
Concordia University at the TREC 2007 QA track

Majid Razmara, Andrew Fee and Leila Kosseim
CLaC Laboratory

Department of Computer Science and Software Engineering
Concordia University

1455 de Maisonneuve Blvd. West
Montral, Québec, Canada, H3G 1M8

m razma; a fee; kosseim @cse.concordia.ca

Abstract

In this paper, we describe the system we used for the trec-2007 Question Answering
Track. For factoid questions our redundancy-based approach using a modified version of
aranea was enhanced further. Our list question answerer uses a clustering method to
group the candidate answers that co-occur together. It also uses the target and question
keywords as spies to pinpoint the right cluster of candidates. To answer other types of
questions, our system extracts from Wikipedia articles a list of interest-marking terms
and uses them to extract and score sentences from the aquaint-2 and blog document
collections using various interest-marking triggers.

1 Introduction

This year, we continued improving our qascu system on factoid and other questions and we
developed a new subsystem to deal with list questions since we had spent very little time on
it last year. As last year’s system [1] received relatively good results in general, this year
we decided to focus more on list questions, where we did poorly, and improve the factoid
and other modules of the system. Our system for factoid questions, used to exploit two
main approaches: a redundancy-based QA system working on the Web (a modified version
of aranea [2, 3, 4]) and a linguistic-based system working on aquaint-2 only. Since the
linguistic-based approach did not improve the results significantly, we only concentrated on
the redundancy-based approach that seemed more promising. We spent about 1 person-month
improving aranea and modifying it for this year’s trec.

The list question answerer is built on top of our factoid question answerer to receive a
list of candidate answers and filter appropriate candidates. It also extracts a list of possible
answers and adds them to the provided candidate list. Two person-months were spent on the
list question answerer.

We have not significantly changed our other question answerer since last year; merely,
small improvements in query generation and other parts were made. For the other questions,
we used terms extracted from Wikipedia and projected them on the aquaint-2 collection.
Sentences containing these Wikipedia terms are then ranked using various interest-marking
triggers.

1

In the following sections, we describe our question answering system. In section 2, we
describe how we answer factoid questions; in section 3, we describe the list questions module
and in section 4, the other questions module. Finally, we present our results in section 5.

2 Answering Factoid Questions

This year two person-months were spent improving last year’s system and modifying it for
the trec-16 task specifications. The Question Answering System of Concordia University
(qascu) uses a redundancy-based approach working on the World Wide Web to answer
factoid questions. It is a modified version of Jimmy Lin’s aranea question answering system.
aranea is a web-based rule and statistical QA system. A simplistic overview of the system is
that it generates queries and question reformulations, gets snippets from Google and Teoma,
generates n-grams as possible answers, collates the n-grams based on their similarity and does
filtering based on the expected type of answer. Detailed descriptions of aranea can be found
in [2, 3, 4].

While the overall architecture of this subsystem was not significantly changed, many mod-
ifications were made to the existing modules to contribute to an improvement in the overall
system accuracy. A new component was also introduced to tackle the problem of selecting
the most suitable supporting document for each answer.

Apart from these modifications, many non-performance-enhancing changes were made to
accommodate the new corpora introduced this year. For the trec-16 competition, the corpora
consisted of the aquaint-2 text research collection and the blog web research collection. We
did not purchase the blog collection, but nist provided the text of the top 50 documents per
target (as retrieved by the prise search engine when using the target as the query). Following
are the main modifications made to last year’s qascu system.

2.1 Predicting Answer Types

The factoid question answerer subsystem generates expected answer types through a simple
word match and ordering algorithm. Possible expected answer types include: Date, Per-
son, Location, Organization, Website, Number (including the unit, if applicable),
and Other. The generation of an expected answer type is an important early step in the
question answering process. Questions of different types are handled very differently by the
system. Candidate answers that do not match the semantic type expected by the question
are filtered out. By analyzing the results of qascu in the trec-15 competition, it was found
that correctly classified questions had double the probability of being answered correctly when
compared to incorrectly classified questions.

The type classification was improved this year by adding about 50 new words to the
word-match dictionary and modifying the algorithm. By comparing the results of the typing
modules with a manual type classification of the questions, a 6% improvement was observed
(from an accuracy of 87% using the old module, to 93% with the new module) over the same
set of 963 questions.

2

2.2 5-gram Generation

One key step in the pipeline is the generation of all possible n-grams from the text fragments
generated by the request execution module. qascu 2006 had an upper limit of 4-grams. This
caused some questions to be incorrectly answered since the required answer contained five
words. Facilitating the generation of 5-gram candidates solved this problem and did not have
a detrimental effect on other questions with shorter answers.

2.3 Website Questions

Every year, there are a few questions that ask for a company or organization’s web address.
It was decided that these questions can be better answered if they are not treated like typical
questions. A new Google query was specifically formed for these questions. The target of
the question (i.e. the organization’s name) was paired with the word “website” and this was
used to search Google. The domain name of the first returned URL is taken as the candidate
answer.

2.4 Question-Specific Filtering methods

Depending on the expected answer type of a question, the list of candidate answers is filtered
in order to decrease the number of potential answers. The goal is to improve the accuracy of
the system by using simple heuristics to eliminate obviously wrong answers and also answers of
an invalid format. A lot of time was spent on expanding these existing rule sets by examining
the trec data sets from 2004, 2005, and 2006. Some highlights include:

Number questions Typically number questions ask about a specific quantity (e.g What was
the distance of the 1999 Chicago Marathon? or What is the company’s annual revenue?).
Candidate answers to number questions can be filtered based on the expected units of
the number. Several new sets of units were added to the system including: length,
temperature, acceleration, velocity, time, mass, power, money, and age.

Closed-class questions A closed-class question is one with a set of possible answers that
can be exhaustively enumerated. Several new gazetteer lists were added to the system
to improve various closed-class questions (e.g. U.S. television networks; professional
baseball, hockey, football and basketball teams; major cities from around the world;
U.S. state capitals).

Often it is not feasible to completely enumerate all possible answers in a closed-class
domain. In a case like this we use candidate answer promotion as opposed to filtering.
The idea is to boost the rank of certain candidate answers that appear in the closed-class
set (instead of filtering out those that do not). That way, if a correct candidate answer
does not appear in the closed-class set for some reason, it’s not completely removed and
there is a chance to re-rank the answers later in the pipeline.

Acronym questions Another common type of question is one that asks what a certain
acronym stands for. One rule that ended up working quite well was to keep only candi-
date answers that consist of capitalized words; each starting with a letter matching the
acronym pattern. We skip over any internal prepositions since these words are typically

3

not included in an acronym. Conversely, there are questions that ask for the acronym of
an organization’s name. One rule that worked well was to eliminate candidate answers
that were not entirely comprised of uppercase letters, and answers that did not at least
begin with the same letter as the long-form name.

2.5 Answer Projection

The use of a better answer projection step was explored this year. This process involves
finding the best supporting document from the aquaint-2 or blog corpus to be paired with
the web-derived answer. Initially, documents are retrieved from the corpora using the Lucene
search engine. For each document returned we store the name, the Lucene score, and a short
raw text snippet (called the “page summary”). Later in the pipeline, we gather a list of
supporting documents for the top-ranked candidate answer by going through all the page
summaries and selecting those documents in which the answer string (or an inexact version
of it) appears at least once.

The previous version of qascu used an approach to finding the best supporting document
by simply selecting the supporting document with the highest Lucene score. However, this
method is not ideal since the Lucene score considers the TF-IDF of each term in the search
query, but does not take into account the frequency of the terms in the answer string.

Many different methods of answer projection were explored this year. The techniques
were all variations on a ranking system which involved the frequency of both the answer
string and the question target in each document in the supporting document list. We began
with the generation of an inexact version of both the answer string and the question target.
The inexact version is a subset of the string (generated differently depending on the expected
answer type). The full text of each supporting document was then retrieved. The document
with the highest combined frequency of the answer string + the target, multiplied by the
Lucene score, was selected as the best supporting document.

The new answer projection module performed adequately. However, its performance in
selecting the correct supporting document only matched that of the previous year’s approach
(for the 2004 - 2006 trec data). The system selects the correct document for approximately
60% of the correctly-answered.

3 Answering List Questions

Contrary to last year, this year we focused on list questions. The goal was to come up with
a new approach to select the candidate answers, having an initial list of potential answers,
with exploiting merely statistical techniques. We hypothesized that different instances of an
answer to a list question have a special relation one another. Beside the fact that they are
all of the same entity class (e.g. country names, people, book titles, . . .), they co-occur
within the sentences of the documents related to the target and the question. In addition,
the instances of answers also tend to co-occur with the target and question keywords.

Figure 1 shows a few sample snippets from aquaint-2 and the web related to question
232.6 Which airlines use Dulles? (Target: Dulles Airport). As the figure shows, the snippets
contain a few instances of answers along with the target and question keywords.

We propose a novel approach based on the hypothesis that different instances of an answer
to a list question should appear in close proximity of one another and also of the target and

4

Target 232: “Dulles Airport” Question 232.6: “Which airlines use Dulles?”

Source Snippet Containing Answers

ltw 20050712.0032 United, which operates a hub at Dulles . . .Delta, Northwest, American,
British Airways and KLM share four screening machines in the basement.

ttw 20060102.0106 Flyi suffered from rising jet fuel costs and the aggressive response of com-
petitors, led by United and US Airways. They matched Independence’s
fares, ... from Dulles Airport to cities such as Newark.

nyt 20050426.0151 Delta recently added more than 80 flights from its Atlanta hub and capped its
business fares, while money-losing Independence Air, based at Washington’s
Dulles Airport, is making

wikipedia At its peak of 600 flights daily, Independence, combined with service from
JetBlue and AirTran, briefly made Dulles the largest low-cost hub in the
United States.

new york times Continental Airlines sued United Airlines and the committee that over-
sees operations at Washington Dulles International Airport yesterday, . . .

Figure 1: Answers tend to co-occur with one another and with the target and question keywords (acceptable
answers are shown in bold face and the target and question keywords are underlined)

the question keywords. These distinct answers may occur in most documents related to the
target. However, co-occurrence can have different scopes: co-occurrence within a document,
a paragraph, a sentence or a window of words. Our system in trec 2007 only considers
co-occurrence at the sentence level. Although worth trying, the other possibilities were not
implemented due to time constraints. Of course, they will be considered in future work. The
overall architecture of our list answerer subsystem is illustrated in Figure 2.

3.1 Candidate Answers Extraction

The first step to creating a list of candidate answers is answer type recognition. Each question
is associated to one of the nine entity classes: Person, Country, Organization, Job,
Movie, Nationality, City, State, Other. This is done by using lexical and syntagmatic
patterns. Once the type of answer is predicted, a number of documents are retrieved from
aquaint-2 and the web using a query generated from the target and the question. These
documents constitute a collection from which candidate terms are extracted. All terms that
conform to the answer type are extracted from this collection. Depending on the answer type,
the candidate terms are extracted using an NE tagger (in case of Person, Organization
and Job), using a gazeteer (in case of Country, Nationality, State and partially City)
and finally extracting all capitalized terms and terms in quotations and validating them using
web frequency (in case of Movie and Other).

The candidate answers extracted in this module are added to those extracted using our
factoid question answerer subsystem and together constitute our final candidate answers.

3.2 Relation Extraction

The relation between two candidate terms is a normalized value denoting how often they
co-occur within documents about the target. For this purpose, using the query generated in
the previous section, a list of relevant documents from aquaint-2 and the web are retrieved.
This constitutes the domain collection from which sentences will be extracted to compute

5

Ansr Type
Recognition

Terms
Extraction

TermsSet

Document
Collection

Occurrence
Extraction

Relation
Extraction

Occurrence
Info

Evaluation

Wikipedia

Candidate
Answers

WWWWWWWWWWWW

AQUAINT

Domain
Documents

ResultsClustering

Relation
Info

Frequency
Info

Query
Generation

Figure 2: List Answering Subsystem Architecture

co-occurrence information. Once all the data regarding term occurrences and co-occurrences
is collected, the relation between each pair of term is computed using the chi-square (χ2) test.

χ2 =
N (O11O22 −O11O21)

2

(O11 + O12)(O11 + O21)(O12 + O22)(O21 + O22)

Where O11 refers to the number of sentences termi and termj appeared together and O12 refers
to the number of sentences in which termi appeared but termj did not appear. Similarly O21

is the number of sentences containing termj but not termi and O22 is the number of sentences
containing neither termi nor termj . N denotes the total number of sentences in the domain
collection.

6

3.3 Clustering

Once a table of candidate terms and the relations among them is available, a clustering method
tries to create a subset of the candidate instances which have a higher probability to be the
correct answer. We use a Hierarchical Agglomerative Average-Linkage (HAAL) clustering.
The algorithm is as follows:

1. Put each candidate term ti in a separate cluster Ci.

2. Compute the relation between each two clusters. In average-linkage clustering, the
relation between two clusters Ci and Cj is the average of all relations between terms tm
in Ci and terms tn in Cj .

relation(Ci, Cj) =
1

|Ci| × |Cj |
∑

tm∈Ci

∑
tn∈Cj

relation(tm, tn)

3. Merge two clusters which have the highest relation between them.

4. Goto step 2 until the highest relation is below a certain threshold.

After the clustering is finished, the main concern is how to select the right cluster. For this
purpose, before clustering, we add the target and question keywords to our candidate terms
to be clustered. Their responsibility is to spy on candidate terms. These spies are treated
exactly like candidate terms; hence their co-occurrences with candidate terms and also other
spies are extracted, their relations are evaluated and finally they are clustered along with
candidate terms. When clustering is finished, these spies are used to pinpoint the cluster
with the highest probability of being the correct cluster. This is according to our hypothesis
that the answers to a list question tend to co-occur with one another and with the target and
question keywords as well.

A second approach to narrow down the primary candidate terms was exploited. This
approach simply selects the terms whose overall relation to other terms is the highest. We
call this approach CRV as it uses the Cumulative Relation Value to compare terms one
another. Surprisingly, this approach also worked out (see section 5).

3.4 Answer Projection

To support the final answers with documents from aquaint-2 and/or blog, a simple method
is used. The corpora are searched using the query generated before and the final candidate
term and simply the first document is returned as the supporting document. Since we did not
have access to the whole blog corpus, even though the top 50 documents were available, we
focus more on the aquaint-2 corpus to return the supporting documents. Several different
approaches were examined that all caused a lower score than this method.

4 Answering Other Questions

This year, we didn’t invest too much effort on other questions since our results for trec 2006
were quite satisfactory. Only two person-days were spent to improve different components of

7

the system. A brief summary of other section is provided. For more details about how other
questions are answered, please refer to [5].

Fundamentally, we hypothesized that interesting nuggets can be extracted using two types
of interest markers:

Target-specific interest markers: terms that are important within the documents related
to the target. For example, sinking is an interesting term in the target “Titanic” or
assassination contains a valuable data about “Kennedy”.

Universal interest markers: terms that are important regardless of the target. For exam-
ple, in the sentence “first man on the moon”, first conveys an interesting concept or in
the sentence “15000 people died in the yesterday’s earthquake disaster”, 15000 contains
a unique meaning.

To identify target-specific interest marking terms, we used the Wikipedia1 online dictio-
nary. The first stage to answering other questions is to find the proper Wikipedia article. We
use the Google API to search in the Wikipedia domain using the target as query. The first
Wikipedia article that satisfies the query is taken. We extract named entities as interesting
terms for each target, and we search aquaint-2 for the N most relevant documents. For this
purpose, the title of the Wikipage is added to the query.

Within the documents chosen as the domain, the frequency of each interest marking term
is then computed. For each term, we compute a weight as the logarithm of its frequency.

Weight(Ti) = Log(Frequency(Ti))

All sentences from the domain documents are then scored according to how many target-
specific interesting terms it contains. This is computed as the sum of the weight of the
interesting terms it contains.

Score(Si) =
∑

Tj∈Si

Weight(Tj)

Then similar sentences that either are almost equivalent to one other at the string level
or share similar words but not the same syntax are dropped.

Once the sentences are ranked based on target-specific interesting terms, we boost the
score of sentences that contain terms that generally mark interesting information regardless
of the topic. Such markers were determined empirically by analyzing the previous trec data.
These markers consists of superlatives, numeral and target-type specific keywords. This last
type of marker is essentially a list of terms that do not fit any specific grammatical category,
but just happen to be more frequent in interesting nuggets. Finally, the top N sentences
making up 7000 non-white-space characters are returned as our nuggets.

5 Results

Table 1 shows the official evaluation results of our runs along with the median and best score
of all systems. Following is the description of all the runs for each question type.

1http://en.wikipedia.org

8

http://en.wikipedia.org

QASCU1 QASCU2 QASCU3 median best

Factoid 0.256 0.242 0.213 0.131 0.706
Incorrect 227 231 239
Unsupported 25 26 25
Inexact 13 29 15
Locally correct 3 1 2
Globally correct 92 87 79

list 0.128 0.134 0.145 0.085 0.479
Other 0.275 0.281 0.278 0.118 0.329
Average per-series 0.222 0.221 0.214 0.108 0.484

Table 1: Official results of the 3 runs.

5.1 Factoid Runs

In the qascu1 run, only aquaint-2 and the web are used for information retrieval. We use
the top 50 documents retrieved by Prise for candidates re-ranking. Candidate answers are
re-ranked using frequency of the terms in the top 50 documents returned by Prise. We use
only aquaint-2 to select the supporting documents for the top-ranked answers.

In the qascu2 run, information retrieval is the same as in qascu1. However, candi-
dates re-ranking is based on frequency of the words in the whole aquaint-2 corpus. Answer
projection is done on aquaint-2 and the top 50 blog corpus.

qascu3 uses aquaint-2, the top 50 blog documents and the web for information re-
trieval. Candidates re-ranking is based on frequency of the words in the top 50 Prise docu-
ments. Document supporting source is the same as qascu2.

5.2 List Runs

qascu1 uses the Haal clustering algorithm to cluster the primary candidate answers. For
answer projection, only the aquaint-2 documents are taken into account (not the blog
corpus). In qascu2, crv method is used to select the final candidate terms and again only
aquaint-2 is used as the source of supporting documents. However, qascu3 uses both
aquaint-2 and blog for answer projection. In this run, the candidates of our factoid answerer
system is also added to the candidate list and the crv method is used to choose the final
answers.

5.3 Other Runs

We only submitted two runs for other questions. qascu1 extracts the candidate terms from
Wikipedia while qascu2 uses Wikipedia and also two documents from aquaint-2 as the
source of term extraction. qascu3 is the same as qascu1 although its F-score is slightly
different. This is due to some minor changes in the document list returned by Google in
different times.

9

6 Conclusion

In this paper, we described our approach to answering different types of questions in QA track
of trec. The factoid answerer subsystem is based on a modified version of aranea. The list
answerer narrows down the list of candidate answers in order to get a higher precision. Our
system approach for answering other questions is based on terms found in Wikipedia entries
and ranking of nuggets is done through the use of target-specific and target-independent
interest markers.

Although our system outperforms the median scores in all three types of questions, it can
be improved in its algorithms, methods and components.

References

[1] L. Kosseim, A. Beaudoin, A. K. Lamjiri, and M. Razmara. Concordia University at the
TREC-QA Track. In n Proceedings of the 15th Text Retrieval Conference (TREC-15),
Gaithersburg, USA, November 2006.

[2] Boris Katz, Jimmy Lin, Daniel Loreto, Wesley Hildebrandt, Matthew Bilotti, Sue Felshin,
Aaron Fernandes, Gregory Marton, and Federico Mora. Integrating web-based and corpus-
based techniques for question answering. In Proceedings of the 12th Text Retrieval Con-
ference (TREC-12), 2003.

[3] Boris Katz and Jimmy Lin. Question answering from the web using knowledge annotation
and knowledge mining techniques. In Proceedings of the twelfth international conference
on Information and knowledge management (CIKM), 2003.

[4] Boris Katz, Gregory Marton, Jimmy Lin, Aaron Fernandes, and Stefanie Tellex. Extract-
ing answers from the web using knowledge annotation and knowledge mining techniques.
In Proceedings of the 11th Text Retrieval Conference (TREC-11), 2002.

[5] M. Razmara and L. Kosseim. A little known fact is . . . Answering Other questions using
interest-markers. In Proceedings of the 8th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing-2007), pages 518-529, Mexico, 2007.

10

	Introduction
	Answering Factoid Questions
	Predicting Answer Types
	5-gram Generation
	Website Questions
	Question-Specific Filtering methods
	Answer Projection

	Answering List Questions
	Candidate Answers Extraction
	Relation Extraction
	Clustering
	Answer Projection

	Answering Other Questions
	Results
	Factoid Runs
	List Runs
	Other Runs

	Conclusion

