
 1

WIM at TREC 2007

Jun Xu, Jing Yao, Jiaqian Zheng, Qi Sun, Junyu Niu
{062021158, 062021115, jqzheng, 052021188, jyniu}@fudan.edu.cn
Computer Science and Engineering Department of Fudan University,

Shanghai, China 200433

Abstract
This paper introduced the four tracks that WIM-Lab
Fudan University had taken part in at TREC 2007.
For spam track, a multi-centre model was proposed
considering the characteristics of spam mails in
contrast of traditional 2-class classification
methodology, and the incremental clustering and
closeness-based classification methods were applied
this year. For enterprise track, our research was
mainly focused on ranking functions of experts and
selecting correct supporting documents regarding to a
given topic. For legal track, the effects of word
distribution model in query expansion and various
corpus pre-processing methods were mainly
evaluated. For genomics track, three score methods
were proposed to find the most relevant text snippets
to a given topic. This paper gives an overview of the
methods employed for each sub tasks, and compares
the results of each track.

1. Introduction
For spam track, in real world there could be several
different genres in the spam category. There was a
great diversity within the single spam class, while at
the same time they might be similar to some certain
kinds of ham mails. For this reason, in addition to the
traditional 2-class classification methodology, we
proposed a multi-centre model and applied the
incremental clustering and closeness-based
classification method to the Spam Track tasks this
year. We applied character-level model and online
linear classifier as our basic classification method,
then we adopted a multi-centre model to treat the
mails that were equivocal to the basic classifier. This
method was evolved from the idea once used in [7]
for expanding a credible negative sample set from the

unlabeled training corpus. We developed this idea to
make it compatible to the spam-filtering task.

For enterprise track, we participated in both
tasks for the track. A new enterprise corpus was
introduced in the track this year, CSIRO repository
instead of W3C repository, which makes great
difference in the tasks and the topics for the tasks
were provided by science communicators which are
of great real meaning. However, chances always
come from the challenges. Some new methods are
used to accomplish the tasks.

For legal discovery track, our team submitted 5
runs finally (1 manual + 4 autos). The objective of
Legal Track is to evaluate the efficacy of automated
support for review and production of electronic
records in the context of litigation, regulation and
legislation. The corpus consists of 650 xml files,
60G+ after unzipped. Each file contains multiple
documents. In the document, 61 types of xml leave
nodes form all textual information. Since legal corpus
is converted from OCR format by program
automatically, corpus may contain lots of
meaningless text blocks and latent data inconsistency,
which makes it a challenge for lawyers to lookup
related documents supporting their quoting. The
query of each topic is give by xml format as well.
Participating teams can build queries in any way they
like, using materials provided in the complaint, the
production request, the boolean query, and any
external resources that they have available.

For genomics track, the system was required to
extract the relevant passages of text that answers the
topic questions [10]. It’s similar to the task of
Genomics Track 2006 except the question types. Our
group submitted three runs based three different
score models. Three methods had the same process
which extracted the concepts for followed scoring
process.

 2

Message by message

Character-level matching

Feature map

updating
First-layer results

Linear classifier

Evaluation Results

Closeness based classification

Updating

multi-centre model

Misty messages

Valuable messages

Second-layer results

Score Intergrating

./train

Second layer

First layer

./classify

System Architecture

2. Spam Track

2.1. Overview
Many traditional spam filters regarded anti-spam
challenge as a 2-class classification problem, yet
there was a potential premise for us to use common
2-class classification methods to solve this problem.
The premise was that samples in the same class were
quite similar while samples in different classes had a
distinct difference. Common 2-class classification
methods could somehow extract some implicit
features to predict whether a mail was ham or spam.
But empirically the border between spam and ham
was not so clear even for manual recognition. And
there was also a great diversity within the single
spam or ham class. For instance, there could be
several different genres in spam, such as automated,
list, newsletter, phishing, sex, virus and etc. Various
kinds of spam mails were quite different to each
other, while at the same time they might be similar to
some certain kinds of ham mails.

For this reason, in addition to the traditional
2-class classification methodology, we proposed a
multi-centre model and applied the incremental
clustering and closeness-based classification method
to the Spam Track tasks this year. And we tried to
evaluate whether this method could make some
further improvements to the precision of the spam
filters.

We applied character-level model and online
linear classifier as our basic classification methods,
which were inspired by IJS [5] and Tufts [6] in last
two years’ tasks. Then we adopted a multi-centre
model to treat the mails that were equivocal to the
basic classifier. This method [7] was evolved from
the idea once used for expanding a credible negative
sample set from the unlabeled training corpus, and
worked well on the TREC 2005 Genomics Corpus.
We developed this idea to make it compatible to the
spam-filtering task.

2.2. Methods
The “FDW” filter we submitted had a two-layer
structure. We used character-level model and linear
classifier as the first-layer filter. During the “classify”

period, each mail processed through the first-layer
filter would be given a spamminess to denote the
likelihood to be a spam or not. Mails with a relatively
extreme spamminess score would skip the
second-layer filter and were put into the spam or ham
class directly, while those with moderate scores
would go to the next-layer filter. The second-layer
filter used a multi-centre model. We applied a
closeness-based text classification method on it to get
an adjustment score of the mail. Finally, we
integrated the scores of the two layer filters together
to determine if the incoming mail was a spam.

During the “train” period, the parameters of the
first-layer filter were adjusted according to the online
linear classifier mechanism. We choose part of the
mails by the spamminess score given by the
first-level filter, and then use incremental clustering
method to establish and update a multi-centre model
for the second-layer filter. The details of these
methods were described in the following subsections.

 3

spam

ham

ham

virus sex

newsletter

phishing
list

automate

2.2.1.Character-Level Matching and Linear
Classification
Character-level spam filters had the advantage to
avoid the vulnerability of the key-word escape
attacking by spammers compared with those
bag-of-words filters. [5] and [6] had shown this
advantage on the basis of the experimentation in last
two years’ Spam Track. We designed our first-layer
filter referring to the inexact word matching idea by
[6], but made some changes.

The first difference was that we used a fuzzy
weighting strategy to denote the similarity of the
character-level matching instead of giving a binary
score to each explicit string feature, since one certain
string in the feature space might have tens of
transformed forms by the inexact matching method,
and from the empirical view most of them would
have a relation with the target string but weaker than
the exact matching. The related weighting method
was once proposed in [9]. The method introduced a
decay factorλ∈(0,1) to weight the presence of a
certain feature in a text. The weight of each
dimension is λn, where n is determined by the
similarity between the incoming text and the string in
the feature space. In our system, as we only
considered one-character obfuscation as [6] did. We
simplify our fuzzy weighting strategy as follows:

matching condition weighting score
exact matching 1
inexact matching λ
no matching 0

The second difference was that we used a fixed
length of string feature space instead of limiting of
the string length in an optional range. This would
save some computational cost and empirically too
short length of string would do little benefit but bring
noise to the filter.

After the character-level feature mapping, we
applied the Perceptron classifier to do the first-layer
filtration.
2.2.2. Incremental Clustering and Closeness Based
Classification
There were two hypotheses for us to think of using
the multi-centre model in our system.

The first hypothesis was that in one hyperspace,
the spam and the ham were not distributed as two

single clusters. By practical experience, we found
that there were a variety of types of mails in the spam
category in the real world. Each type of mails had
their own characteristics and was quite different from
each other type. So we suggested a model that spams
were represented in scattered clusters while hams still
in one single cluster. Later we would evaluate if this
model would be more reasonable to represent the
spam and ham distribution by experiments.

The second hypothesis was that for a practical
spam filter, a low hm% misclassification rate was
more important than sm%. So a misty mail would be
judged spam only when it was a credibly spam
sample in the multi-centre model.

For these two hypotheses, we applied
incremental clustering and closeness based
classification methods to our system.

The similar methods were originally proposed
by [7], and had produced effective results for the

classification task on TREC 2005 Genomics Corpus.
The scenario of the method was that there was a
corpus with some pre-labeled credible positive
samples and only a few credible negative samples
extracted by the Rocchio classifier, and then it was
needed to expand the negative sample set to facilitate
further classification. The methods were overviewed
as follows.

Firstly it used the k-means algorithm to divide
the previously-produced credible negative sample
sets into k clusters to generate a multi-centre model.
Next a closeness-based classification method is
applied to expand the negative sample sets. We
denoted the k clusters of the credible negative set

with 1 2, ,..., kN N N , and denoted the centers of them

as 1 2, ,..., kC C C .

The closeness of each cluster represents the

 4

average similarity of the samples within a cluster, it
was represented as:

1() (,)
j i

i j i
d Ni

Cl N S d C
N ∈

= ∑

The average closeness of the negative sample set
(including k clusters) was:

1

1() ()
k

negative i
i

Cl N Cl N
k =

= ∑

And the difference between the similarity within
the negative set and the similarity between the
positive and negative sets was defined as:

1

1 1() (,)
j i

k

negative j positive
i d Ni

Df Cl N S d C
k N= ∈

= − ∑ ∑

For an incoming sample text d, there were two
requirements need to be filled to be regarded as a
negative sample:

1...max { (,) (,)}
ii k N positiveS d C S d C Df= − >

1..max { (,)} ()
ii k N negativeS d C Cl N= >

The closeness based method mainly solved two
problems. One was that it was compatible to the
situation that the samples in the hyperspace are not
distributed centralized and well-proportioned. The
second point was that it made the expanding negative
samples credible and left those misty samples
untreated.

These two points were actually suitable to the
situation we met in the anti-spam scenario. While in
our hypotheses proposed above, the spam mails were
distributed in several scattered clusters, and moreover,
we needed to be more careful to judge a mail as spam
than ham in order to avoid the risk of losing
important messages.

Here was an analogy between the scenarios in
the Closeness based method to expand negative
sample sets [7] and in the Spam Track.

As for the common benefits the idea of [7]

would bring, we inherit the idea in our second-layer
filter but made some changes to make it adaptive in
our system. The main challenge we face was the
computational cost of the system since an online
spam filter has many limits on time and space
requirements.

For the “train” aspect, the main task was to
establish a multi-centre model and update the related
information of each clusters when new mails coming.
As the mails were coming in a stream form and
considering the time limit for the system, it was
unacceptable to apply a k-means or some other static
clustering methods to the system. We adopt two
measures to solve this problem. First we limit the
number of mails to be trained in the second-layer
filter. We set a score range r and only the mails
whose first-layer filter score were accepted by the
range were regarded as valuable to be trained in the
next-layer filter. Secondly we applied an incremental
clustering method to build and update the
multi-center model.

The pseudo code was as follows.

Closeness based method to
expand negative sample sets
[7]

Our System

Credible Negative samples Known Spam mails

Labeled Positive samples Known Ham mails
Unhandled samples needed to
be judged if it belonged to the
expanding negative sets

Incoming messages
to be judged as ham
or spam

Negative examples were not
distributed well-proportioned
and needed to be clustered

Spams were
multi-centered

Only credible negative texts
would later be included in the
negative sets

Low hm% is more
important than sm%
in real world

 5

Second-layer Training

1. if (message.first_layer_score ∈ r)

2. if (message.judge=ham)

3. add message to ham cluster

4. update Cpositive, Df

5. end if

6. else if (message.judge=spam)

7. if (distance(message,nearest cluster centre Ci)<t)

8. add message to the specific cluster Ni

9. update Ci, Cl(Ni), Cl(Nnegative),Df

10. end if

11. else if (distance(message,nearest cluster centre)>=t)

12. create new cluster Nk+1

13. update Ck+1, Cl(Nk+1), Cl(Nnegative),Df

14. end if

15. end if

16. end if

Considering the computational cost, we changed
the calculation of some attributes into an approximate
form to make it adaptive for incremental
computation.

[(1)] /new oldC C N d N≈ × − +

() [() (1) (,)] /
newi new i old i N iCl N Cl N N S d C N≈ × − +

1

1() (,)
k

negative i positive
i

Df Cl N S C C
k =

≈ − ∑

And the parameter t also played an important
role to control the number of clusters and the effect
of the second-layer filter.

During the experiments we found that the
computation of closeness Cl and difference Df would
bring little benefit to this filtering scenario, so a more
simplified method was used in our submitted
versions. We only computed and updated the cluster
centre C of each cluster during the clustering. And
the filtering results were determined by:

1...max { (,) (,)}
ii k N positiveS d C S d C= −

Finally we integrated this score and the
first-layer score together with certain weights to work
out the final spamminess score.

2.3. Systems submitted for Trec 2007

2.3.1. Active Learning Mechanism
This year we didn’t put much emphasis on the active
learning mechanism. We proposed a naïve
mechanism as follows: We tried to train the mails as
early as possible, and we assumed that mails with
extreme spamminess score were credible for training.
To implement this mechanism under the Spam Track
Framework, we simply gave those mails with
moderate spamminess scores “Label N” labels, and
gave those mails with extreme spamminess scores
“Label B” labels.
2.3.2. System Configuration
This year we submitted four filters to participate in
the Spam Track. The configurations of the filters
were as follows:
Filters/Methods Closeness

Based

Clustering

Inexact

Matching

Fuzzy

Weighting

Upper

Limit of

Characters

to Process

Fdw1 Yes Yes Yes 5000

Fdw2 No Yes Yes 5000

Fdw3 Yes Yes Yes 3000

Fdw4 No Yes No 5000

2.4 . Results and Future Works
Here is the (1-ROCA)% statistics of our submitted
filters on this year’s tasks:

From the comparison between Fdw2 and Fdw4,
we found the fuzzy weighting method could make
some improvements to the filter. From the
comparison between Fdw1 and Fdw3, we found in
intermediate tasks Fdw3 performs as well as or even
better than Fdw1, while in delayed and active
learning tasks, Fdw1 has some obvious advantages.
Yet how the maximum length for each mail to be
processed could affect the filter performance was still
not determined by our experiments. And from the
comparison between Fdw1 and Fdw2, which actually

Tasks/Filters Fdw1 Fdw2 Fdw3 Fdw4 Median Best

Trec07p-full 0.0198 0.0195 0.0157 0.0109 0.03 0.003

Trec07p-delay 0.0223 0.0159 0.0367 0.0229 0.1 0.01

Trec07p-partial 0.1066 0.0921 0.1109 0.1151 0.1 0.03

Trec07p-active1000 0.0641 0.0881 0.1629 0.2029 0.1 0.01

Mrx3-immediate 0.0155 0.0147 0.0154 0.0255 0.1 0.003

Mrx3-delay 0.0747 0.0751 0.1062 0.1258 0.3 0.03

 6

shows the filter performance with multi-centre model
and without multi-centre model. They both perform
well, but we haven’t found obvious improvements by
applying the model to the filter.

So far we still have several problems to solve in
our future work. As for the multi-centre model itself,
we think it has some reasonable factors to solve the
spam filtering scenario; this is an attempt during the
beginning phase of our work and we would try to
improve our methods more considerately. And
another crucial point in our further work would be
how to control the computational cost of the spam
filtering method. As the mail streams arrived
continuously, it is a realistic problem to control the
expanding scale of temporal and spatial cost,
especially for the multi-centre and clustering related
methods. So we would focus the study on making our
spam filtering methods more adaptable to huge
volume stream data in real world.

3. Enterprise Track

3.1. Candidate profiling and searching
For the expert search task, as no candidate list was
provided, the first thing we did was to recognize
emails using the pattern “first.last@csiro.au” as
expert identifiers and found candidates’ full names in
the context of emails. However, we got almost 4000
candidates and the list seemed too big. As key people
were CSIRO staff members who were the correct key
contacts for this topic e.g. the project leader
according to the guideline, we filtered the candidate
list by the rule that the candidate should be contact on
some project at least once. In addition, to evaluate the
relationship between expert and page, we also gave
higher weight if the candidate appeared in the
document as a contact for he was more responsible
for the document than other candidates. Since the tie
between the email and the name can not be
completely accurate. We separately calculated the
score for each candidate’s identifier on each topic,
one for the candidate's name and another for his
email. We added the two scores in some proportion
to get the candidate’s final score.

3.2. Document grouping and categorizing

The enterprise track had two big changes from last
year: new corpus and no candidate list for the expert
search task. However, some example pages were
listed for each topic to simulate the pages which were
often clicked according to the click log. We found
that the most example key pages were of same kind:
home project pages which were preferred for the task.
So our system made feedback runs based on the page
structure to find the same kind pages as example key
pages. We analyzed the page, got out the id from
html elements, for example <table
id=”expertTable” ….> ….</table>, and made all ids
stable and hash them up. Using the hash value as the
key in the dictionary, every single page had the hash
value as the recognizing of the “type” of it. When we
found those pages, we gave those pages higher
weight to improve the rank of the documents relevant
to the topic.

3.3. Overview, strategies and runs
Document Search Task was the first enterprise track
experiment involving document search over a full
crawl. As our users were science communicators,
retrieved documents should be those that help them
create an overview page in the given topic area,
which was quite different from the general document
search task [1]. These “key” pages would tend to be
authoritative pages such as project homepages and
documents dedicated to the topic, rather than pages
that made passing mention of the topic. For
document search, we submitted four runs. First,
FDUBase was query only run. We used Lemur as the
search engine to index and query the topics. We
added the score of the document by analyzing the
pages which linked to this document. Second, we use
auto term expansion mehod in FDUExpan run. By
analyzing the narrative field, we automatically chose
candidate expansion terms for topics and calculate
the frequencies of the terms in the first five
documents in the search result by Lemur. We used
those high frequency terms as query terms for the
second time search. Then we added the score of the
document by analyzing the pages which linked to this
document. Third, we used html tag as classification

 7

evidence in FDUFeedT run. We used FDUBase as
the basic result. Then we analyzed the structure of
each document and if the document had similar
structure as the documents in the page field, we
added the score of the document. At last, we took
advantage of hits score as classification evidence for
FDUFeedH run. We used HITS algorithm to judge
the quality of the document and regard documents of
the same quality as a category. We used FDUBase as
the basic result. If the document was in the same
category as the documents in the page field, we
added the score of the document.

For expert search, we also submitted four runs.
First, FDUn5e5 1, which gave the portion that name:
50% and email 50%. We detected email addresses
and relevant full names automatically from the
corpus. We also filtered the candidate list and remain
those who were probably contacts on some projects.
We calculated two scores for each candidate, one for
the candidate's name and another for his email. We
added the two scores by 50% and 50%. Second,
FDUn3e7 3 which gave name 30% and email 70%.
We detected email addresses and relevant full names
automatically from the corpus. We also filtered the
candidate list and remain those who were probably
contacts on some projects. We calculated two scores
for each candidate, one for the candidate's name and
another for his email. We added the two scores by
30% and 70%. Third, FDUn7e3 4, which gave name
70% and email 30%. We detected email addresses
and relevant full names automatically from the
corpus. We also filtered the candidate list and
remained those who were probably contacts on some
projects. We calculated two scores for each candidate,
one for the candidate's name and another for his
email. We added the two scores by 70% and 30%.
Finally, FDUGroup 2, which used group search. We
detected email addresses and relevant full names
automatically from the corpus. We also filtered the
candidate list and remain those who were probably
contacts on some projects. We divided the corpus to
several groups according to the document structure.
We gave different weights for the different kinds of
the documents when calculating each candidate's
score on the topic.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 11 13 15 18 20 22 24 26 28 30 32 35 39 41 43 45 49

TopicID

M
AP

FDUBase

FDUExpan

FDUFeedH

FDUFeedT

MAP Result for Document Search Task

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

TopicID

M
AP

FDUGroup

FDUn3e7

FDUn5e5

FDUn7e3

MAP Result for Expert Search Task

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

TopicID

r
e
c
i
p
_
r
a
n
k FDUGroup

FDUn3e7

FDUn5e5

FDUn7e3

RR Result for Expert Search Task

3.4. Conclusion
From above illustrations we can conclude that: to
conquer the new task we were using several new
approaches such as expert profiling and document
categorizing. We mainly illustrated the technical
issues we faced after an introduction of expert search.
Also we explained where our final result was coming
from and how we chose our model and organized the
system. The results show that the “group” method did
not improve the document search result effectively. It
is mainly because the example pages given do not
cover all kinds of pages required by users. FDUn7e3
run preformed best in all of the runs which shows the
importance of name in expert finding. Although the
email is more correct, names are more helpful in

 8

Yatata

Indri

Corpus

Depository Depository

depend_Index

Topic

Query

Result A

Result B

person’s expertise judgment.
In the further work, we will pursue the study of

finding similar-structure documents to improve the
document search results. We will focus on the
methods to extract similar-structure documents more
accurately. Furthermore, we will pay great attention
to the improvement of expert profiling model to get
more information about the experts besides their
expertise.

4. Legal Track

4.1. Task Introduction
WIM team participated in the main task of TREC
2007 Legal Discovery Track, and submitted 5 runs
finally (1 manual + 4 autos). The objective of Legal
Track is to evaluate the efficacy of automated support
for review and production of electronic records in the
context of litigation, regulation and legislation. The
corpus consists of 650 xml files, 60G+ after unzipped.
Each file contains multiple documents. In the
document, 61 types of xml leave nodes form all
textual information. Since legal corpus is converted
from OCR format by program automatically, corpus
may contain lots of meaningless text blocks and
latent data inconsistency, which makes it a challenge
for lawyers to lookup related documents supporting
their quoting. The query of each topic is give by xml
format as well. Participating teams can build queries
in any way they like, using materials provided in the
complaint, the production request, the boolean query,
and any external resources that they have available.

4.2. System Overview

Before building search platform, we found there were
many duplicated steps between pro-processing

corpus and building query. So we built a unified
framework to prepare the process of indexing and
searching. The system framework lists as above.

In the framework, considering the efficiency, we
employed Indri 2.3 (also known as next generation of
lemur) as the main engine to index the whole corpus
and returned the basic query results. The
management module was called Yatata coded by java.
Yatata was developed by WIM team for this year’s
legal track. It was an independent mini search engine
fully implementing B-tree dictionary, core inverse
table, query purser and candidate documents ranking.
The reason why we took effect to develop a private
search engine is that the experiment of many new
methods could not be implemented in existed engine
framework. But finally we only apply it as
management module to do assistant work for
Yatata’s low performance when the scale of corpus
extends to 50GB+. To make it clear, we made
experiments between Indri and Lucene on the
indexing efficiency using their default parameter
settings. Indri took 48 hours to finish indexing the
whole corpus while Lucene took 26 hours to finish
1/26 of them. For the reason that java is mush slower
than native code in I/O operation we applied Yatata
as the assistant of Indri.

In index step, we make two copies of
depositories. First one was indexed by Indri directly
without any pro-processing. The second one
processed by Yatata, which removed “stop words”
and “meaningless words”, took word relevance
statistics, constructed distribution model (abbreviated
to DM, which will be described in next section) and
finally input to Indri as another parallel depository.

In the step of searching, we generated different
runs based on depository A or B. Required by the
virtual court scenario, legal track preferred recall to
precision in the production of documents. Most of
teams in last year took the step of query expansion in
their system. We tentatively handled the query
expansion by applying DM built in the step of
indexing by Yatata. Next section is the detail about
DM application.

4.3. Methodology
Similar to idea of scoring and term weighting[11], we

 9

calculated the distribution of each word in whole
corpus as the background model. In background
model, each word had a mapped float value BMw
representing how frequently it appeared in the whole
corpus. This mapping information was maintained by
Yatata. When one topic was submitted to Yatata, by
measuring the distribution of words in fields of
<request text>, <instruction>, <definition>,
<complaint> related to each topic, Yatata generated
topic-specified distribution models for each topic. In
this model a float value TMw was mapped to each
word appeared in query expression. Here is the
expansion formulation:

In above formulation, avg(TM,BM) denotes for
the average value of the division TMi/BMi for each
word i in TM. Similarly σ(TM,BM) denotes for
standard deviation of the value TMi/BMi. DM takes
the factor into consideration that more frequently
word appeared in specific topic relatively, the more
important it related to current topic.

On opposite sides of expansion, we tentative
carried out the method of query shrink as follow:

Among the five runs submitted by WIM, four of

them were generated by applying DM. and the query
of last one is built by manual as baseline. Here is the
list of all runs.

4.4. Result Analysis
All runs submitted by WIM only took use of textual
information. Since final scores were generated by
pooling algorithm, we selected est_PB and est_RB as

the main evaluation. Here is the illustration of the
comparison among the five run iteratively by topics.
The baseline fdwim7xj approached to median score
of whole runs in Legal Track 2007.

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

fdwim7rs fdwim7sl fdwim7ss fdwim7ts fdwim7xj
The estimated precision @ B

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

fdwim7rs fdwim7sl fdwim7ss fdwim7ts fdwim7xj
The estimated recall @ B

From the illustration, we can learn that different
methods would cause great performance fluctuation.
Since Legal Track 2007 gave the scores by topics, in
order to make the comparison clear, we used the
aggregate voting function. For each topic, if the run
ranked at 1st, the bonus was 4 points; and the 2nd
with bonus 3 points, and etc. We reached the result in
evaluation est_PB that fdwim7rs > fdwim7xj >
fdwim7sl > fdwim7ss > fdwim7ts, and the same as
est_RB.

To conclude, only fdwim7rs was above the
median score, while other three runs were under
performance. This result leaded to the conclusion
that:
a) Using DM to query shrink could harvest better

performance
b) Query expansion implemented DM seems to

reduce the original precision and recall. In
another word, the text information existed in
fields of <instruction>, <definition>,
<complaint> may be useless in enhancing
retrieval performance.

c) Indri prefers raw materials to pre-processed
material during the step of indexing.
The future work can be focused on handling data

inconsistency in legal corpus. Perhaps many runs of
our team suffered low recall scores by unsuited

Run ID

Type
fdwim7ts fdwim7rs fdwim7ss fdwim7sl fdwim7xj

auto/manual auto auto auto auto manual

pre-process

corpus

no no no yes no

DM to

expansion

no no yes no no

reduced by

DM

no yes no no no

otherwise

BMTMBMTMavg
BM
TMif

falsewadd
truewadd

TMwforeach
w

w),(),(
)(
)(σ+>

⎩
⎨
⎧

=
=

∈

otherwise

BMTMBMTMavg
BM
TMif

falsewdel
truewdel

TMwforeach w

w),(),(
)(
)(σ−<

⎩
⎨
⎧

=
=

∈

 10

pre-processing.

5. Genomics Track

5.1 Overview
For the TREC 2007 Genomics Track, the system was
required to extract out the relevant passages of text
that answers the topic questions [10]. It’s similar to
the task of Genomics Track 2006 except the question
types. We group submitted three runs based on three
different score models. Three methods have the
common process which extracts the concepts for
followed scoring process.

5.2 Relevant Concept Extraction
A topic question is an information need unit, in
which some key biological entities can catch the
leading need. The relevant concept extraction is
based on the heuristic method that the frequent
biological entities occurring around those key ones in
the text should have some association with them. So
we find the relevant concepts from the context of
those key entities. Concretely, we retrieval top 1000
sentences for each topic question by language model
ranking strategy, and remove these sentences that
don’t contain any of those key biological entities. We
think of the top most frequent biological entities as
relevant concepts according to the remaining
sentence snippets. The extracted concepts are used to
expand the corresponding topic question.

5.3. Score Models
We employ three methods to score sentences: 1)
sentence language model; 2) context language model;
3）boost co-occurring method.

The first one, sentence language model, is our
baseline method, which looks at each sentence in the
corpus as a document. Then the language model with
a linear smoothing is used to score and rank them
according to the expanded query.

The context language model definitely involves
the context component. That’s, the context text can
increase the score of a sentence to some extent
according to the text relevance with the given topic
question. We score the sentence by employing
following context language model:

)1(

1
,,)|()|(),|(αα −

=
∏= ki

n

i
kjikj DcpScpQSAP

∑
=

−+
n

i
kikji DcpScprank

1
,))|(log)1()|(log(αα

The third method scores sentence according to

two basic components: baseline score and boosted
score derived from the co-occurring of different type
of biological entities. The baseline score is calculated
from the following formula:

i

n

i

i C
SLen
C∑

=

=
1

BScore

The boosted score is calculated as follows:
BoostedScore = 2 × min(rEntityNum,

lEntityNum) × min(maxlweight,maxrweight)
The final score of a given sentence is the sum of

these two parts. That is:
 SentenceScore = BScore + BoostedScore

5.4. Results
The following figures give the result of each run
regard to each performance measure method:

Document Measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Topic

D
o
c
u
m
e
n
t

MA
P

fdrun1

fdrun2

fdrun3

Document MAP of each topic for three submitted

runs
Passage Measure

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Topic

P
a
s
s
a
g
e

MA
P

fdrun1

fdrun2

fdrun3

Passage MAP of each topic for three submitted

runs

 11

Passage2 Measure

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Topic

Pa
s
s
a
g
e
2

MA
P

fdrun1

fdrun2

fdrun3

Passage2 MAP of each topic for three submitted
runs

Aspect MAP of each topic for three submitted
runs

For each measure, the overall performance of
fdrun2 is better than other two runs. Two reasons
support the success of the second method: Firstly, the
concepts, instead of key words of questions, adopted
in the method guarantee a better recall; Secondly, the
contexts of each underlying answer sentence boost
the precision of answers to each question.

Reference
[1] “TREC-2007 Enterprise Track Guidelines”,
http://www.ins.cwi.nl/, 2007
[2] Junyu Niu, Chen Lin, “WIM at TREC Enterprise

Track”, In: Proceedings of 15th Text Retrieval
Conference (TREC 2006), 2006.

[3] Jing Yao, Jun Xu, Cheng Jin, Junyu Niu, “Role
Centralized Modeling for Expert Search in
Enterprise Corporation”, In: Proceedings of The
7th International Conference on Advanced
Language Processing and Web Information
Technology, 2007.

[4] K. Balog, L. Azzopardi, and M. de Rijke.
“Formal models for expert finding in enterprise
corpora”, In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference,
2006.

[5] Spam Filtering using Character-level Markov
Models: Experiments for the TREC 2005 Spam
Track, Andrej Bratko and Bogdan Filipic

[6] Spam Filtering using Inexact String Matching in
Explicit in Explicit Feature Space with On-Line
Linear Classifiers, D. Sculley, Gabriel M.
Wachman, and Carla E. Brodley

[7] A Closeness-based Semi-supervised Text
Classification Method, Zheng Haiqing, Lin Chen
and Niu Junyu

[8] WIM at TREC 2005, J Niu, L Sun, L Lou, F
 Deng, C Lin, H Zheng, X Huang
[9] Text Classification using String Kernels, Huma

Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini and Chris Watkins

[10] TREC 2007 Genomics Track Protocol.
 http://ir.ohsu.edu/genomics/2007protocol.html
[11] Christopher D. Manning, Prabhakar Raghavan,

Hinrich Schütze. An Introduction to Information
Retrieval. Cambridge University Press,
Cambridge, England

Aspect Measure

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Topic

A
sp
e
ct
 M
A
P

fdrun1

fdrun2

fdrun3

