyzed the structure of 
each document and if the document had similar 
structure as the documents in the page field, we 
added the score of the document. At last, we took 
advantage of hits score as classification evidence for 
FDUFeedH run. We used HITS algorithm to judge 
the quality of the document and regard documents of 
the same quality as a category. We used FDUBase as 
the basic result. If the document was in the same 
category as the documents in the page field, we 
added the score of the document. 

For expert search, we also submitted four runs. 
First, FDUn5e5 1, which gave the portion that name: 
50% and email 50%. We detected email addresses 
and relevant full names automatically from the 
corpus. We also filtered the candidate list and remain 
those who were probably contacts on some projects. 
We calculated two scores for each candidate, one for 
the candidate's name and another for his email. We 
added the two scores by 50% and 50%. Second, 
FDUn3e7 3 which gave name 30% and email 70%. 
We detected email addresses and relevant full names 
automatically from the corpus. We also filtered the 
candidate list and remain those who were probably 
contacts on some projects. We calculated two scores 
for each candidate, one for the candidate's name and 
another for his email. We added the two scores by 
30% and 70%. Third, FDUn7e3 4, which gave name 
70% and email 30%. We detected email addresses 
and relevant full names automatically from the 
corpus. We also filtered the candidate list and 
remained those who were probably contacts on some 
projects. We calculated two scores for each candidate, 
one for the candidate's name and another for his 
email. We added the two scores by 70% and 30%. 
Finally, FDUGroup 2, which used group search. We 
detected email addresses and relevant full names 
automatically from the corpus. We also filtered the 
candidate list and remain those who were probably 
contacts on some projects. We divided the corpus to 
several groups according to the document structure. 
We gave different weights for the different kinds of 
the documents when calculating each candidate's 
score on the topic. 
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3.4. Conclusion 
From above illustrations we can conclude that: to 
conquer the new task we were using several new 
approaches such as expert profiling and document 
categorizing. We mainly illustrated the technical 
issues we faced after an introduction of expert search. 
Also we explained where our final result was coming 
from and how we chose our model and organized the 
system. The results show that the “group” method did 
not improve the document search result effectively. It 
is mainly because the example pages given do not 
cover all kinds of pages required by users. FDUn7e3 
run preformed best in all of the runs which shows the 
importance of name in expert finding. Although the 
email is more correct, names are more helpful in 
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person’s expertise judgment.  
In the further work, we will pursue the study of 

finding similar-structure documents to improve the 
document search results. We will focus on the 
methods to extract similar-structure documents more 
accurately. Furthermore, we will pay great attention 
to the improvement of expert profiling model to get 
more information about the experts besides their 
expertise. 

4. Legal Track 

4.1. Task Introduction 
WIM team participated in the main task of TREC 
2007 Legal Discovery Track, and submitted 5 runs 
finally (1 manual + 4 autos). The objective of Legal 
Track is to evaluate the efficacy of automated support 
for review and production of electronic records in the 
context of litigation, regulation and legislation. The 
corpus consists of 650 xml files, 60G+ after unzipped. 
Each file contains multiple documents. In the 
document, 61 types of xml leave nodes form all 
textual information. Since legal corpus is converted 
from OCR format by program automatically, corpus 
may contain lots of meaningless text blocks and 
latent data inconsistency, which makes it a challenge 
for lawyers to lookup related documents supporting 
their quoting. The query of each topic is give by xml 
format as well. Participating teams can build queries 
in any way they like, using materials provided in the 
complaint, the production request, the boolean query, 
and any external resources that they have available. 

4.2. System Overview 

Before building search platform, we found there were 
many duplicated steps between pro-processing 

corpus and building query. So we built a unified 
framework to prepare the process of indexing and 
searching. The system framework lists as above. 

In the framework, considering the efficiency, we 
employed Indri 2.3 (also known as next generation of 
lemur) as the main engine to index the whole corpus 
and returned the basic query results. The 
management module was called Yatata coded by java. 
Yatata was developed by WIM team for this year’s 
legal track. It was an independent mini search engine 
fully implementing B-tree dictionary, core inverse 
table, query purser and candidate documents ranking. 
The reason why we took effect to develop a private 
search engine is that the experiment of many new 
methods could not be implemented in existed engine 
framework. But finally we only apply it as 
management module to do assistant work for 
Yatata’s low performance when the scale of corpus 
extends to 50GB+. To make it clear, we made 
experiments between Indri and Lucene on the 
indexing efficiency using their default parameter 
settings. Indri took 48 hours to finish indexing the 
whole corpus while Lucene took 26 hours to finish 
1/26 of them. For the reason that java is mush slower 
than native code in I/O operation we applied Yatata 
as the assistant of Indri. 

In index step, we make two copies of 
depositories. First one was indexed by Indri directly 
without any pro-processing. The second one 
processed by Yatata, which removed “stop words” 
and “meaningless words”, took word relevance 
statistics, constructed distribution model (abbreviated 
to DM, which will be described in next section) and 
finally input to Indri as another parallel depository. 

In the step of searching, we generated different 
runs based on depository A or B. Required by the 
virtual court scenario, legal track preferred recall to 
precision in the production of documents. Most of 
teams in last year took the step of query expansion in 
their system. We tentatively handled the query 
expansion by applying DM built in the step of 
indexing by Yatata. Next section is the detail about 
DM application. 

4.3. Methodology 
Similar to idea of scoring and term weighting[11], we 
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calculated the distribution of each word in whole 
corpus as the background model. In background 
model, each word had a mapped float value BMw 
representing how frequently it appeared in the whole 
corpus. This mapping information was maintained by 
Yatata. When one topic was submitted to Yatata, by 
measuring the distribution of words in fields of 
<request text>, <instruction>, <definition>, 
<complaint> related to each topic, Yatata generated 
topic-specified distribution models for each topic. In 
this model a float value TMw was mapped to each 
word appeared in query expression. Here is the 
expansion formulation: 

 

In above formulation, avg(TM,BM) denotes for 
the average value of the division TMi/BMi for each 
word i in TM. Similarly σ(TM,BM) denotes for 
standard deviation of the value TMi/BMi. DM takes 
the factor into consideration that more frequently 
word appeared in specific topic relatively, the more 
important it related to current topic.  

On opposite sides of expansion, we tentative 
carried out the method of query shrink as follow: 

 
Among the five runs submitted by WIM, four of 

them were generated by applying DM. and the query 
of last one is built by manual as baseline. Here is the 
list of all runs. 

4.4. Result Analysis 
All runs submitted by WIM only took use of textual 
information. Since final scores were generated by 
pooling algorithm, we selected est_PB and est_RB as 

the main evaluation. Here is the illustration of the 
comparison among the five run iteratively by topics. 
The baseline fdwim7xj approached to median score 
of whole runs in Legal Track 2007. 
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From the illustration, we can learn that different 
methods would cause great performance fluctuation. 
Since Legal Track 2007 gave the scores by topics, in 
order to make the comparison clear, we used the 
aggregate voting function. For each topic, if the run 
ranked at 1st, the bonus was 4 points; and the 2nd 
with bonus 3 points, and etc. We reached the result in 
evaluation est_PB that fdwim7rs > fdwim7xj > 
fdwim7sl > fdwim7ss > fdwim7ts, and the same as 
est_RB. 

To conclude, only fdwim7rs was above the 
median score, while other three runs were under 
performance. This result leaded to the conclusion 
that: 
a) Using DM to query shrink could harvest better 

performance 
b) Query expansion implemented DM seems to 

reduce the original precision and recall. In 
another word, the text information existed in 
fields of <instruction>, <definition>, 
<complaint> may be useless in enhancing 
retrieval performance. 

c) Indri prefers raw materials to pre-processed 
material during the step of indexing. 
The future work can be focused on handling data 

inconsistency in legal corpus. Perhaps many runs of 
our team suffered low recall scores by unsuited 

Run ID 

Type 
fdwim7ts fdwim7rs fdwim7ss fdwim7sl fdwim7xj

auto/manual auto auto auto auto manual 

pre-process 

corpus 

no no no yes no 

DM to 

expansion 

no no yes no no 

reduced by 

DM  

no yes no no no 

otherwise

BMTMBMTMavg
BM
TMif

falsewadd
truewadd

TMwforeach
w

w ),(),(
)(
)( σ+>

⎩
⎨
⎧

=
=

∈

otherwise

BMTMBMTMavg
BM
TMif

falsewdel
truewdel

TMwforeach w

w ),(),(
)(
)( σ−<

⎩
⎨
⎧

=
=

∈
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pre-processing. 

5. Genomics Track 

5.1 Overview 
For the TREC 2007 Genomics Track, the system was 
required to extract out the relevant passages of text 
that answers the topic questions [10]. It’s similar to 
the task of Genomics Track 2006 except the question 
types. We group submitted three runs based on three 
different score models. Three methods have the 
common process which extracts the concepts for 
followed scoring process. 

5.2 Relevant Concept Extraction 
A topic question is an information need unit, in 
which some key biological entities can catch the 
leading need. The relevant concept extraction is 
based on the heuristic method that the frequent 
biological entities occurring around those key ones in 
the text should have some association with them. So 
we find the relevant concepts from the context of 
those key entities. Concretely, we retrieval top 1000 
sentences for each topic question by language model 
ranking strategy, and remove these sentences that 
don’t contain any of those key biological entities. We 
think of the top most frequent biological entities as 
relevant concepts according to the remaining 
sentence snippets. The extracted concepts are used to 
expand the corresponding topic question. 

5.3. Score Models 
We employ three methods to score sentences: 1) 
sentence language model; 2) context language model; 
3）boost co-occurring method. 

The first one, sentence language model, is our 
baseline method, which looks at each sentence in the 
corpus as a document. Then the language model with 
a linear smoothing is used to score and rank them 
according to the expanded query.  

The context language model definitely involves 
the context component. That’s, the context text can 
increase the score of a sentence to some extent 
according to the text relevance with the given topic 
question. We score the sentence by employing 
following context language model: 

)1(

1
,, )|()|(),|( αα −

=
∏= ki

n

i
kjikj DcpScpQSAP

∑
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−+
n

i
kikji DcpScprank
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The third method scores sentence according to 

two basic components: baseline score and boosted 
score derived from the co-occurring of different type 
of biological entities. The baseline score is calculated 
from the following formula: 

i

n

i

i C
SLen
C∑

=

=
1

BScore
 

The boosted score is calculated as follows: 
BoostedScore = 2 ×  min(rEntityNum, 

lEntityNum) × min(maxlweight,maxrweight) 
The final score of a given sentence is the sum of 

these two parts. That is: 
     SentenceScore = BScore + BoostedScore 

5.4. Results 
The following figures give the result of each run 
regard to each performance measure method: 
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Passage2 Measure
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For each measure, the overall performance of 
fdrun2 is better than other two runs. Two reasons 
support the success of the second method: Firstly, the 
concepts, instead of key words of questions, adopted 
in the method guarantee a better recall; Secondly, the 
contexts of each underlying answer sentence boost 
the precision of answers to each question.  
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