# TREC 2007 Genomics Track Overview

## William Hersh<sup>1</sup>, Aaron Cohen<sup>1</sup>, Lynn Ruslen<sup>1</sup>, Phoebe Roberts<sup>2</sup>

<sup>1</sup>Department of Medical Informatics & Clinical Epidemiology Oregon Health & Science University, Portland, OR, USA <sup>2</sup>Pfizer Corp., Cambridge, MA, USA

The TREC 2007 Genomics Track employed an entity-based question-answering task. Runs were required to nominate passages of text from a collection of full-text biomedical journal articles to answer the topic questions. Systems were assessed not only for the relevance of passages retrieved, but also how many aspects (entities) of the topic were covered and how many relevant documents were retrieved. We also classified the features of runs to explore which ones were associated with better performance, although the diversity of approaches and the quality of their reporting prevented definitive conclusions from being drawn.

For the TREC 2007 Genomics Track, we undertook a modification of the question answering extraction task used in the 2006 track [1]. We continued to task systems with extracting out relevant passages of text that answer topic questions. However for this year, instead of categorizing questions by generic topic type (GTT), we derived questions based on biologists' information needs where the answers were, in part, lists of named entities of a given type. Systems were required to return a passage of text, which provided one or more relevant list items within the context of supporting text.

Similar to 2006, systems were tasked to return passages of text. Relevance judges with expertise in biological research assigned the relevant passage "answers," or items belonging to a single named entity class, analogous to the assignment of MeSH aspects in 2006. After pooling the top nominated passages as in past years, judges selected relevant passages and then assigned one or more answer entities to each relevant passage. Passages had to contain one or more named entities of the given type with supporting text that answered the given question in order to be marked relevant. Judges created their own entity list for each topic, based on the passages they judged as relevant. Passages were given credit for each relevant and supported answer. This was required because it was assumed that the passage would not answer the list entity question unless it contains an entity of the type for which the judges were looking. The experts were instructed to perform their relevance judgments in this manner.

The evaluation measures for 2007 were a refinement of the measures used in 2006. We added a new character-based mean average precision (MAP) measure (called Passage2 MAP) to compare the accuracy of the extracted answers, modified from the original measure in 2006 (called Passage MAP). Passage2 MAP treated each individually retrieved character in published order as relevant or not, in a sort of "every character is a mini relevance-judged document" approach. This was done to increase the stability of the Passage MAP measure against arbitrary passage splitting techniques. We included the 2006 passage retrieval measure as well. The Aspect MAP measure remained the same, except that instead of using assigned MeSH aspects we used the answer entities assigned by the relevance judges. We continued to use Document MAP as is, i.e., a document that contained a passage judged relevant was deemed relevant.

### Documents

We used the same full-text document corpus that we assembled for the TREC 2006 Genomics Track. The documents in this corpus came from the Highwire Press (www.highwire.org) electronic distribution of journals and were in HTML format. There were about 160,000 documents in the corpus from about 49 genomics-related journals. Highwire Press agreed to allow us to include their full text in HTML format, which preserved formatting, structure, table and figure legends, etc.. In 2006, we found some known issues with the document collection:

- The collection was not complete from the standpoint of each journal. That is, there were many journals where some articles appeared in the journal but did not make it into our collection. (Neither the article nor the MEDLINE record.) This was not an issue to us, since we viewed the corpus as a closed and fixed collection.
- Some of the PMIDs in the source data from Highwire Press were inconsistent with PubMed PMIDs (see next paragraph for an explanation).
- Some of the HTML files were empty or nearly empty (i.e., only contained a small amount of meaningless text). Some of this was due to errors in our processing, but some was also related to the incorrect PMID problem of Highwire. We froze the corpus for the test collection and, since these files were small, they were unlikely to have any relevant passages or even be retrieved by most systems.

Also discovered in 2006 were some errors between the PMIDs designated by Highwire and the actual PMIDs from NLM in MEDLINE. We identified 1,767 instances (about 1% of the 162K documents) where the Highwire file PMID was invalid, in the sense that it returned zero hits when searching for it on PubMed. Some invalid PMIDs are due to the fact that the corresponding documents represented errata and author responses to comments (e.g., author replies to letters). These were assigned PMIDs in publisher-supplied data, but NLM generally does not cite them separately in PubMed, and therefore deleted the PMIDs, although they remained in publisher data. There were documents already assigned a PMID submitted by Highwire that NLM, by policy, decided not to index at all, in which case, again, NLM deleted the PMID, but it was retained in Highwire data. We also found instances of invalid PMIDs in Highwire data for documents that were cited in PubMed but with a different PMID which is absent from Highwire data; such instances could be characterized as errors. In any case, we investigated the problem of invalid PMIDs and found that for all instances we checked, the problem was the original Highwire file having an invalid PMID. In other words, invalid PMIDs were in the Highwire data, not a result of our processing. For this reason, we decided not to delete these files from the collection. They represented, in our view, normal dirty data, whether due to errors or policy differences between NLM and publishers, and should be part of what real-world systems need to be able to handle.

Since the goal of the task was passage retrieval, we developed some additional data sources that aided researchers in managing and evaluating runs. As noted below, retrieved passages could contain any span of text that did not include any part of an HTML paragraph tag (i.e., one starting with <P or </P). We also used these delimiters to extract text that was assessed by the relevance judges. Because there was much confusion in the discussion about the different types of passages, we defined the following terms:

- Nominated passage This is the passage that systems nominated in their runs and was scored in the passage retrieval evaluation.
- Maximum-length legal span These were all the passages obtained by the delimited text of each document by the HTML paragraph tags. As noted below, nominated passages could not cross an HTML paragraph boundary. So these spans represented the longest possible passage that could be designated as relevant. As also noted below, we built pools of these spans for the relevance judges. The judges were given the entire span if any system nominated any part of the maximum-length legal span, even if no system nominated the entire span. However, the judges did not need to designate the entire span as relevant, and could select just a part of the span to be relevant.
- Relevant passage These were the spans that the judges designated as definitely or possibly relevant, had to contain at least one answering entity of the given type, and had entities assign to them by the expert judges. A relevant passage must consist of all or part of a maximum-length legal span.

We note some other things about the maximum-length legal spans:

- The first and last spans were delimited at the beginning and end of the file respectively.
- Other HTML tags (e.g., <b>) could occur within the spans.
- "Empty" (zero character) spans were not included.

In order to facilitate our management of the data, and perhaps be of use to participants, we created a 215-megabyte file, <u>legalspans.txt</u>, which included all of the maximum-length legal spans for the collection. The first span for each document included all of the HTML prior to the first  $\langle p \rangle$ , which contained the HTML header information and usually was not part of any relevant passage. This file identified all of the maximum-length legal spans in all of the documents, which consisted of all spans >0 bytes delimited by HTML paragraph tags. These spans were identified by the byte character offset and length in the HTML file. The index number of the first character of the file was 0.

These span definitions can be illustrated with the example in Table 1. The last line of the following data is sample text from an HTML file hypothetically named 12345.html (i.e., having PMID 12345). The numbers above the text represent the tens (top line) and ones (middle) digits for the file position in bytes.

The maximum-length legal spans in this example are from bytes 0-4, 8-29, and 39-50. Our legalspans.txt file would include the following data in PMID, offset, and length order:

Let us consider the span 8-29 further. This is a maximum-length legal span because there is an HTML paragraph tag on either side of it. If a system nominates a passage that exceeds these boundaries, it will be disqualified for further analysis or judgment. But anything within the maximum-length legal span, e.g. 8-19, 18-19, or 18-28, could be nominated or relevant passages.

<sup>12345 0 5</sup> 12345 8 22 12345 39 12

Table 1 - Example text for span definitions.

We note that it would be possible for there to be more than one relevant passage in a maximumlength legal span. While this will be unlikely, our character-based scoring approach (see below) would handle it fine. However, this was a problem for the judges as the judging interface did not support an easy way to split a judged maximum-length span into multiple relevant passages. In this case judges were instructed to include all of the relevant text within a span in the relevant passage, even if that required the inclusion of some text that the judge thought not relevant. This was most likely to be an issue in spans originating in the references section of the original documents, where two references with informative titles are separated by one or more nonrelevant references.

## Topics

There were 36 official topics for the track in 2007, which were in the form of questions asking for lists of specific entities. The definitions for these entity types were based on controlled terminologies from different sources, with the source of the terms depending on the entity type. We gathered new information needs from working biologists. This was done by modifying the questionnaire used in 2004 to survey biologists about recent information needs. In addition to asking about information needs, biologists were asked if their desired answer was a list of a certain type of entity, such as genes, proteins, diseases, mutations, etc., and if so, to designate that entity type. Fifty information needs statements were selected after screening them against the corpus to ensure that relevant paragraphs with named entities were present, of which 36 were used as official topics and 14 used as sample topics. Table 2 lists the 36 topics and Table 3 shows the entities and the number of topics in which they occurred.

An example of our topic development process is as follows. Suppose that the information need was:

What is the genetic component of alcoholism? This is transformed into a list question of the form:

What [GENES] are genetically linked to alcoholism?

Answers to this question are passages that relate one or more entities of type GENE to alcoholism. For example, a valid and relevant answer to the above question would be: *The DRD4 VNTR polymorphism moderates craving after alcohol consumption*. (from PMID 11950104 for those who want to know) And the GENE entity supported by this statement would be DRD4.

Table 2 - TREC 2007 Genomics Track official topics.

<200>What serum [PROTEINS] change expression in association with high disease activity in lupus?

<201>What [MUTATIONS] in the Raf gene are associated with cancer?

<202>What [DRUGS] are associated with lysosomal abnormalities in the nervous system?

<203>What [CELL OR TISSUE TYPES] express receptor binding sites for vasoactive intestinal peptide (VIP) on their cell surface?

<204>What nervous system [CELL OR TISSUE TYPES] synthesize neurosteroids in the brain? <205>What [SIGNS OR SYMPTOMS] of anxiety disorder are related to coronary artery disease?

<206>What [TOXICITIES] are associated with zoledronic acid?

<207>What [TOXICITIES] are associated with etidronate?

<208>What [BIOLOGICAL SUBSTANCES] have been used to measure toxicity in response to zoledronic acid?

<209>What [BIOLOGICAL SUBSTANCES] have been used to measure toxicity in response to etidronate?

<210>What [MOLECULAR FUNCTIONS] are attributed to glycan modification?

<211>What [ANTIBODIES] have been used to detect protein PSD-95?

<212>What [GENES] are involved in insect segmentation?

<213>What [GENES] are involved in Drosophila neuroblast development?

<214>What [GENES] are involved axon guidance in C.elegans?

<215>What [PROTEINS] are involved in actin polymerization in smooth muscle?

<216>What [GENES] regulate puberty in humans?

<217>What [PROTEINS] in rats perform functions different from those of their human homologs?

<218>What [GENES] are implicated in regulating alcohol preference?

<219>In what [DISEASES] of brain development do centrosomal genes play a role?

<220>What [PROTEINS] are involved in the activation or recognition mechanism for PmrD?

<221>Which [PATHWAYS] are mediated by CD44?

<222>What [MOLECULAR FUNCTIONS] is LITAF involved in?

<223>Which anaerobic bacterial [STRAINS] are resistant to Vancomycin?

<224>What [GENES] are involved in the melanogenesis of human lung cancers?

<225>What [BIOLOGICAL SUBSTANCES] induce clpQ expression?

<226>What [PROTEINS] make up the murine signal recognition particle?

<227>What [GENES] are induced by LPS in diabetic mice?

<228>What [GENES] when altered in the host genome improve solubility of heterologously expressed proteins?

<229>What [SIGNS OR SYMPTOMS] are caused by human parvovirus infection?

<230>What [PATHWAYS] are involved in Ewing's sarcoma?

<231>What [TUMOR TYPES] are found in zebrafish?

<232>What [DRUGS] inhibit HIV type 1 infection?

<233>What viral [GENES] affect membrane fusion during HIV infection?

<234>What [GENES] make up the NFkappaB signaling pathway?

<235>Which [GENES] involved in NFkappaB signaling regulate iNOS?

Table 3 - TREC 2007 Genomics Track entities, definitions, sources of term, and topics with each entity.

| Entity Type             | Definition                                                                                                                                                                                                                                          | Potential Source<br>of Terms | Topics With<br>Entity Type |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|
| ANTIBODIES              | Immunoglobulin molecules having a specific amino<br>acid sequence by virtue of which they interact only<br>with the antigen (or a very similar shape) that induced<br>their synthesis in cells of the lymphoid series<br>(especially plasma cells). | MeSH                         | 1                          |
| BIOLOGICAL              | Chemical compounds that are produced by a living organism                                                                                                                                                                                           | MeSH                         | 3                          |
| CELL OR TISSUE<br>TYPES | A distinct morphological or functional form of cell, or<br>the name of a collection of interconnected cells that<br>perform a similar function within an organism.                                                                                  | MeSH                         | 2                          |
| DISEASES                | A definite pathologic process with a characteristic set<br>of signs and symptoms. It may affect the whole body or<br>any of its parts, and its etiology, pathology, and<br>prognosis may be known or unknown.                                       | MeSH                         | 1                          |
| DRUGS                   | A pharmaceutical preparation intended for human or veterinary use.                                                                                                                                                                                  | MEDLINEplus                  | 2                          |
| GENES                   | Specific sequences of nucleotides along a molecule of DNA (or, in the case of some viruses, RNA) which represent functional units of heredity.                                                                                                      | iHoP, Harvester              | 11                         |
| MOLECULAR<br>FUNCTIONS  | Elemental activities, such as catalysis or binding,<br>describing the actions of a gene product or bioactive<br>substance at the molecular level.                                                                                                   | GO                           | 2                          |
| MUTATIONS               | Any detectable and heritable change in the genetic<br>material that causes a change in the genotype and<br>which is transmitted to daughter cells and to<br>succeeding generations                                                                  | MeSH                         | 1                          |
| PATHWAYS                | A series of biochemical reactions occurring within a cell to modify a chemical substance or transduce an extracellular signal.                                                                                                                      | BioCarta, KEGG               | 2                          |
| PROTEINS                | Linear polypeptides that are synthesized on ribosomes<br>and may be further modified, crosslinked, cleaved, or<br>assembled into complex proteins with several subunits.                                                                            | MeSH                         | 5                          |
| STRAINS                 | A genetic subtype or variant of a virus or bacterium.                                                                                                                                                                                               | Ad hoc                       | 2                          |
| SIGNS OR                | A sensation or subjective change in health function                                                                                                                                                                                                 | MeSH                         | 1                          |
| SYMPTOMS                | experienced by a patient, or an objective indication of<br>some medical fact or quality that is detected by a<br>physician during a physical examination of a patient.                                                                              |                              |                            |
| TOXICITIES              | A measure of the degree and the manner in which<br>which something is toxic or poisonous to a living<br>organism.                                                                                                                                   | MeSH                         | 2                          |
| TUMOR TYPES             | An abnormal growth of tissue, originating from a specific tissue of origin or cell type, and having defined characteristic properties, such as a recognized histology.                                                                              | MeSH                         | 1                          |

## Submissions

Submitted runs could contain up to 1000 passages per topic in ranked order that were predicted to be relevant to answering the topic question. Passages had to be identified by the PMID, the start offset into the text file in characters, and the length of the passage in characters.

Passages were required to be contiguous and not longer than one paragraph. This was operationalized by prohibiting any passage from containing HTML markup tags, i.e., those starting with  $\leq P$  or  $\leq P$ . Any passage that included those tags was ignored in the relevance judgment process but not omitted from the scoring process. (In other words, they were not including in the pooling and judgment for creating the gold standard, but they could be scored and may include some relevant characters.) Each participating group was be allowed to submit up to three official runs, each of which was used for building the judgement pools. Each passage also needed to be assigned a corresponding rank number and value, which was used to order nominated passages for rank-based performance computations. Rank values could be integers or floating point numbers, such as confidence values.

Each submitted run had to be submitted in a separate file, with each line defining one nominated passage using the following format based loosely on trec\_eval. Each line in the file had to contain the following data elements, separated by white space (spaces or a tab characters):

- Topic ID from 200 to 235.
- Doc ID name of the HTML file minus the .html extension. This is the PMID that has been designated by Highwire, even though we now know that this may not be the true PMID assigned by the NLM (i.e., used in MEDLINE). But this is the official identifier for the document.
- Rank number rank of the passage for the topic, starting with 1 for the top-ranked passage and preceding down to as high as 1000.
- Rank value system-assigned score for the rank of the passage, an internal number that should descend in value from passages ranked higher.
- Passage start the byte offset in the Doc ID file where the passage begins, where the first character of the file is offset 0.
- Passage length the length of the passage in bytes, in 8-bit ASCII, not Unicode.
- Run tag a tag assigned by the submitting group that should be distinct from all the group's other runs (and ideally any other group's runs, so it should probably have the group name, e.g., OHSUbaseline).

Here is an example of the submission file format:

| 200 | 12474524 | 1 | 1.0   | 1572 | 27  | tag1 |
|-----|----------|---|-------|------|-----|------|
| 200 | 12513833 | 2 | 0.373 | 1698 | 54  | tag1 |
| 200 | 12517948 | 3 | 0.222 | 99   | 159 | tag1 |
| 201 | 12531694 | 1 | 0.907 | 232  | 38  | tag1 |
| 201 | 12545156 | 2 | 0.456 | 789  | 201 | tag1 |
|     |          |   |       |      |     |      |

A Perl script that checked runs to insure that the submission file was in the proper format was available (check\_genomics.pl). Runs also needed to include a "dummy" passage for any topic for which no passages were retrieved. It was recommended that the dummy passage use "0" as a docid, "0" as the passage start, and "1" as the passage length. This worked for the Perl script and

did not correspond to a document in the collection.

Runs were also classified based on amount of intervention in converting topics to queries. We adopted the "usual" TREC rules (detailed at

http://trec.nist.gov/act\_part/guidelines/trec8\_guides.html) for categorizing runs:

- Automatic no human modification of topics into queries for your system whatsoever
- Manual human modification of queries entered into your system (or any other system) but no modification based on results obtained (i.e., you cannot look at the output from your runs to modify the queries)
- Interactive human interaction with the system, including modification of the queries or the system after viewing the output from your system or any other system (i.e., you look at the output from the topics and corpus and adjust your system to produce different output)

## **Relevance Judgments**

The expert judging for this evaluation used the pooling method, with passages corresponding to the same topic ID pooled together. The judges were presented with the text of the maximum-length legal span containing each pooled passage, with pool composed of the top ranked 1000 passages for each topic. They then evaluated the text of the maximum-length legal span for relevance, and identified the portion of this text that contains an answer. This could be all of the text of the maximum legal span, or any contiguous substring. If a maximum legal span contained more than one relevant passage, judges were instructed to select the minimum contiguous passage that contained all relevant passages, even if the passages were separated by irrelevant text. Maximum legal spans comprised of the journal article bibliography frequently generated multiple relevant sub-passages that needed to all be included in the singe designated passage.

Judges were recruited from the institutions of track participants and other academic or research centers. They were required to have significant domain knowledge, typically in the form of a PhD in a life science. They were trained using a 12-page manual and a one-hour videoconference, with the option of testing out of the videoconference by successfully judging a mini-topic based on a practice topic from 2006 made up of an equal mix of definitely, possibly, and not relevant maximum-length legal spans. The self-training option had the unexpected benefit of highlighting and correcting potential problems with the judging tool or ambiguous guidelines before judging began in earnest. The training manual is on the track Web site at: http://ir.ohsu.edu/genomics/2007judgeguidelines.pdf

In summary, judges were given the following instructions:

- 1. Review the topic question and identify key concepts.
- 2. Identify relevant paragraphs and select minimum complete and correct excerpts.
- 3. Develop controlled vocabulary for entities based on the relevant passages and code entities for each relevant passage based on this vocabulary.

Judgments were made using database files created and accessed via the OpenOffice Base application. As shown in Figure 1, judges were presented passages as a form view of individual

records in the database with the topic, question, and text of the full-text legal passage. If part or all of the passage was relevant, the judges then:

- 1. Selected the level of relevance ("Definitely Relevant" or "Possibly Relevant").
- 2. Copied the relevant portion of the passage from the passage plain text field into the answer text box.
- 3. Selected entities (ENTITY1, ENTITY2, etc.) they had added using the Add Entities form (not shown).

A gold standard was created by extracting out the relevance passages and entities from the database file for each topic. Selected relevant text was transformed into file character offset and length using a text alignment algorithm. A summary of the gold standard developed from the results of the judging process is shown in Table 4. Topics ranged from a low of 1 relevant passage to a high of 377. Individual topics had a range of 1 to 300 relevant entities, with an average ranging between 1.0 to 3.5 entities assigned per relevant passage.

|                               | Passage Information                        |  |
|-------------------------------|--------------------------------------------|--|
| ID                            | TOPIC                                      |  |
| 000001                        | 170                                        |  |
| QUESTION                      |                                            |  |
| How does COP2 contribute to ( | FTR export from the endoplasmic reticulum? |  |
| PMID                          | SPANID                                     |  |
| 11809765                      | 11809765.6370.1425                         |  |
| PLAIN TEXT                    |                                            |  |
|                               |                                            |  |
| RELEVANCE                     | Enter Relevance Judgements                 |  |
| RELEVANCE                     | Enter Relevance Judgements                 |  |
| RELEVANCE                     | Enter Relevance Judgements                 |  |
| RELEVANCE<br>ANSWER TEXT      | Enter Relevance Judgements                 |  |
| RELEVANCE<br>ANSWER TEXT      | Enter Relevance Judgements                 |  |
| RELEVANCE<br>ANSWER TEXT      | Enter Relevance Judgements                 |  |
| RELEVANCE                     | Enter Relevance Judgements                 |  |
| RELEVANCE                     | Enter Relevance Judgements                 |  |
| RELEVANCE<br>ANSWER TEXT      | Enter Relevance Judgements                 |  |

Figure 1 - Passage judgment form.

Table 4 - Relevant passages, relevant documents, mean and standard deviation (SD) of relevant passage length, number of aspects, and mean number of aspects per relevant passage.

| Торіс | Relevant<br>Passages | Relevant<br>Documents | Mean<br>Relevant<br>Passage<br>Langth | SD of<br>Relevant<br>Passage<br>Longth | Aspects  | Mean<br>Aspects Per<br>Relevant |
|-------|----------------------|-----------------------|---------------------------------------|----------------------------------------|----------|---------------------------------|
| 200   | 320                  | 103                   | 2380 58                               | 5387 02                                | 300      | 2 15                            |
| 200   | 320                  | 195                   | 2360.36                               | 2804.64                                | 300<br>7 | 2.15                            |
| 201   | 53                   | 12                    | 522 77                                | 2094.04                                | 28       | 1.10                            |
| 202   | 321                  | 43<br>147             | 2163.60                               | 4237 72                                | 245      | 1.45                            |
| 203   | 164                  | 74                    | 1080 00                               | 4670.61                                | 36       | 1.71                            |
| 204   | 03                   | 65                    | 788 67                                | 1277 35                                | 17       | 1.79                            |
| 205   | 38                   | 19                    | 363 79                                | 362.85                                 | 24       | 1.23                            |
| 200   | 15                   | 12                    | 357.60                                | 671.28                                 | 8        | 1.07                            |
| 207   | 13                   | 12                    | 615 36                                | 317 50                                 | 13       | 1.07                            |
| 200   | 78                   | 10                    | 1239.63                               | 720.81                                 | 15       | 1.23                            |
| 210   | 70                   | 57                    | 669 79                                | 623 70                                 | 21       | 1.50                            |
| 210   | 57                   | 42                    | 191.68                                | 217.10                                 | 29       | 1.10                            |
| 211   | 358                  | 133                   | 1165 97                               | 969 94                                 | 142      | 2 16                            |
| 212   | 377                  | 185                   | 456 94                                | 594 39                                 | 165      | 1.88                            |
| 213   | 209                  | 98                    | 414 91                                | 1095 21                                | 54       | 1.00                            |
| 214   | 137                  | 73                    | 750.96                                | 580 54                                 | 80       | 1.42                            |
| 215   | 42                   | 34                    | 1058 12                               | 3141 51                                | 13       | 1.00                            |
| 210   | 38                   | 34                    | 1491 18                               | 1019.48                                | 34       | 1.03                            |
| 218   | 163                  | 74                    | 632.23                                | 635 55                                 | 80       | 1.05                            |
| 219   | 22                   | 16                    | 623.64                                | 503.66                                 | 43       | 3.41                            |
| 220   | 16                   | 6                     | 425.75                                | 218 10                                 | 6        | 1 75                            |
| 221   | 183                  | 87                    | 1373 32                               | 1705 58                                | 108      | 1.75                            |
| 222   | 57                   | 42                    | 1249.51                               | 914.23                                 | 72       | 2.18                            |
| 223   | 18                   | 8                     | 269 72                                | 138.24                                 | 12       | 1 17                            |
| 224   | 3                    | 3                     | 1009.33                               | 666.59                                 | 1        | 1.00                            |
| 225   | 1                    | 1                     | 745.00                                | 0.00                                   | 1        | 1.00                            |
| 226   | 152                  | 57                    | 753.82                                | 1648.91                                | 18       | 2.25                            |
| 227   | 281                  | 172                   | 1307.02                               | 863.14                                 | 183      | 2.25                            |
| 228   | 15                   | 14                    | 632.20                                | 413.79                                 | 13       | 1.87                            |
| 229   | 150                  | 57                    | 528.81                                | 978.41                                 | 34       | 1.79                            |
| 230   | 82                   | 29                    | 1186.65                               | 933.99                                 | 25       | 1.30                            |
| 231   | 16                   | 13                    | 472.00                                | 406.56                                 | 7        | 1.06                            |
| 232   | 93                   | 57                    | 388.57                                | 907.63                                 | 49       | 1.12                            |
| 233   | 19                   | 16                    | 1186.68                               | 1070.54                                | 1        | 1.00                            |
| 234   | 609                  | 483                   | 1777.02                               | 3124.85                                | 577      | 3.24                            |
| 235   | 182                  | 107                   | 1963.25                               | 1737.40                                | 141      | 2.54                            |
| Mean  | 124.8                | 69.2                  | 968.0                                 | 1276.2                                 | 72.3     | 1.63                            |

#### **Evaluation Measures**

For this year's track, there were three levels of retrieval performance measured: passage retrieval, aspect retrieval, and document retrieval. Each of these provides insight into the overall performance for a user trying to answer the given topic questions. Each was measured by some variant of MAP. We again measured the three types of performance separately. There was not any summary metric to grade overall performance. A Python program to calculate these

measures (http://ir.ohsu.edu/genomics/trecgen2007\_score.py) with the appropriate gold standard data files is available.

## Passage-level retrieval performance - character-based MAP

The original passage retrieval measure for the 2006 track was found to be problematic in that non-content manipulations of passages had substantial effects on Passage MAP, with one group claiming that breaking passages in half with no other changes doubled their (otherwise low) score. To this end, we defined an alternative measure (Passage2 MAP) that calculated MAP as if each character in each passage were a ranked document. In essence, the output of passages was concatenated, with each character being from a relevant passage or not. We used Passage2 MAP as the primary passage retrieval evaluation measure in 2007.

The original Passage MAP measure was also calculated. This measure computed individual precision scores for passages based on character-level precision, using a variant of a similar approach used for the TREC 2004 HARD Track [2]. For each nominated passage, a fraction of characters overlaps with those deemed relevant by the judges in the gold standard. At each relevant retrieved passage, precision was computed as the fraction of characters overlapping with the gold standard passages divided by the total number of characters included in all nominated passages from this system for the topic up until that point. Similar to regular MAP, remaining relevant passages that were not retrieved at all were added into the calculation as well, with precision set to 0 for relevant passages not retrieved. Then the mean of these average precisions over all topics was calculated to compute the mean average passage precision.

## Aspect-level retrieval performance - aspect-based MAP

Aspect retrieval was measured using the average precision for the aspects of a topic, averaged across all topics. For 2007, the aspects were the different named entities of the given type for each question. To compute this, for each submitted run, the ranked passages were transformed to two types of values, either:

- the aspects of the gold standard passage that the submitted passage overlaps with, or
- not relevant

This resulted in an ordered list, for each run and each topic, of aspects and not-relevant. Because we were uncertain of the utility for a user of a repeated aspect (e.g., same aspect occurring again further down the list), we discarded them from the output to be analyzed and only kept the first appearance of an aspect. For these remaining aspects of a topic, we calculated Aspect MAP similar to how it was calculated for documents.

## Document-level retrieval performance - document-based MAP

For the purposes of this measure, any PMID that had a passage associated with a topic ID in the set of gold standard passages was considered a relevant document for that topic. All other documents were considered nonrelevant for that topic. System run outputs were similarly collapsed, with the documents appearing in the same order as the first time the corresponding PMID appears in a nominated passage for that topic. For a given system run, average precision

was measured at each point of correct (relevant) recall for a topic, with Document MAP being the mean of the average precision values across topics.

### Results

A total of 66 runs were submitted by 27 groups. Of the submitted runs, 49 were classified as automatic, 8 as manual, and 9 as interactive. Appendix 1 lists the type and description of each submitted run. Table 5 lists the performance statistics for all of the runs and for the runs subdivided by categories. Appendix 2 shows the overall scores for each run, sorted by each measure.

We also measured correlation of the four measures (Passage2 MAP, Passage MAP, Aspect MAP, and Document MAP) for each run. As is seen in Table 6, the new Passage2 MAP measure was highly correlated with Aspect MAP and Document MAP ( $R^2 > 0.8$ ), with the older Passage MAP measure less correlated.

| Passage2 MAP | Passage MAP                                                                                                                                                                  | Aspect MAP                                                                                                                                                                                                                                                                                                                                                 | <b>Document MAP</b>                                                                                                                                                                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0008       | 0.0029                                                                                                                                                                       | 0.0197                                                                                                                                                                                                                                                                                                                                                     | 0.0329                                                                                                                                                                                                                                                                                                                             |
| 0.0377       | 0.0565                                                                                                                                                                       | 0.1311                                                                                                                                                                                                                                                                                                                                                     | 0.1897                                                                                                                                                                                                                                                                                                                             |
| 0.0398       | 0.0560                                                                                                                                                                       | 0.1326                                                                                                                                                                                                                                                                                                                                                     | 0.1862                                                                                                                                                                                                                                                                                                                             |
| 0.1148       | 0.0976                                                                                                                                                                       | 0.2631                                                                                                                                                                                                                                                                                                                                                     | 0.3286                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    |
| 0.0008       | 0.0029                                                                                                                                                                       | 0.0197                                                                                                                                                                                                                                                                                                                                                     | 0.0329                                                                                                                                                                                                                                                                                                                             |
| 0.0391       | 0.0587                                                                                                                                                                       | 0.1272                                                                                                                                                                                                                                                                                                                                                     | 0.1954                                                                                                                                                                                                                                                                                                                             |
| 0.0421       | 0.0582                                                                                                                                                                       | 0.1286                                                                                                                                                                                                                                                                                                                                                     | 0.1891                                                                                                                                                                                                                                                                                                                             |
| 0.1097       | 0.0976                                                                                                                                                                       | 0.2494                                                                                                                                                                                                                                                                                                                                                     | 0.3105                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    |
| 0.0032       | 0.0177                                                                                                                                                                       | 0.0204                                                                                                                                                                                                                                                                                                                                                     | 0.0541                                                                                                                                                                                                                                                                                                                             |
| 0.0149       | 0.0276                                                                                                                                                                       | 0.1136                                                                                                                                                                                                                                                                                                                                                     | 0.1696                                                                                                                                                                                                                                                                                                                             |
| 0.0169       | 0.0328                                                                                                                                                                       | 0.0964                                                                                                                                                                                                                                                                                                                                                     | 0.1526                                                                                                                                                                                                                                                                                                                             |
| 0.0458       | 0.0654                                                                                                                                                                       | 0.1503                                                                                                                                                                                                                                                                                                                                                     | 0.2309                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    |
| 0.0268       | 0.0394                                                                                                                                                                       | 0.1411                                                                                                                                                                                                                                                                                                                                                     | 0.0892                                                                                                                                                                                                                                                                                                                             |
| 0.0384       | 0.0620                                                                                                                                                                       | 0.1865                                                                                                                                                                                                                                                                                                                                                     | 0.1940                                                                                                                                                                                                                                                                                                                             |
| 0.0475       | 0.0648                                                                                                                                                                       | 0.1868                                                                                                                                                                                                                                                                                                                                                     | 0.2007                                                                                                                                                                                                                                                                                                                             |
| 0.1148       | 0.0968                                                                                                                                                                       | 0.2631                                                                                                                                                                                                                                                                                                                                                     | 0.3286                                                                                                                                                                                                                                                                                                                             |
|              | Passage2 MAP<br>0.0008<br>0.0377<br>0.0398<br>0.1148<br>0.0008<br>0.0391<br>0.0421<br>0.1097<br>0.0032<br>0.0149<br>0.0169<br>0.0458<br>0.0268<br>0.0384<br>0.0475<br>0.1148 | Passage2 MAP   Passage MAP     0.0008   0.0029     0.0377   0.0565     0.0398   0.0560     0.1148   0.0976     0.0008   0.0029     0.0391   0.0587     0.0421   0.0582     0.1097   0.0976     0.0032   0.0177     0.0149   0.0276     0.0169   0.0328     0.0458   0.0654     0.0268   0.0394     0.0384   0.0620     0.0475   0.0648     0.1148   0.0968 | Passage 2 MAPPassage MAPAspect MAP0.00080.00290.01970.03770.05650.13110.03980.05600.13260.11480.09760.26310.00080.00290.01970.03910.05870.12720.04210.05820.12860.10970.09760.24940.00320.01770.02040.01490.02760.11360.01690.03280.09640.04580.06540.15030.02680.03940.14110.03840.06200.18650.04750.06480.18680.11480.09680.2631 |

Table 5 - Descriptive statistics for all runs and subdivided by categories.

Table 6 - MAP measure correlation matrix using Pearson correlation coefficient (all values significantly different from 0 with a significance level p < .05).

| MAP      | Passage2 | Passage | Aspect | Document |
|----------|----------|---------|--------|----------|
| Passage2 | 1        | 0.656   | 0.845  | 0.812    |
| Passage  | 0.656    | 1       | 0.591  | 0.830    |
| Aspect   | 0.845    | 0.591   | 1      | 0.775    |
| Document | 0.812    | 0.830   | 0.775  | 1        |

We attempted to analyze the automatic runs to discern whether there was any association between individual methods used (as reported in conference notebook papers and not final proceedings papers) and overall performance as measured by Passage2 MAP. The task was challenging since groups approached entity-based question answering with a myriad of methods. Submissions employed multiple approaches for query expansion, various levels of passage retrieval granularity, varying IR models with many different scoring schemes, and several methods of post-processing. In all, these runs exercised over 70 different features, any of which could have impacted Passage2 MAP separately or in combination. With so many features and a limited number of runs (43) having a corresponding notebook paper describing methods, data sparseness was an issue. We therefore distilled the features into high-level categories, or metafeatures shown in Table 7.

If retrieval was done in two steps, e.g., to pare down results for secondary concept-based retrieval, and each step uses a different level of granularity for passage retrieval, we chose the granularity level of the second one in order to focus on features of the core strategy rather than a filtering step designed to reduce computer processing burdens. This only affected runs from ASU and Tsinghua. Each run was represented as a vector of meta-features deemed either present (1) or absent (0). The decision was binary since there is no uniform way to say something was partially done, such as in the case of fusion runs, or to weigh the impact of a paring step for concept-based retrieval. If fusion was done, the union of features used by the individual component runs was chosen since they presumably all contributed to the ultimate result. All meta-features were given the same weight. A hierarchical clustering algorithm using a centroid similarity metric grouped runs based on their meta-features, as shown in Figure 2. Runs were clustered as a "group" when their correlation was > 70%. Clustering using Dice's coefficient similarity measure produced similar results.

Originally, we had also clustered by statistical rank group. This simply revealed that many different paths lead to roughly the same performance, and was less informative as far as whether individual meta-features had an overall positive or negative impact. Although not used for clustering, the rank group is included in the heat map to indicate how a run performed. Given that the MAP measures were highly correlated (see Table 6), only Passage2 MAP rank is shown for clarity.

Table 7 - Meta-features of runs.

| Meta-Feature Name | Description                                                                                                                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SynExp            | query expansion with synonyms                                                                                                                                                                                          |
| OrthExp           | query expansion with orthographic variants using any source or method                                                                                                                                                  |
| ParGranularity    | passage retrieval by paragraph                                                                                                                                                                                         |
| SentGranularity   | passage retrieval by sentence                                                                                                                                                                                          |
| BlckGranularity   | passage retrieval by block, including blocks of words or sentences                                                                                                                                                     |
|                   | greater than a single sentence yet smaller than a paragraph                                                                                                                                                            |
| ConcptIR          | concept-based retrieval - a general retrieval strategy attempting to align<br>concepts and, for some runs, relationships between a topic and a<br>passage; uses external knowledge sources such as UMLS as a source of |
|                   | "concepts"; and finds concepts in the results as an inherent part of the<br>retrieval process rather than a post-processing step to "trim" a passage                                                                   |
| TermIR            | term-based retrieval – a general retrieval strategy focusing on terms rather than concepts                                                                                                                             |
| FusionIR          | fusion - combining results from 2 or more systems regardless of fusion operator used                                                                                                                                   |
| TfIdfIR           | passage retrieval using a vector space model with any variant of TF-IDF                                                                                                                                                |
| OkapiIR           | passage retrieval using a vector space model with any variant of Okapi                                                                                                                                                 |
| DfrIR             | passage retrieval using a vector space model with any variant of divergence from randomness (DFR)                                                                                                                      |
| LatentSemIR       | passage retrieval using a vector space model with any variant of latent semantic analysis                                                                                                                              |
| LmIR              | passage retrieval using any language model                                                                                                                                                                             |
| Feedback          | feedback using pseudo-relevance feedback or a custom method                                                                                                                                                            |
| FilterPostProc    | filter post-processing - removing passages for any reason                                                                                                                                                              |
| TrimPostProc      | passage trimming - post-processing of passages by removing sentences<br>from the ends regardless of method                                                                                                             |



Figure 2 - Heat map for meta-features, their use in runs, and rank group clustering.

Focusing on groups which "on average" used similar methods allowed us to make generalizations about some of the strategies used. Inevitably, abstracting out features in this manner does not precisely identify sources of changes in performance. Furthermore, important details such as corpus pre-processing was not included since papers often lacked details on how this was done. In spite of these limitations, however, we could make some general observations and identify potential causes for performance differences.

Group A runs expanded queries with synonyms and orthographic variants, defined passages by paragraph, and used vector space models for retrieval. Feedback, trimming, and passage removal all changed Passage2 MAP, but by no more than 10%. The greatest performance decline occurred between MuMshNfdRsc and OHSUQA. The most prominent difference between the runs was the use of Okapi (MuMshNfdRsc) versus TF-IDF (OHSUQA), though OHSU added some words related to the entity types to their queries. Furthermore, it was not clear that some aspect of corpus preprocessing contributed significantly to the decline.

Group B runs used various language models for retrieval and filtering passages. Group C runs used no query expansion, defined passages by paragraph, and retrieved them using a TF-IDF based vector space model. In spite of the differences in the approaches used in groups B and C, they performed similarly with the exception of AIDRun2, which defined passages by sentence, and the Kyoto runs. Kyoto1, the only run in group B belonging to a low rank group, used a different scoring scheme than the pivoted-document normalization used by the others. Unlike the runs in group A, not all runs in groups B and C performed above the mean and median on Passage2.

Group E included those runs defining passages by block. With one exception, all runs performed below the mean on Passage2 even though each used methods employed by higher scoring runs. Additionally, experiments conducted by Neuchatel, IIT, and Amsterdam suggest that defining passages by units other than paragraphs hurt performance.

Groups D and F represented the concept-based retrieval runs. The former used methods such as synonym query expansion, defined passages by paragraph and, for subgroup D', trimming of passages to ensure high concept density. Group F differed from Group D primarily in that passages were defined by block rather than paragraph. If submissions defining passages at the paragraph level (since any other seems to degrade performance, see Group E), are compared by those examining concepts (Group D) and those simply using terms (every other group besides Groups D and F), the mean and median dropped on all metrics though most significantly for Passage 2 (31% decline for the mean, 15% for the median). At best, the extra processing required for concept-based retrieval did not seem to help as a general approach. Only LHNCBC and the two UIC runs performed above both the TREC mean and median on all metrics. The exact impact of concept retrieval was difficult to ascertain as most runs did not compare it against a baseline; only NLM and EBI attempted to do so (with no difference and a decline, respectively). SUNY Buffalo, although not submitting an automatic run using concept retrieval, submitted a manual one representing each passage as a list of concepts to be compared to those of the topic. All three metrics dropped significantly.

According to NLM, the effect of trimming was neutral. The other runs in Group D' did not examine the effects of removing it, but there were runs outside this group that did so. Like them, OHSU and Geneva used external knowledge to identify the part of a passage with the highest density of "concepts" matching the topic. However, the ordering of passages returned from the retrieval step was unchanged. OHSU reported a small improvement (6%) on Passage2 MAP, but Geneva's dropped 41% for the same metric. This was a surprising result in that both methods employed NER, albeit differently. Other runs that trim using only word matches had results more in line with NLM's and OHSU's. Melbourne improved slightly by 4% and EBI improved by 7%, both for Passage2 MAP.

Across groups, synonym expansion was a popular method. Ostensibly, submissions using it scored about 20% higher on Passage2 MAP and Aspect MAP with no significant difference on Document MAP. But those groups conducting runs with and without synonym expansion differed in their results. Some, like OHSU, Melbourne, and Neuchatel, improved on all metrics (up to 40% for Passage2 MAP, 51% for Aspect MAP, 44% for Document MAP). However,

some like EBI and York did worse (up to 39% decrease for Passage2 MAP, 40% for Aspect MAP, 19% for Document MAP). Yet others like UIUC only improved marginally on Document MAP (10%). Such an equivocal outcome may have been due to the fact that groups used different knowledge sources for synonyms and/or processed those knowledge sources in different ways that resulted in different precision/recall tradeoffs for synonym expansion.

The performance of NLMFusion, the top scoring automatic run for all three metrics, suggested that combining results from different IR models may improve score. But other runs using fusion (UniNE3, EBI2Fusion, and kyoto3) showed slight declines in performance from their baseline non-fusion runs. Each used a different method, however, for fusing the individual runs, and this may have contributed to the differences in performance. Divergence from randomness (DFR) was another approach used in the NLMFusion run by its highest scoring subcomponent run. Neuchatel also reported success in using it. However, with only two groups using it in any form, it is hard to say in general that it is a superior method to other lexical-statistical methods.

## Discussion

Although our analysis is incomplete and difficult to interpret due to incomplete experimentation and reporting, we can draw some conclusions from the results. In terms of the overall results, the level of performance of the top systems was somewhat lower than the TREC 2006 Genomics Track. This may imply that the list-entity type question was more difficult than the GTT question. This would not be unexpected since list entity questions are more open-ended, involve more different entity types, and are closer to natural language than the GTT question used last year. The top systems did consistently well on all measures. The measures were highly correlated.

We can also conclude that, unlike last year, Aspect MAP was a meaningful measure of system topic coverage in the 2007 track. While the range of the average number of aspects per relevant passages was low (1-3), the number of aspects per topic was relatively high (could be over 300). Therefore for a system to do well on the Aspect MAP measure, a number of passages with complementary aspect information had to be retrieved and ranked highly, since for most topics, almost no single passages would cover all of the required entities.

We are able to draw some conclusions from our extraction of meta-features and their comparison with results of runs as reported in conference notebook papers. First, we conclude that no single strategy or combination of strategies was clearly superior, as indicated by both the diversity of methods used by runs clustering in the same rank group and the diversity of scores within the same methods cluster group. Second, concept-based retrieval using external knowledge sources, as used by the runs in the competition, at the very least did not help results in spite of the extra processing. Third, results with synonym query expansion, once again with external knowledge sources, were mixed but tended to improve results. Finally, passage retrieval by sentence or block-level was detrimental to performance compared to paragraph-level. Clearly, further experimentation as well as descriptions of runs must be provided by participating groups to reach conclusions about performance of features with more confidence.

## **Future Directions**

The 2007 track is the last year of the TREC Genomics Track. We are exploring future challenge evaluations in biomedicine, probably in concert with the ImageCLEF medical image retrieval task [3]. We hope that the test collections created over the years of the track will be used for further research in biomedical information retrieval and related areas. We will continue to maintain the track Web site for the foreseeable future, with the resources posted there as well as instructions for accessing them.

## Acknowledgements

The TREC Genomics Track was funded by grant ITR-0325160 from the U.S. National Science Foundation. The track thanks Ellen Voorhees, Ian Soboroff, and Lori Buckland of NIST for their help in various ways. We also thank John Sack and Highwire Press for facilitating the use of documents from the respective publishers as well as the U.S. National Library of Medicine for their use of MEDLINE data.

## References

- 1. Hersh W, et al. *TREC 2006 Genomics Track overview. The Fifteenth Text Retrieval Conference (TREC 2006).* 2006. Gaithersburg, MD: National Institute for Standards & Technology. 52-78. <u>http://trec.nist.gov/pubs/trec15/papers/GEO.OVERVIEW.pdf</u>.
- 2. Allan J. *HARD Track overview in TREC 2004 high accuracy retrieval from documents. The Thirteenth Text Retrieval Conference (TREC 2004).* 2004. Gaithersburg, MD: National Institute of Standards and Technology. http://trec.nist.gov/pubs/trec13/papers/HARD.OVERVIEW.pdf.
- 3. Hersh WR, et al., *Advancing biomedical image retrieval: development and analysis of a test collection.* Journal of the American Medical Informatics Association, 2006. 13: 488-496.

# Appendix 1 - Type and description of submitted runs.

| Run          | Type   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AIDrun?      | л<br>л | Same as baseling (AIDrup1) but with more algherate passage identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AIDrun2      | A<br>A | baseling as realized according to a language model of the antity type accipited with the tonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| asubaral1    | A<br>A | Finding relatedness between words in the passages and keywords in the corresponding question - keyword expansion by utilizing the terms appearing in the definitions of the keywords of the auestions                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| asubaral2    | А      | Using both Lucene and Indri indexing systems for retrieval - passage length is as minimal as possible - finding relatedness between words in the passages and keywords in the corresponding question - keyword expansion by utilizing the terms appearing in the definitions of the keywords of the questions                                                                                                                                                                                                                                                                                                                                                                   |
| asubaral3    | Ι      | Similar to our first run, except we interactively modified queries to improve the answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| biokiP       | Ι      | Interactive selection of keyphrases and weights. Result span expanded to paragraph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| biokiS       | Ι      | Interactive selection of keyphrases and weights. Result span expanded to sentence boundaries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| biokiST      | Ι      | Interactive selection of keyphrases and weights. Entity-type matching on some queries. Result span expanded to sentence boundaries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DUTgen1      | Ι      | Indri; named entity recognition; sentence-leval overlapped window; query expansion based on MeSH;post-processing using templates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DUTgen2      | Ι      | Indri; named entity recognition; sentence-leval overlapped window; query expansion based on MeSH:result combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DUTgen3      | А      | BM25; named entity recognition; NP extraction for topics; sentence-leval overlapped window;<br>query expansion based on MeSH; result combination;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EBI1Lucene   | A      | System based on a Lucene index that considers the spans as documents. The Lucene scoring function has been modified to better deal with large and small documents based on the article by Singhal about pivoted cosine normalization. A postprocessing of the spans has been done removing HTML without any content and by finding the zone with relevant information based on the similarity of the query and the sentences in the spans                                                                                                                                                                                                                                       |
| EBI2Fusion   | A      | This run is the fusion of two configurations of our system. Our system is based on a Lucene index that considers the spans as documents (configuration 1); in addition, query expansion and boosting of some spans based on the entities matched between the query and the spans can be done (configuration 2). The Lucene scoring function has been modified to better deal with large and small documents based on the article by Singhal about pivoted cosine normalization. In addition, the spans have been processed by removing HTML without any content and by finding the zone with relevant information based on the similarity of the query and the sentences in the |
| EBI3Boosting | A      | spans.<br>System based on a Lucene index that considers the spans as documents. The Lucene scoring<br>function has been modified to better deal with large and small documents based on the article by<br>Singhal about pivoted cosine normalization. A postprocessing of the spans has been done<br>analyzing the entities in the query and in the span and boosting the spans based on the entities<br>that are matched. In addition, the spans have been processed by removing HTML without any<br>content and by finding the zone with relevant information based on the similarity of the query<br>and the sentences in the spans.                                         |
| fdgerun1     | А      | Automatically extract the relevant concepts of each topic, retrieval sentences according to those concepts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| fdgerun2     | А      | Automatically extract relevant concepts of each topic, combine the result of sentence retrieval and the one of context retrieval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| fdgerun3     | М      | Score each sentence according to the concurrency of concept terms from different groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GenTeaBB     | А      | Same as GenTeam1 but with Boolean boosting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GenTeam1     | А      | Basic run using easyIR as IR engine (dtu.dtn. Porter).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GenTeaPA     | А      | Same run as GenTeaBB, but with passage selection based on assessing the density of semantic targets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HFmanual     | М      | Hongfang's run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hltcairo1    | А      | First 25 results from the search engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| hltcairo2    | А      | First 50 results from the search engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| icbdoc            | М   | Rank fusion of seven different search techniques implemented in Twease (includes both automatic and manual runs). Optimized for document MAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| icbpassage        | М   | Rank fusion of seven different search techniques implemented in Twease (includes both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 0               |     | automatic and manual runs). Passages are marked as a post-processing step after document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |     | retrieval and fusion. At most, ten passages are included per document. Optimized for passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |     | MAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ichtwease         | М   | Manual run with minimal interval semantics performed with Twease using a slider value of 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| leotwease         | 1,1 | This run was performed with the same Twease software version deployed at Twease org as of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |     | Inly 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| iity1r2           | Δ   | MST passage extraction by concept sc = $(1.0*result getPassConceptSCNorm() +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 111/11/2          | Π   | $0.1$ *result getSentConcentSCNorm() $\pm 1.0$ *result getPassConcentIdfSumNorm() $\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |     | 0.1 result getSentConceptServorm() + 1.0 result.get(assconceptionSumivorm() +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| iity)r)           | ٨   | MST passage extraction by concent as $-(1.0*result ast DescConcentSCNerm())$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IIIX212           | A   | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
|                   |     | $0.1^*$ result.getSentConceptSCNorm() + $1.0^*$ result.getPassConceptionSumNorm() +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |     | 0.1 "result.getSentConceptionSumiNorm()) with sentence boosting dependency grammar,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |     | Sumai, neoncepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11tx3r2           | А   | MS I passage extraction by concept sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |     | =((passConceptSCNorm+sentConceptSCNorm+passConceptIdfSumNorm+sentConceptIdfSumN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |     | orm)/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IRn               | А   | This run has been performed by applying the Information Retrieval technique based on passages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |     | The passages are composed of four sentences. The indexing of the document collection applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |     | the Okapi measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| kyoto1            | А   | Paragraph-level impact-based retrieval combined with a probabilistic model for term co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |     | occurrence. Passages scored using a variant of TF/IDF, but results are ranked using only the IR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |     | system's scores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| kyoto2            | А   | Paragraph-level impact-based retrieval combined with a probabilistic model for term co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |     | occurrence. Passages scored using a variant of TF/IDF, but more results were used and then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |     | ranked using only the PM's scores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| kyoto3            | А   | Paragraph-level impact-based retrieval combined with a probabilistic model for term co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |     | occurrence. Passages scored using only the probabilistic model and final ranking determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |     | using equal weight on both systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LHNCBC            | А   | An automatic run based on LHC's Essie search engine and for which results are reranked based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |     | on relationships extracted from Essie results using MetaMap and SemRep.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MuMshFd           | А   | Automatic query expansion with entities and ontological terms, but without passage reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |     | and reranking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MuMshFdRsc        | А   | Automatic query expansion with entities and ontological terms, followed by passage reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |     | and reranking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MuMshNfdRsc       | А   | Automatic query expansion with ontological terms only, followed by passage reduction and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |     | reranking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ncbi2007a         | А   | Reranked Essie hits from NCBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ncbi2007b         | A   | generated by Larry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NI Mfusion        | Δ   | An automatic run obtained by applying fusion to the LHNCRC run a Terrier run an NCRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 (Entrasion      | 11  | Themes run an INDRI run and an easyIR run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NI Minter         | т   | An interactive run based on an interactively created filter applied to the NI Mfusion run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OHSUOA            | 1   | Two stage query generation with MESH and gene synonym expansion, and entity specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AQUATIO           | Л   | keywords. Lucene maximal passage index. TE*IDE_MMTX based sentence entity count passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |     | trimming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OUSLIOASUD        | ٨   | Two store query concretion with MESH and substances expansion, and antity specific keywords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UNSUQASUB         | A   | I wo stage query generation with MESH and substances expansion, and entity specific keywords.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OUGUOAGUD         | ٨   | The stars may acception with MESH and substances supervised and subtrances for and subtrances for a substances and subtrances and subtrances are supervised and substances are supervised and supervised and supervised are supervised and supervised are supervised and supervised are supervised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UHSUQASUB         | A   | I wo stage query generation with MESH and substances expansion, and entity-specific keywords.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EX<br>Taina Han 2 |     | Lucene maximal passage index, IF*IDF. MMIX based sentence entity count passage trimming.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TsingHua3         | A   | (runs) wachine learning and dictionary based NE recognition, BM2500, Freble passage retrieval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 singHua4        | А   | (run4) Machine learning and dictionary based NE, sigma local df for weighting, Treble passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tuin II C         |     | retrieval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 singHua5        | А   | (runs_new) strictly generated dictionary for NE, max local df for weighting, Treble passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |     | retrieval, reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| UBexp1        | A | Automatic runs generated with Indri. Queries were build automatically by expanding them with MetaMap and discarding common terms. Gene and proteins names were expanded using Gene Ontology. Query formulated using synonyms to represent the expanded terms and multiword phrases when appropriate. Reference sections were discarded by restricting results to those passages that did not have the word "Medline".                                                                                                    |
|---------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UBHFmanual    | М | Queries were expanded using publicly available resources. This list was manually filtered to discard ambiguous names of gene and proteins.                                                                                                                                                                                                                                                                                                                                                                               |
| uchsc1        | Μ | Queries were manually expanded and individual terms were assigned weights. Lists of terms matching keyword classes were included in the queries; those terms recieved equal weights. The queries were submitted to the Indri search engine of the Lemur toolkit. Post-processing included filtering out passages that did not contain genes, mutations or biological substances, according to query type                                                                                                                 |
| uchsc2        | Ι | Queries were manually expanded and individual terms were assigned weights based on MeSH distance. Additionally, salient biomedical predicates were also expanded for 5 of the queries. Lists of terms matching keyword classes were included in the queries; those terms recieved equal weights. The queries were submitted to the Indri search engine of the Lemur toolkit. Post-processing included filtering out passages that did not contain genes, mutations or biological substances, according to query type.    |
| UICGenRun1    | А | Utilize UMLS to get some of the entities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UICGenRun2    | А | Do not differentiate the importance of entities in passages as long as some entity presents in                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |   | passages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UIowa07Gen01  | М | title of reference identified from logical document structure                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UIUCconi      | А | automatic run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UIUCrelfb     | T | Interactive run with relevance feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UIUCsyn       | A | automatic run with synonym expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UniNF1        | Δ | Retrieval based on Divergence from randomness. Overv expansion using forms generated from                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UIIINEI       | Л | query words. The length of a passage is delimited by the <i>c</i> p> tag                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UniNE2        | А | Data fusion of three IR systems. 1 Retrieval based on Okapi model with query expansion using<br>forms generated from query words. 2 Retrieval based on Okapi model, using only the original<br>query words. Re-ranking based on distance between query words and entity in the query. 3<br>Retrieval based on Divergence from randomness. Query expansion using forms generated from<br>query words. Each passage is a sentence.                                                                                         |
| UniNE3        | A | Data fusion of three IR systems 1- Retrieval based on Divergence from randomness. Query expansion using forms generated from query words and word variant generation for entity and query terms. 2 Retrieval based on Okapi model with query expansion using forms generated from query words. 3 Retrieval based on Divergence from randomness. Query expansion using forms generated from query words. Re-ranking based on distance between query words and entity in the query. Each passage is delimited by the  tag. |
| UTEMC1        | А | UMLS-based thesaurus in combination with language-modeling. Run optimized for aspect-<br>retrieval.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UTEMC2        | А | UMLS-based thesaurus in combination with language-modeling. Run optimized for precision.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vork07ga1     | А | No query expansion. Use only terms extracted from the raw topics for retrieval. Use BM25 for                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,, . But      |   | term weighting in structured queries. Use Okapi to build word-based index.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vork07ga2     | А | Expand query terms for 11 gene-related topics by using Entrez Gene. Use RM25 for term                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| J 51110 / Bu2 |   | weighting in structured queries. Use Okani to huild sentence-based index                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| york07ga3     | А | Expand query terms for all the topics by using UMLS. Use BM25 for term weighting in structured queries. Use Okapi to build word-based index.                                                                                                                                                                                                                                                                                                                                                                             |

## Appendix 2 - Overall MAP for each run, sorted by each measure.

| NLMiner   0.148   ULCenerkun2   0.0976   NLMiner   0.2531   NLMiner   0.3286     NLMuscion   0.0998   yorkoforgal   0.0947   biokiP   0.2254   MuMshFid   0.2996     UniNE1   0.0988   yorkoforgal   0.0947   UniNE1   0.2180   MuMshFid   0.2081     MuMshFidRes   0.0895   iiu.322   0.0940   UniNE1   0.2177     MuMshFidRes   0.0890   WILMicen   0.0881   MuMshFidRes   0.2021   iiit.12   0.2482     DBexp1   0.0694   yorkof7gu2   0.0859   mLHCC   0.2032   iiit.12   0.2454     INNCI   0.0665   MuMshFidRes   0.0861   Rin   0.1976   AlDrun1   0.2412     GerlTavmI   0.0665   MuMshFid   0.0802   UICGenRun2   0.1807   IIR0   0.2333     Rin   0.1976   AlDrun1   0.2315   iidkST   0.0461   biokST   0.0802   UICGenRun2   0.1807   IIR0   0.2335     UICGenRun2                                                                                                                                                                                                                                                                 | Run          | Passage2 | Run                       | Passage | Run           | Aspect | Run          | Document |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------------------------|---------|---------------|--------|--------------|----------|
| NLMission   0.097   NLMiner   0.0968   NLMission   0.2494   NLMission   0.3105     UmiNE1   0.0970   iix3c2   0.0940   UuiNE1   0.2189   MuMshiFd   0.2306     UmiNE3   0.0970   iix3c2   0.0920   MuMshiFd   0.2079   UuiNE3   0.2717     MuMshiFdRsc   0.0889   NLMission   0.0921   MuMshiFdRsc   0.2682     UBexp1   0.0698   MuMshiFdRsc   0.0203   iix12   0.2464     LINCEC   0.0664   ymkohFdRsc   0.0216   iix122   0.2454     LINCEC   0.0665   MuMshiFd   0.0852   MuMshiFdSc   0.2106   iix3c2   0.2414     GenTeamB   0.0665   MuMshiFdRsc   0.2101   iix3c2   0.2414   0.2303     Rh   0.0665   MuMshiFdRsc   0.2101   iix3c3   0.1762   0.2239     UICCenRun1   0.0665   MuMshiFdRsc   0.0794   CircCenRun2   0.2339     UICCenRun2   0.0511   UiNE1   0.0877                                                                                                                                                                                                                                                                   | NLMinter     | 0.1148   | UICGenRun2                | 0.0976  | NLMinter      | 0.2631 | NLMinter     | 0.3286   |
| UniNE1   0.0988   york07ga1   0.0947   biokiP   0.2254   MuMahiFd   0.2890     MuMahiFd   0.0895   iitx2/2   0.0926   MuMahiFdRe   0.2890     MuMahiFdRe   0.0895   iitx2/2   0.0926   MuMahiFdRe   0.2019   UniNE1   0.2170     MuMahiFdRe   0.0899   UniNE3   0.0211   MuMahiFdRe   0.2020   iitx1/2   0.2442     Albran1   0.0604   york07ga2   0.0859   ncbi2007a   0.2021   iitx1/2   0.2442     LiNCBC   0.0660   iitx1/2   0.0841   Rin   0.1976   AlDran1   0.2412     GenTeaml   0.0661   MuMahiFd   0.0841   biokiST   0.1976   AlDran1   0.2412     GenTeaml   0.0664   UIUCCrelib   0.0811   biokiST   0.1976   Rn   0.2335     DiokiST   0.0462   biokiST   0.0802   UICGrenRun2   0.1790   LHNCBC   0.2236     pokid/Fgaz   0.0743   GenTeaml   0.1749   biokiST                                                                                                                                                                                                                                                                 | NLMfusion    | 0.1097   | NLMinter                  | 0.0968  | NLMfusion     | 0.2494 | NLMfusion    | 0.3105   |
| UniNE3   0.0970   iix3r2   0.0940   UniNE1   0.2189   MushhirdRsc   0.2880     MushhirdRsc   0.0893   NLMfusion   0.0921   MushhirdRsc   0.2068   UniNE3   0.2710     MushhirdRsc   0.0898   MushhirdRsc   0.2682   MushhirdRsc   0.2682     UBexp1   0.0698   MushhirdRsc   0.0890   hLiNCRC   0.2012   iits12   0.2454     LINCRC   0.0668   iits12   0.0851   mushhirdRsc   0.2016   iits12   0.2454     CerrTaaB   0.0661   UIUCreftb   0.0814   biokIST   0.1976   AlDan1   0.2412     GerTaaB   0.06612   UIUCreftb   0.0803   DUTgen1   0.1867   IIRn   0.2333     Ra   0.06612   UIUCreftb   0.0803   DUTgen1   0.1867   IRn   0.2339     JUKGenRun2   0.0511   UmNSL   0.0787   UBexp1   0.1792   IchNC2   0.2309     york07ga2   0.0412   UmNSL   0.0787   UBexp1                                                                                                                                                                                                                                                                    | UniNE1       | 0.0988   | york07ga1                 | 0.0947  | biokiP        | 0.2254 | MuMshFd      | 0.2906   |
| MuMshFid   0.0895   iir.2/2   0.0926   MuMshFidRs:   0.2077   UniNE1   0.27770     MuMshFidRs:   0.0809   UniNE3   0.0914   UniNE3   0.2048   UniNE3   0.2770     MuMshFidRs:   0.0809   UniNE3   0.2024   UniNE3   0.2024   UniNE3   0.2024   2.2462     AlDrun1   0.0665   MuMshFidRs:   0.2016   iits.12   0.2442     GenTeaB1   0.0667   MuMshFidRs:   0.1865   0.1968   UICCenRun2   0.2393     IRn   0.06647   UICCenRun1   0.0834   biokiST   0.1923   UICCenRun2   0.2393     IRn   0.0666   biokiST   0.0801   UICGenRun2   0.1865   Rn   0.2325     UICGenRun2   0.0511   UniNE2   0.0787   UBexp1   0.1790   LHNCEC   0.2335     biokiST   0.0442   UniNE2   0.0788   Subaral3   0.1729   LHNCEC   0.2226     biokiS   0.0442   biokiS   0.0768   Subaral3   0                                                                                                                                                                                                                                                                      | UniNE3       | 0.0970   | iitx3r2                   | 0.0940  | UniNE1        | 0.2189 | MuMshFdRsc   | 0.2880   |
| MudshifdRsc   0.0893   NL.Muxison   0.0921   MudshifdRsc   0.2043   MufshifdRsc   0.2710     UBexpl   0.0698   MudshifdRsc   0.0880   LHNCBC   0.2043   MufshifdRsc   0.2682     UBexpl   0.0694   MudshifdRsc   0.0880   LHNCBC   0.2022   iix1r2   0.2454     LHNCBC   0.0665   MudshifdRsc   0.0207   0.2012   iix1r2   0.2451     GenTean1   0.0647   UICCenRun1   0.0831   biokiS1   0.1976   IIFMC2   0.2398     ncbi2007a   0.0612   UIUCrellb   0.0811   biokiS1   0.1975   icbdoc   0.2399     pynK07ga2   0.0472   UMMshNifkRc   0.0794   GenTeaBB   0.1795   icbdoc   0.2399     york07ga2   0.0442   biokiS   0.0787   UBexpl   0.1782   nchi2007a   0.2222     uchsc1   0.0458   AlDrun2   0.078   UIEvspl   0.1629   biokiS   0.2222     uchsc2   0.0445   AlDrun2   0.078                                                                                                                                                                                                                                                       | MuMshFd      | 0.0895   | iitx2r2                   | 0.0926  | MuMshNfdRsc   | 0.2079 | UniNE1       | 0.2777   |
| MuMaINIGRsc   0.0809   UmiNE3   0.0914   UmINE3   0.2043   MuMaINIGRsc   0.2682     AIDrun1   0.0694   york07ga2   0.0859   nchi2007a   0.2020   iitx1r2   0.2462     AIDrun1   0.0694   york07ga2   0.0852   muMaINFR   0.2016   iitx3r2   0.2414     GenTeaBB   0.0665   MuMAShFd   0.0840   IRn   0.1976   AIDrun1   0.2412     GenTeaBB   0.0665   MuMAShFd   0.0841   biokiST   0.1923   UICGenRun2   0.2393     IRn   0.0606   biokiST   0.0803   DUTgen1   0.1807   UTEMC1   0.2335     biokST   0.0472   MuMAShTdRsc   0.0794   GenTeaBB   0.1790   LHNCE   0.2222     uchsc2   0.0472   MuMAShTdRsc   0.0278   GenTeaBB   0.1789   biokiS   0.2222     uchsc2   0.0425   MUTEMC2   0.0788   asubaral3   0.1789   biokiS   0.2222     uchsc3   0.0462   biokiS                                                                                                                                                                                                                                                                         | MuMshFdRsc   | 0.0893   | NLMfusion                 | 0.0921  | MuMshFd       | 0.2068 | UniNE3       | 0.2710   |
| UBesp1   0.0698   MuMshFdRsc   0.0880   LHNCBC   0.2032   iitx1-2   0.2463     LHNCBC   0.0660   iitx1-2   0.0852   MuMshFdRsc   0.2012   iitx1-2   0.2454     LHNCBC   0.0667   MuMshFdRsc   0.2016   iitx3-2   0.2414     GenTeaBB   0.0665   MuMshFdRsc   0.2016   MIR   0.2023     GenTeaBA   0.0660   biokiST   0.0803   DUTgen1   0.1923   UICGenRun2   0.2393     IRn   0.0606   biokiST   0.0803   DUTgen1   0.1865   IR.n   0.2315     UICGenRun2   0.0472   UniNE2   0.0787   UBesp1   0.1795   icbdice   0.2309     york07ga2   0.0443   UTEMC2   0.0738   GenTeamB   0.1782   ncbixiS   0.2222     uchsc1   0.0445   MTEMC2   0.0738   GenTeamB   0.1782   ncbixiS   0.2222     Uchsc1   0.0445   MTEMC2   0.0738   GenTeamB   0.1782   ncbixiS   0.22209 <td>MuMshNfdRsc</td> <td>0.0809</td> <td>UniNE3</td> <td>0.0914</td> <td>UniNE3</td> <td>0.2043</td> <td>MuMshNfdRsc</td> <td>0.2682</td>                                                                                                                                | MuMshNfdRsc  | 0.0809   | UniNE3                    | 0.0914  | UniNE3        | 0.2043 | MuMshNfdRsc  | 0.2682   |
| AlDrun1   0.0694   york07ga2   0.0852   nchi2007a   0.2016   iitx372   0.2414     GenTean1   0.0665   MuMshFd   0.0840   IRn   0.1968   UTEMC2   0.2393     ncbi2007a   0.0612   UIUCrelib   0.0814   biokiST   0.1923   UICGenRun2   0.2393     IRn   0.0606   biokiST   0.0802   UICGenRun2   0.8057   IIRn   0.2351     UICGenRun2   0.0511   UniNE1   0.0802   UICGenRun3   0.1790   LiNCBC   0.23251     vjork07ga2   0.0472   UniNE2   0.0787   UBexp1   0.1790   LiNCBC   0.2222     uchsc2   0.0458   UITEMC1   0.0788   asubaral3   0.1782   nchi2077   0.2222     uchsc1   0.0445   UTEMC1   0.0650   uchsc2   0.1551   biokiST   0.2219     uchsc2   0.0442   icbpasage   0.0650   uchsc2   0.1525   york07ga1   0.2153     OHSUQA   0.0441   fidgerun2   0.06                                                                                                                                                                                                                                                                      | UBexp1       | 0.0698   | MuMshFdRsc                | 0.0880  | LHNCBC        | 0.2030 | iitx2r2      | 0.2462   |
| LHNCBC   0.0680   iirk1r2   0.0852   MuMshFlace   0.0814   iirk3r2   0.2414     GenTeamB   0.0667   UIICGenRun1   0.0840   IR   0.1976   MIDrun1   0.2412     GenTeamB   0.0666   biokiST   0.0803   DUTgen1   0.1865   IR   0.2393     IRn   0.0606   biokiST   0.0802   UICGenRun2   0.1807   UTEMC1   0.2333     DiokiST   0.0472   MuMshNiRsc   0.0794   GenTeamB   0.1795   icbdoc   0.2226     uchxc1   0.0472   MuMshNiRsc   0.0787   UBexp1   0.1790   LHNCC   0.2226     uchxc2   0.0458   UTEMC2   0.0738   GenTeam1   0.1749   biokiST   0.2222     uchxc1   0.0445   UTEMC1   0.0667   AIDrun1   0.1561   biokiST   0.2216     UICGenRun1   0.0445   UTEMC1   0.0654   uCFEMC1   0.1535   UorkOfzga2   0.2150     OHSUQASUBEX   0.0444   UUTEgen1   0.0660 <td>AIDrun1</td> <td>0.0694</td> <td>york07ga2</td> <td>0.0859</td> <td>ncbi2007a</td> <td>0.2022</td> <td>iitx1r2</td> <td>0.2454</td>                                                                                                                                 | AIDrun1      | 0.0694   | york07ga2                 | 0.0859  | ncbi2007a     | 0.2022 | iitx1r2      | 0.2454   |
| GenTeaml   0.0665   MuMshFd   0.0844   biokiS   0.1968   UTEMC2   0.2393     Rn   0.0612   UIUCrentb   0.0811   biokiST   0.1923   UICGenRun2   0.2393     IRn   0.0606   biokiST   0.0803   DUTgen1   0.1865   IRn   0.2351     UICGenRun2   0.0511   UniNE1   0.0802   UICGenRun2   0.1807   UTEMC1   0.23351     biokiST   0.0472   MuMshNidRsc   0.0787   UBexp1   0.1799   LiNCSC   0.2222     uchsc2   0.0458   UTEMC2   0.0778   GenTeaml   0.1799   biokiS   0.2222     uchsc2   0.0458   UTEMC1   0.0687   AlDrun1   0.1619   biokiST   0.2222     uchsc2   0.0445   UTEMC1   0.0664   UTEMC1   0.1535   UBexp1   0.2209     OHSUQASUB   0.0440   fdgerun2   0.0654   UTEMC1   0.1535   UBexp1   0.2209     OHSUQASUB   0.0441   UIUCsyn   0.0636   <                                                                                                                                                                                                                                                                                 | LHNCBC       | 0.0680   | iitx1r2                   | 0.0852  | MuMshFdRsc    | 0.2016 | iitx3r2      | 0.2414   |
| GenTam1   0.0647   UlCGenRun1   0.0834   biokisT   0.1923   UTEMC2   0.2393     IRn   0.0606   biokiST   0.0811   biokiST   0.1923   UlCGenRun2   0.2391     IRn   0.0606   biokiST   0.0802   UlCGenRun2   0.1867   UTEMC1   0.2335     biokiST   0.0472   MuMshNfdRsc   0.0794   GenTeaBB   0.1795   icbdoc   0.2309     york07ga2   0.0472   UniNE2   0.0778   subaral3   0.1782   ncbi2007   0.22222     uchsc1   0.0458   AIDrun2   0.0778   GenTeam1   0.1629   biokiS   0.22222     uchsc1   0.0445   MTEMC1   0.1634   biokiST   0.2222   uchsc1   0.1515   biokiST   0.22209     UHSUQA   0.0444   figerun2   0.0650   uchsc2   0.1525   york07ga1   0.2153     UHSUQA   0.0444   figerun2   0.0651   EBI2husion   0.1401   UlCGenRun1   0.2092     EBI1Lucene <td< td=""><td>GenTeaBB</td><td>0.0665</td><td>MuMshFd</td><td>0.0840</td><td>IRn</td><td>0.1976</td><td>AIDrun1</td><td>0.2412</td></td<>                                                                                                                             | GenTeaBB     | 0.0665   | MuMshFd                   | 0.0840  | IRn           | 0.1976 | AIDrun1      | 0.2412   |
| ncbi2007a   0.0612   UIUCrelib   0.0811   biokiST   0.185   UICGenRun2   0.2393     IUIGenRun2   0.0511   UniNE1   0.0803   DUTgen1   0.1865   IRa   0.2393     biokiST   0.0472   MuMahNidl&c   0.0794   GenTeaBB   0.1795   icbdoc   0.2309     pyrK0fga2   0.0472   UniNE2   0.0787   UBexp1   0.1792   ncbi2007a   0.2222     uchsc1   0.0458   UTEMC2   0.0788   asubaral3   0.1782   ncbi2007a   0.2222     uchsc2   0.0458   UTEMC1   0.0687   AlDrun1   0.1515   biokiS   0.2222     UICGenRun1   0.0442   icpassage   0.0654   UTEMC1   0.1535   UBexp1   0.2209     OHSUQASUBEX   0.0434   AlDrun1   0.0636   EBI1Lacene   0.1513   york07ga2   0.2153     OHSUQASUBEX   0.0434   UIUCsyn   0.1902   0.1500   GenTeaBA   0.1992     EBILLacene   0.0401   GenTean1   0.0620 <td>GenTeam1</td> <td>0.0647</td> <td>UICGenRun1</td> <td>0.0834</td> <td>biokiS</td> <td>0.1968</td> <td>UTEMC2</td> <td>0.2398</td>                                                                                                                    | GenTeam1     | 0.0647   | UICGenRun1                | 0.0834  | biokiS        | 0.1968 | UTEMC2       | 0.2398   |
| IRn   0.0606   biokiST   0.0802   DUTgen1   0.1865   Rn   0.2351     biokiST   0.0472   MuMshNfdRsc   0.0794   GenTeaBB   0.1795   icbdoc   0.2309     pyrk07ga2   0.0472   UniNE2   0.0787   UBexp1   0.1795   icbdoc   0.2309     pyrk07ga2   0.0472   UniNE2   0.0787   UBexp1   0.1795   icbdoc   0.2202     uchsc1   0.04458   UTEMC1   0.07788   GenTeam1   0.1749   biokiS   0.22222     UICGenRun1   0.0445   UTEMC1   0.0654   UTEMC1   0.1551   biokiST   0.2209     OHSUQA   0.0444   figterna2   0.0650   uchsc2   0.1525   york07ga1   0.2153     OHSUQASUBE   0.0434   UUTCyn   0.0633   uchsc1   0.1503   UICGenRun1   0.1992     EBILucene   0.0404   DUTgen1   0.0620   UTEMC2   0.1503   UICGenRun1   0.1924     AlDrun3   0.0399   GenTeaB1   0.1415 </td <td>ncbi2007a</td> <td>0.0612</td> <td>UIUCrelfb</td> <td>0.0811</td> <td>biokiST</td> <td>0.1923</td> <td>UICGenRun2</td> <td>0.2393</td>                                                                                                                        | ncbi2007a    | 0.0612   | UIUCrelfb                 | 0.0811  | biokiST       | 0.1923 | UICGenRun2   | 0.2393   |
| UICGenkun2   0.0511   UmNE1   0.0802   UICGenkun2   0.1807   UIEMC1   0.2335     pork07ga2   0.0472   MuMshNidRs   0.0787   UBexp1   0.1790   LINCBC   0.2369     biokiS   0.0462   biokiS   0.0787   UBexp1   0.1782   ncbi2007a   0.2222     uchsc1   0.0458   UTEMC2   0.0788   Gen?eam1   0.1749   biokiS   0.2222     uchsc1   0.0458   AIDrun2   0.0708   UIUCsyn   0.1629   biokiS   0.2222     uchsc1   0.0442   UTEMC1   0.0654   UTEMC1   0.1535   UBexp1   0.2209     OHSUQA   0.0440   fdgerun2   0.0650   uchsc2   0.1535   york07ga2   0.2153     OHSUQASUB   0.0439   AIDrun1   0.0663   uchsc1   0.1503   UICGenkun1   0.2092     EBILLucene   0.1503   UICGenkun1   0.1470   UIUCsyn   0.1962     Gen?eaPA   0.0392   LHNCBC   0.0609   UICGenRun1   0.1                                                                                                                                                                                                                                                                      | IRn          | 0.0606   | biokiST                   | 0.0803  | DUTgen1       | 0.1865 | IRn          | 0.2351   |
| biokIST   0.04/2   MuMshNidksc   0.0794   Gen TeaBB   0.1795   icbdoc   0.2309     biokIS   0.0462   biokIS   0.0788   asubaral3   0.1782   nobi2007a   0.2222     uchsc1   0.0458   UTEMC2   0.0788   Gen Team1   0.1749   biokiP   0.2222     uchsc1   0.0458   AIDrun2   0.0708   Gen Team1   0.1749   biokiP   0.2222     uchsc1   0.0445   AIDrun2   0.0708   UIUCsyn   0.1629   biokiS   0.2222     UCGenRun1   0.0445   UTEMC1   0.0531   UICsenRun1   0.2209     OHSUQASUB   0.0443   UIUCsyn   0.0653   uchsc2   0.1533   york07ga2   0.2150     OHSUQASUB   0.0434   UIUCsyn   0.0633   uchsc1   0.1500   GenTeam1   0.1991     EB12Fusion   0.0404   DUTgen1   0.0611   UIUCsyn   0.1962     GenTeaPA   0.0399   GenTeaBB   0.0611   UIUCsen1   0.1415   GenTeaPA                                                                                                                                                                                                                                                                   | UICGenRun2   | 0.0511   | UniNEI                    | 0.0802  | UICGenRun2    | 0.1807 | UTEMCI       | 0.2335   |
| york0'ga2   0.0472   UniNE2   0.0787   UBexp1   0.1790   LinNCBC   0.2266     biokiS   0.0458   UTEMC2   0.0788   saubaral3   0.1782   ncbi2007a   0.2222     uchsc1   0.0458   UTEMC1   0.0768   ullCsyn   0.1629   biokiS   0.2222     uchsc1   0.0445   UTEMC1   0.0664   UTEMC1   0.1535   UBexp1   0.2220     OHSUQA   0.0440   fdgerun2   0.0650   uchsc2   0.1535   UBexp1   0.2153     OHSUQA   0.0440   fdgerun2   0.0653   uchsc1   0.1503   UICGenRun1   0.2092     EBILLucene   0.0401   GenTeam1   0.0615   EBI2Fusion   0.1470   UIUCsyn   0.1962     GenTeaaPA   0.0392   LHNCBC   0.0695   GenTeaPA   0.1451   GenTeaPA   0.1962     UUCsyn   0.0384   DUTgen3   0.0595   GenTeaPA   0.1415   AlDrun2   0.1962     UUTcyn   0.0384   DUTgen3   0.0557 <td>biokiST</td> <td>0.0472</td> <td>MuMshNtdRsc</td> <td>0.0794</td> <td>GenTeaBB</td> <td>0.1795</td> <td>1cbdoc</td> <td>0.2309</td>                                                                                                                                  | biokiST      | 0.0472   | MuMshNtdRsc               | 0.0794  | GenTeaBB      | 0.1795 | 1cbdoc       | 0.2309   |
| blokis   0.0462   blokis   0.0768   asubarais   0.1782   ncbi2007a   0.2222     uchsc1   0.0448   MITmC2   0.0708   GenTean1   0.1749   biokisP   0.2222     uchsc1   0.0445   MITmC2   0.0708   UIUCsyn   0.1629   biokisP   0.2222     UIGenRun1   0.0442   icbpassage   0.0650   uchsc2   0.1535   UBexpl   0.2216     ittx3r2   0.0442   icbpassage   0.0650   uchsc2   0.1503   UICGenRun1   0.2109     OHSUQASUBEX   0.0434   UIUCsyn   0.0633   uchsc1   0.1503   UICGenRun1   0.2092     EBI1zusion   0.0404   DUTgen1   0.0620   UTFMC2   0.1503   UICGenRun1   0.1962     GenTeaPA   0.0399   GenTeaBB   0.0611   UIUCrelrb   0.1451   GenTeaPA   0.1962     GenTeaPA   0.0391   york07ga3   0.0595   GenTeaPA   0.1415   AlDrun2   0.1964     UIUCsyn   0.0373   GenTeaPA <td>york0/ga2</td> <td>0.0472</td> <td>UniNE2</td> <td>0.0787</td> <td>UBexpl</td> <td>0.1790</td> <td>LHNCBC</td> <td>0.2266</td>                                                                                                                        | york0/ga2    | 0.0472   | UniNE2                    | 0.0787  | UBexpl        | 0.1790 | LHNCBC       | 0.2266   |
| uchsc1   0.0488   OTEMC2   0.0738   Gen Team1   0.1749   biokiP   0.2222     UICGenRun1   0.0445   UTEMC1   0.0687   AIDrun1   0.1561   biokiST   0.2216     iitx3r2   0.0442   icbpassage   0.0654   UTEMC1   0.1525   york07ga1   0.2209     OHSUQA   0.0440   figerun2   0.0663   uchsc2   0.1525   york07ga1   0.2153     OHSUQASUBEX   0.0434   UIUCsyn   0.0633   uchsc1   0.1503   UICGenRun1   0.2092     EBILucene   0.0404   DUrgen1   0.0603   uchsc1   0.1503   UICCsyn   0.1962     AIDrun3   0.0399   GenTeam1   0.0615   EBI2Fusion   0.1470   UIUCsyn   0.1962     GenTeaPA   0.0391   york07ga3   0.0595   GenTeaPA   0.1451   GenTeaPA   0.1962     UIUCsyn   0.0384   DUTgen2   0.1411   UIUCrelib   0.1933   0.1973     UTEMC2   0.0376   risrlHua4   0.0555                                                                                                                                                                                                                                                               | biokiS       | 0.0462   | blokiS                    | 0.0768  | asubaral3     | 0.1782 | ncbi200/a    | 0.2222   |
| ucnsc1   0.043s   ALDrun2   0.070s   UUCsyn   0.1629   biokist   0.2222     UICGenRun1   0.0445   UTEMC1   0.0561   UDLSyn   0.1561   biokist   0.2209     OHSUQA   0.0442   icbpassage   0.0650   uchsc2   0.1525   york07ga1   0.2209     OHSUQASUBEX   0.0439   AlDrun1   0.0633   uchsc1   0.1503   UICGenRun1   0.2092     EB1Lucene   0.0434   UUCsyn   0.0633   uchsc1   0.1503   UICGenRun1   0.2092     EB1Lruson   0.0404   DUTgen1   0.0620   UTEMC2   0.1500   GenTealB   0.1962     GenTeaPA   0.0399   GenTeaBB   0.0611   UIUCsyn   0.1451   GenTeaPA   0.1962     UUUCsyn   0.0391   york07ga3   0.0585   GDUTgen2   0.1411   UUCsenfb   0.1970     UUTgen1   0.0376   TsingHua4   0.0555   york07ga2   0.1302   icbpassage   0.1831     UTEMC1   0.0367   rbicb207a <td>uchsc2</td> <td>0.0458</td> <td>UTEMC2</td> <td>0.0738</td> <td>GenTeam</td> <td>0.1749</td> <td>biokiP</td> <td>0.2222</td>                                                                                                                          | uchsc2       | 0.0458   | UTEMC2                    | 0.0738  | GenTeam       | 0.1749 | biokiP       | 0.2222   |
| UICCenkruin   0.0445   UIEMC1   0.087   AIDmini   0.1561   biokis1   0.2216     uitx3r2   0.0442   icbassage   0.0650   uchsc2   0.1525   york07gal   0.2153     OHSUQASUB   0.0439   AIDrun1   0.0636   EBI1Lucene   0.1503   UICGenRun1   0.2092     DISUQASUB   0.0434   UIUCsyn   0.0630   uchsc1   0.1503   UICGenRun1   0.1991     EBI1Lucene   0.0404   DUTgen1   0.0620   UTEMC2   0.1500   GenTeamin   0.1962     AIDrun3   0.0399   GenTeaBB   0.0611   UIUCrelh   0.1452   GenTeaBA   0.1962     GenTeaPA   0.0392   LHNCBC   0.0609   UICGenRun1   0.1415   AIDrun2   0.1954     uitx1r2   0.0384   DUTgen3   0.0587   DUTgen2   0.1411   UIUCrelh   0.1940     DUTgen1   0.0376   TsingHua4   0.0555   york07ga2   0.1306   kyoto1   0.1892     york07ga1   0.0373   GenTea                                                                                                                                                                                                                                                       | ucnsc1       | 0.0458   | AIDrun2                   | 0.0708  | UIUCsyn       | 0.1629 | DIOKIS       | 0.2222   |
| Intx72   0.0442   ictpassage   0.054   0.15MC1   0.1535   UBexp1   0.2209     OHSUQASUBEX   0.0440   figerun2   0.0636   uchsc2   0.1513   york07ga1   0.2153     OHSUQASUBE   0.0439   AIDrun1   0.0636   uchsc1   0.1503   UICGenRun1   0.2092     DHSUQASUB   0.0404   DUTgen1   0.0620   UTEMC2   0.1500   GenTeam1   0.1991     EBI1Lucene   0.0404   GenTeam1   0.0615   EBI2Fusion   0.1470   UIUCsyn   0.1962     GenTeaPA   0.0392   LHNCBC   0.0609   UICGenRun1   0.1415   AIDrun2   0.1962     UIUCsyn   0.0381   york07ga3   0.0595   GenTeaPA   0.1415   AIDrun2   0.1962     UIUCsyn   0.0378   UBexp1   0.0576   icbdoc   0.1300   york07ga3   0.1917     biokiP   0.0376   TisngHua4   0.0551   asubaral1   0.1302   icbpassage   0.1831     UTEMC1   0.0367   ncbi2007                                                                                                                                                                                                                                                       |              | 0.0445   | UTEMCI                    | 0.0687  | AIDruni       | 0.1561 | DIOKIS I     | 0.2216   |
| OHSUQA   0.0440   Idgerun2   0.0650   uchsc2   0.1525   york07ga1   0.2155     OHSUQASUBEX   0.0439   AlDrun1   0.0636   EBILLucene   0.1513   york07ga2   0.2150     OHSUQASUBE   0.0434   UIUCsyn   0.0633   uchsc1   0.1503   UICGenRun1   0.2092     EBILFusion   0.0401   GenTeam1   0.0615   EBILPusion   0.1470   UIUCsyn   0.1962     AlDrun3   0.0399   GenTeamB   0.0611   UIUCrelfb   0.1452   GenTeaBB   0.1962     GenTeaPA   0.0392   LHNCBC   0.0609   UICGenRun1   0.1451   GenTeaPA   0.1962     UIUCsyn   0.0384   DUTgen2   0.0595   DUTgen2   0.1411   UIUCrelfb   0.1954     Uitx12   0.0384   DUTgen3   0.0575   icbdoc   0.1300   york07ga3   0.1917     bickiP   0.0376   TsingHua4   0.0555   york07ga2   0.1303   DUTgen2   0.1832     UTEMC1   0.0367   ncbi2                                                                                                                                                                                                                                                       | 11tx3r2      | 0.0442   | 1cbpassage                | 0.0654  | UTEMCI        | 0.1535 | UBexp1       | 0.2209   |
| OHSUQASUBA   Outq39   AIDIUIT   0.0030   EBITLucene   0.1313   york07ga2   0.2130     BIILucene   0.0404   DUTgen1   0.0620   UTEMC2   0.1503   UICGenRun1   0.2092     EBILucene   0.0401   GenTeamB   0.0615   EBI2Fusion   0.1470   UIUCsyn   0.1962     GenTeaPA   0.0399   GenTeaBB   0.0611   UIUCrelfb   0.1451   GenTeaBB   0.0611     UIUCsyn   0.0391   york07ga3   0.0595   GenTeaPA   0.1415   AIDrun3   0.1962     UIUCsyn   0.0384   DUTgen2   0.0595   DUTgen2   0.1390   york07ga3   0.1917     biokiP   0.0376   TsingHua4   0.0555   york07ga2   0.1300   york07ga3   0.1892     york07ga1   0.0367   rebingHua4   0.0555   york07ga2   0.1302   icbpassage   0.1833     UIUCrelfb   0.0364   fdgerun1   0.0535   iix1r2   0.1222   DUTgen1   0.1818     UIUCconj   0.0497                                                                                                                                                                                                                                                   | OHSUQA       | 0.0440   | AIDmin 1                  | 0.0650  | UCIISC2       | 0.1525 | york0/ga1    | 0.2155   |
| Orisolya 50   0.0434   Oricosyn   0.0053   datact   0.1305   Oricosmini   0.2092     EB11Lucene   0.0404   DUTgen1   0.0620   UTEMC2   0.1505   GenTeam1   0.1961     AlDrun3   0.0399   GenTeaBB   0.0611   UIUCrifb   0.1470   UIUCsyn   0.1962     AIDrun3   0.0392   LHNCBC   0.0609   UICGenRun1   0.1415   AIDrun2   0.1954     UIUCsyn   0.0391   york07ga3   0.0595   GenTeaPA   0.1411   UUCrifb   0.1940     DUTgen1   0.0384   DUTgen2   0.0595   DUTgen2   0.1317   UniNE2   0.1903     UTEMC1   0.0378   UBexp1   0.0576   icbtwease   0.1317   UniNE2   0.1903     UTEMC1   0.0367   rsingHua4   0.0555   york07ga2   0.1306   kyoto1   0.1892     york07ga1   0.0367   rcbi2007a   0.0549   UIUCconj   0.1302   icbassage   0.1833     UTEMC1   0.0364   fdgerun1                                                                                                                                                                                                                                                               | OUSUQASUBEA  | 0.0439   |                           | 0.0030  | EDITLucene    | 0.1515 | york0/ga2    | 0.2130   |
| LBITELACE   0.0404   Dergen   0.020   DErgen   0.1007   Dernen   0.1971     AlDrun3   0.0399   GenTeam1   0.0615   EB12Fusion   0.1457   GenTeaBB   0.1962     AlDrun3   0.0391   york07ga3   0.0595   GenTeaPA   0.1451   GenTeaPA   0.1962     UIUCsyn   0.0391   york07ga3   0.0595   GenTeaPA   0.1411   UIUCrelfb   0.1940     DUTgen1   0.0388   DUTgen2   0.0595   DUTgen2   0.1411   UIUCrelfb   0.1940     DUTgen1   0.0376   TsingHua4   0.0555   york07ga2   0.1307   UniNE2   0.1903     UTEMC2   0.0376   TsingHua4   0.0555   york07ga2   0.1302   icbpassage   0.1831     UTEMC1   0.0367   ncbi2007a   0.0549   UIUCconj   0.1302   icbpassage   0.1833     UIUCrelfb   0.0339   TsingHua5   0.0490   EB13Boosting   0.1272   DUTgen1   0.1818     DUTgen2   0.0339   Ts                                                                                                                                                                                                                                                       | EB11 ucene   | 0.0434   | DUTgen1                   | 0.0033  | UTEMC2        | 0.1503 | GenTeam1     | 0.2092   |
| DDT biol   O.0470   Orthorname   O.0470   D.0470   Orthorname                                                                           | EBI2Eusion   | 0.0404   | GenTeam1                  | 0.0020  | EBI2Eusion    | 0.1300 | UIIICsyn     | 0.1991   |
| Albrinis   0.0392   CHITCAD   0.0011   CHICLE   CHITCAD   0.1702     GenTeaPA   0.0392   LHNCBC   0.0609   UICGenRun1   0.1451   GenTeaPA   0.1954     UIUCsyn   0.0391   york07ga3   0.0595   DUTgen2   0.1411   UUCreftb   0.1961     DUTgen1   0.0384   DUTgen3   0.0587   icbdoc   0.1390   york07ga3   0.1917     biokiP   0.0376   TsingHua4   0.0555   york07ga2   0.1306   kyoto1   0.1892     york07ga1   0.0367   ncbi2007a   0.0549   UIUCconj   0.1302   icbpassage   0.1818     UTEMC1   0.0364   fdgerun1   0.0535   itx1r2   0.1272   DUTgen1   0.1818     DUTgen2   0.0339   UIUCconj   0.1427   DUTgen1   0.1818     DUTgen3   0.0339   TsingHua5   0.0490   EBI3Boosting   0.1247   UBHFmanual   0.1799     EB13Boosting   0.0314   kyoto1   0.0486   kyoto1   0.1768<                                                                                                                                                                                                                                                       | ΔIDrun3      | 0.0399   | GenTeaBB                  | 0.0611  | LILICrelfb    | 0.1452 | GenTeaBB     | 0.1962   |
| Ochrein   Different   Onsol   Offerent   Offerent<   Offerent<   Offerent<   Offerent<   Offerent<   Offerent   Offerent<   Offerent                                                                                                                                                     | GenTeaPA     | 0.0392   | LHNCBC                    | 0.0609  | UICGenRun1    | 0.1451 | GenTeaPA     | 0.1962   |
| Bits 1/2   0.0388   DUTgen2   0.0595   DUTgen2   0.1411   UTUCrelfb   0.1940     DUTgen1   0.0384   DUTgen2   0.0595   DUTgen2   0.1411   UTUCrelfb   0.1940     biokiP   0.0378   UBexp1   0.0576   icbwease   0.1317   UniNE2   0.1903     UTEMC2   0.0376   TsingHua4   0.0555   york07ga2   0.1306   kyoto1   0.1892     york07ga1   0.0367   ncbi2007a   0.0549   UIUCconj   0.1302   icbpassage   0.1833     UTEMC1   0.0364   fdgerun1   0.0535   itx1r2   0.1272   DUTgen1   0.1818     DUTgen2   0.0339   UIUCconj   0.0497   itx1r2   0.1272   DUTgen1   0.1818     DUTgen3   0.0339   TsingHua5   0.0490   EBI3Boosting   0.1208   HFmanual   0.1773     DUTgen3   0.0314   kyoto1   0.0446   kyoto1   0.1208   HFmanual   0.1768     UIUCconj   0.0266   uchsc2                                                                                                                                                                                                                                                                    | UIUCsyn      | 0.0391   | vork07ga3                 | 0.0595  | GenTeaPA      | 0.1415 | AIDrun2      | 0.1954   |
| Introduct   Order                                                                                                                                                                                                                                                                                                              | iitx1r2      | 0.0388   | DUTgen2                   | 0.0595  | DUTgen?       | 0.1411 | UIUCrelfb    | 0 1940   |
| biokiP   0.0378   UBexp1   0.0576   icbwease   0.1317   UniNE2   0.1903     UTEMC2   0.0376   TsingHua4   0.0555   york07ga2   0.1306   kyoto1   0.1892     york07ga1   0.0373   GenTeaPA   0.0551   asubaral1   0.1303   DUTgen2   0.1851     UTEMC1   0.0367   ncbi2007a   0.0549   UIUCconj   0.1302   icbpassage   0.1833     UIUCrelfb   0.0364   fdgerun1   0.0535   iitx1r2   0.1253   EB11Lucene   0.1799     EBI3Boosting   0.0339   TsingHua5   0.0497   iitx3r2   0.1208   HFmanual   0.1773     DUTgen3   0.0314   kyoto1   0.0474   iitx2r2   0.1138   fdgerun2   0.1768     UIUCconj   0.0296   TsingHua3   0.0460   HFmanual   0.1134   OHSUQA   0.1799     asubaral3   0.0268   uchsc1   0.0460   HFmanual   0.1134   OHSUQA   0.1799     dityzcr2   0.0278   uchsc1 <td>DUTgen1</td> <td>0.0384</td> <td>DUTgen3</td> <td>0.0587</td> <td>ichdoc</td> <td>0.1390</td> <td>vork07ga3</td> <td>0.1917</td>                                                                                                                      | DUTgen1      | 0.0384   | DUTgen3                   | 0.0587  | ichdoc        | 0.1390 | vork07ga3    | 0.1917   |
| UTEMC20.0376TsingHua40.0555york07ga20.1306kyoto10.1892york07ga10.0373GenTeaPA0.0551asubaral10.1303DUTgen20.1851UTEMC10.0367ncbi2007a0.0549UIUCconj0.1302icbpassage0.1833UIUCrelfb0.0364fdgerun10.0535iitx1r20.1272DUTgen10.1818DUTgen20.0339UIUCconj0.0497iitx3r20.1253EBI1Lucene0.1799EBI3Boosting0.0339TsingHua50.0490EBI3Boosting0.1247UBHFmanual0.1773DUTgen30.0314kyoto10.0474iitx2r20.1166EBI2Fusion0.1768UIUCconj0.0296TsingHua30.0463UBHFmanual0.1134OHSUQA0.1719JunKE20.0278uchsc10.0450HFmanual0.1134OHSUQA0.1719JunKE20.0248icbdoc0.0420asubaral20.1102OHSUQASUBEX0.1695york07ga30.0227EBI1Lucene0.0420UniNE20.1102OHSUQASUBEX0.1695york07ga30.0209EBI2Fusion0.0416OHSUQASUB0.1075uchsc20.1614UBHFmanual0.0189OHSUQA0.0403york07ga10.1017uchsc10.1610Kyoto10.0209EBI2Fusion0.0446OHSUQA0.1075uchsc20.1614UBHFmanual0.0188biokiP0.0394fdgerun20.0884TsingHua4 <td>biokiP</td> <td>0.0378</td> <td>UBexp1</td> <td>0.0576</td> <td>icbtwease</td> <td>0.1317</td> <td>UniNE2</td> <td>0.1903</td>                                     | biokiP       | 0.0378   | UBexp1                    | 0.0576  | icbtwease     | 0.1317 | UniNE2       | 0.1903   |
| york07ga10.0373GenTeaPA0.0551asubaral10.1303DUTgen20.1851UTEMC10.0367ncbi2007a0.0549UIUCconj0.1302icbpassage0.1833UIUCrelfb0.0364fdgerun10.0535iitx1r20.1272DUTgen10.1818DUTgen20.0339UIUCconj0.0497iitx3r20.1253EBI1Lucene0.1799EBI3Boosting0.0339TsingHua50.0490EBI3Boosting0.1247UBHFmanual0.1799itx2r20.0355IRn0.0474iitx2r20.1166EBI2Fusion0.1768DUTgen30.0314kyoto10.0474iitx2r20.1166EBI2Fusion0.1768UIUCconj0.0296TsingHua30.0463UBHFmanual0.1138fdgerun20.1759UniNE20.0278uchsc10.0460HFmanual0.1134OHSUQA0.1719asubaral30.0268uchsc20.0459OHSUQASUBEX0.1102OHSUQASUBEX0.1695york07ga30.0227EBI1Lucene0.0420asubaral20.1102OHSUQASUB0.1684fdgerun20.0216asubaral30.0416OHSUQASUB0.1075uchsc20.1614UBHFmanual0.0189OHSUQA0.0403york07ga10.1017uchsc10.1610HFmanual0.0188biokiP0.0394fdgerun20.0884TsingHua40.1603fdgerun10.0178AIDrun30.0390AIDrun20.0882fdgerun1<                                                                                                                                                                     | UTEMC2       | 0.0376   | TsingHua4                 | 0.0555  | vork07ga2     | 0.1306 | kvoto1       | 0.1892   |
| UTEMC1 $0.0367$ ncbi2007a $0.0549$ UIUCconj $0.1302$ icbpassage $0.1833$ UIUCrelfb $0.0364$ fdgerun1 $0.0535$ iitx1r2 $0.1272$ DUTgen1 $0.1818$ DUTgen2 $0.0339$ UIUCconj $0.0497$ iitx3r2 $0.1272$ DUTgen1 $0.1818$ DUTgen2 $0.0339$ TsingHua5 $0.0490$ EBI3Boosting $0.1247$ UBHFmanual $0.1799$ EBI3Boosting $0.0335$ IRn $0.0486$ kyoto1 $0.1208$ HFmanual $0.1773$ DUTgen3 $0.0314$ kyoto1 $0.0474$ iitx2r2 $0.1166$ EBI2Fusion $0.1768$ UIUCconj $0.0296$ TsingHua3 $0.0463$ UBHFmanual $0.1134$ Gdgerun2 $0.1759$ UniNE2 $0.0278$ uchsc1 $0.0460$ HFmanual $0.1134$ OHSUQA $0.1719$ asubaral3 $0.0268$ uchsc2 $0.0459$ OHSUQASUBEX $0.1104$ DUTgen3 $0.1705$ AIDrun2 $0.0248$ icbdoc $0.0420$ asubaral2 $0.1102$ OHSUQASUBEX $0.1695$ york07ga3 $0.0227$ EBI1Lucene $0.0404$ OHSUQASUB $0.1080$ icbtwease $0.1619$ kyoto1 $0.0209$ EBI2Fusion $0.0404$ OHSUQASUB $0.1075$ uchsc2 $0.1614$ UBHFmanual $0.0189$ OHSUQA $0.0403$ york07ga1 $0.1017$ uchsc1 $0.1610$ HFmanual $0.0189$ OHSUQA $0.0394$ fdgerun2 $0.0894$ TsingHua4 $0.1603$ | york07ga1    | 0.0373   | GenTeaPA                  | 0.0551  | asubaral1     | 0.1303 | DUTgen2      | 0.1851   |
| UIUCrelfb0.0364fdgerun10.0535iitx1r20.1272DUTgen10.1818DUTgen20.0339UIUCconj0.0497iitx3r20.1253EBI1Lucene0.1799EBI3Boosting0.0339TsingHua50.0490EBI3Boosting0.1247UBHFmanual0.1799iitx2r20.0335IRn0.0486kyoto10.1208HFmanual0.1773DUTgen30.0314kyoto10.0474iitx2r20.1166EBI2Fusion0.1768UIUCconj0.0296TsingHua30.0463UBHFmanual0.1138fdgerun20.1759UniNE20.0278uchsc10.0460HFmanual0.1134OHSUQA0.1719asubaral30.0268uchsc20.0459OHSUQASUBEX0.1104DUTgen30.1705AIDrun20.0248icbdoc0.0420asubaral20.1102OHSUQASUBEX0.1695york07ga30.0227EBI1Lucene0.0420UniNE20.1102OHSUQASUB0.1684fdgerun20.0216asubaral30.0416OHSUQASUB0.1080icbtwease0.1619kyoto10.0209EBI2Fusion0.0404OHSUQA0.1075uchsc10.1610HFmanual0.1188biokiP0.0394fdgerun20.0894TsingHua40.1603TsingHua40.0182OHSUQASUBEX0.0392DUTgen30.0883AIDrun30.1522TsingHua50.0168OHSUQASUBEX0.0390AIDrun20.0882fdgerun1 <td>UTEMC1</td> <td>0.0367</td> <td>ncbi2007a</td> <td>0.0549</td> <td>UIUCconj</td> <td>0.1302</td> <td>icbpassage</td> <td>0.1833</td>                                | UTEMC1       | 0.0367   | ncbi2007a                 | 0.0549  | UIUCconj      | 0.1302 | icbpassage   | 0.1833   |
| DUTgen20.0339UIUCconj0.0497iitx3r20.1253EBI1Lucene0.1799EBI3Boosting0.0339TsingHua50.0490EBI3Boosting0.1247UBHFmanual0.1799iitx2r20.0335IRn0.0486kyoto10.1208HFmanual0.1773DUTgen30.0314kyoto10.0474iitx2r20.1166EBI2Fusion0.1768UIUCconj0.0296TsingHua30.0463UBHFmanual0.1138fdgerun20.1759UniNE20.0278uchsc10.0460HFmanual0.1134OHSUQA0.1719asubaral30.0268uchsc20.0459OHSUQASUBEX0.1104DUTgen30.1705AIDrun20.0248icbdoc0.0420asubaral20.1102OHSUQASUBEX0.1695york07ga30.0227EBI1Lucene0.0420UniNE20.1102OHSUQASUB0.1684fdgerun20.0216asubaral30.0416OHSUQASUB0.1075uchsc20.1619kyoto10.0209EBI2Fusion0.0404OHSUQA0.1075uchsc20.1614UBHFmanual0.0189OHSUQA0.0394fdgerun20.0894TsingHua40.1603TsingHua40.0182OHSUQASUBEX0.0392DUTgen30.0883AIDrun30.1536fdgerun10.0178AIDrun30.0390AIDrun20.0882fdgerun10.1522TsingHua50.0168OHSUQASUB0.0388AIDrun30.0848EBI3Boosting <td>UIUCrelfb</td> <td>0.0364</td> <td>fdgerun1</td> <td>0.0535</td> <td>iitx1r2</td> <td>0.1272</td> <td>DUTgen1</td> <td>0.1818</td>                                  | UIUCrelfb    | 0.0364   | fdgerun1                  | 0.0535  | iitx1r2       | 0.1272 | DUTgen1      | 0.1818   |
| EBI3Boosting $0.0339$ TsingHua5 $0.0490$ EBI3Boosting $0.1247$ UBHFmanual $0.1799$ iitx2r2 $0.0335$ IRn $0.0486$ kyoto1 $0.1208$ HFmanual $0.1773$ DUTgen3 $0.0314$ kyoto1 $0.0474$ iitx2r2 $0.1166$ EBI2Fusion $0.1768$ UIUCconj $0.0296$ TsingHua3 $0.0463$ UBHFmanual $0.1138$ fdgerun2 $0.1759$ UniNE2 $0.0278$ uchsc1 $0.0460$ HFmanual $0.1134$ OHSUQA $0.1719$ asubaral3 $0.0268$ uchsc2 $0.0459$ OHSUQASUBEX $0.1104$ DUTgen3 $0.1705$ AIDrun2 $0.0248$ icbdoc $0.0420$ asubaral2 $0.1102$ OHSUQASUBEX $0.1695$ york07ga3 $0.0227$ EBI1Lucene $0.0404$ OHSUQASUB $0.1080$ icbtwease $0.1619$ kyoto1 $0.0209$ EBI2Fusion $0.0404$ OHSUQA $0.1075$ uchsc1 $0.1610$ HFmanual $0.0189$ OHSUQA $0.0403$ york07ga1 $0.1017$ uchsc1 $0.1610$ HFmanual $0.0188$ biokiP $0.0394$ fdgerun2 $0.0883$ AIDrun3 $0.1536$ fdgerun1 $0.0178$ AIDrun3 $0.0390$ AIDrun2 $0.0882$ fdgerun1 $0.1522$ TsingHua5 $0.0168$ OHSUQASUBE $0.0388$ AIDrun3 $0.0848$ EBI3Boosting $0.1522$                                                                         | DUTgen2      | 0.0339   | UIUCconj                  | 0.0497  | iitx3r2       | 0.1253 | EBI1Lucene   | 0.1799   |
| iitx2r2 $0.0335$ IRn $0.0486$ kyoto1 $0.1208$ HFmanual $0.1773$ DUTgen3 $0.0314$ kyoto1 $0.0474$ iitx2r2 $0.1166$ EBI2Fusion $0.1768$ UIUCconj $0.0296$ TsingHua3 $0.0463$ UBHFmanual $0.1138$ fdgerun2 $0.1759$ UniNE2 $0.0278$ uchsc1 $0.0460$ HFmanual $0.1134$ OHSUQA $0.1719$ asubaral3 $0.0268$ uchsc2 $0.0459$ OHSUQASUBEX $0.1104$ DUTgen3 $0.1705$ AIDrun2 $0.0248$ icbdoc $0.0420$ asubaral2 $0.1102$ OHSUQASUBEX $0.1695$ york07ga3 $0.0227$ EBI1Lucene $0.0416$ OHSUQASUB $0.1020$ OHSUQASUB $0.1614$ fdgerun2 $0.0216$ asubaral3 $0.0416$ OHSUQASUB $0.1075$ uchsc2 $0.1614$ UBHFmanual $0.0189$ OHSUQA $0.0403$ york07ga1 $0.1017$ uchsc1 $0.1610$ HFmanual $0.0188$ biokiP $0.0394$ fdgerun2 $0.0883$ AIDrun3 $0.1536$ fdgerun1 $0.0178$ AIDrun3 $0.0390$ AIDrun2 $0.0882$ fdgerun1 $0.1522$ TsingHua5 $0.0168$ OHSUQASUB $0.0388$ AIDrun3 $0.0848$ EBI3Boosting $0.1522$                                                                                                                                                       | EBI3Boosting | 0.0339   | TsingHua5                 | 0.0490  | EBI3Boosting  | 0.1247 | UBHFmanual   | 0.1799   |
| DUTgen30.0314kyoto10.0474iitx2r20.1166EBI2Fusion0.1768UIUCconj0.0296TsingHua30.0463UBHFmanual0.1138fdgerun20.1759UniNE20.0278uchsc10.0460HFmanual0.1134OHSUQA0.1719asubaral30.0268uchsc20.0459OHSUQASUBEX0.1104DUTgen30.1705AIDrun20.0248icbdoc0.0420asubaral20.1102OHSUQASUBEX0.1695york07ga30.0227EBI1Lucene0.0416OHSUQASUB0.1080icbtwease0.1619kyoto10.0209EBI2Fusion0.0404OHSUQA0.1075uchsc20.1614UBHFmanual0.0189OHSUQA0.0403york07ga10.1017uchsc10.1610HFmanual0.0188biokiP0.0394fdgerun20.0883AIDrun30.1536fdgerun10.0178AIDrun30.0390AIDrun20.0848EBI3Boosting0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iitx2r2      | 0.0335   | IRn                       | 0.0486  | kyoto1        | 0.1208 | HFmanual     | 0.1773   |
| UIUCconj0.0296TsingHua30.0463UBHFmanual0.1138fdgerun20.1759UniNE20.0278uchsc10.0460HFmanual0.1134OHSUQA0.1719asubaral30.0268uchsc20.0459OHSUQASUBEX0.1104DUTgen30.1705AIDrun20.0248icbdoc0.0420asubaral20.1102OHSUQASUBEX0.1695york07ga30.0227EBI1Lucene0.0420UniNE20.1102OHSUQASUB0.1684fdgerun20.0216asubaral30.0416OHSUQASUB0.1080icbtwease0.1619kyoto10.0209EBI2Fusion0.0404OHSUQA0.1075uchsc10.1610HFmanual0.0189OHSUQA0.0403york07ga10.1017uchsc10.1610HFmanual0.0188biokiP0.0394fdgerun20.0884TsingHua40.1603TsingHua40.0178AIDrun30.0390AIDrun20.0882fdgerun10.1522TsingHua50.0168OHSUQASUB0.0388AIDrun30.0848EBI3Boosting0.1522                                                                                                                                                                                                                                                                                                                                                                                                       | DUTgen3      | 0.0314   | kyoto1                    | 0.0474  | iitx2r2       | 0.1166 | EBI2Fusion   | 0.1768   |
| UniNE2   0.0278   uchsc1   0.0460   HFmanual   0.1134   OHSUQA   0.1719     asubaral3   0.0268   uchsc2   0.0459   OHSUQASUBEX   0.1104   DUTgen3   0.1705     AIDrun2   0.0248   icbdoc   0.0420   asubaral2   0.1102   OHSUQASUBEX   0.1695     york07ga3   0.0227   EBI1Lucene   0.0420   UniNE2   0.1102   OHSUQASUB   0.1684     fdgerun2   0.0216   asubaral3   0.0416   OHSUQASUB   0.1075   uchsc2   0.1619     kyoto1   0.0209   EBI2Fusion   0.0404   OHSUQA   0.1075   uchsc1   0.1610     HFmanual   0.0189   OHSUQA   0.0403   york07ga1   0.1017   uchsc1   0.1610     HFmanual   0.0188   biokiP   0.0394   fdgerun2   0.0894   TsingHua4   0.1603     TsingHua4   0.0178   AIDrun3   0.0390   AIDrun2   0.0882   fdgerun1   0.1522     TsingHua5   0.0168   OHSUQASUB <td>UIUCconj</td> <td>0.0296</td> <td>TsingHua3</td> <td>0.0463</td> <td>UBHFmanual</td> <td>0.1138</td> <td>fdgerun2</td> <td>0.1759</td>                                                                                                               | UIUCconj     | 0.0296   | TsingHua3                 | 0.0463  | UBHFmanual    | 0.1138 | fdgerun2     | 0.1759   |
| asubaral3 0.0268 uchsc2 0.0459 OHSUQASUBEX 0.1104 DUTgen3 0.1705   AIDrun2 0.0248 icbdoc 0.0420 asubaral2 0.1102 OHSUQASUBEX 0.1695   york07ga3 0.0227 EBI1Lucene 0.0420 UniNE2 0.1102 OHSUQASUB 0.1684   fdgerun2 0.0216 asubaral3 0.0416 OHSUQASUB 0.1080 icbtwease 0.1619   kyoto1 0.0209 EBI2Fusion 0.0404 OHSUQA 0.1075 uchsc2 0.1614   UBHFmanual 0.0189 OHSUQA 0.0403 york07ga1 0.1017 uchsc1 0.1610   HFmanual 0.0188 biokiP 0.0394 fdgerun2 0.0894 TsingHua4 0.1603   TsingHua4 0.0182 OHSUQASUBEX 0.0392 DUTgen3 0.0883 AIDrun3 0.1536   fdgerun1 0.0178 AIDrun3 0.0390 AIDrun2 0.0848 EBI3Boosting 0.1522                                                                                                                                                                                                                                                                                                                                                                                                                           | UniNE2       | 0.0278   | uchsc1                    | 0.0460  | HFmanual      | 0.1134 | OHSUQA       | 0.1719   |
| AIDrun2 0.0248 icbdoc 0.0420 asubaral2 0.1102 OHSUQASUBEX 0.1695   york07ga3 0.0227 EB11Lucene 0.0420 UniNE2 0.1102 OHSUQASUB 0.1684   fdgerun2 0.0216 asubaral3 0.0416 OHSUQASUB 0.1080 icbtwease 0.1619   kyoto1 0.0209 EB12Fusion 0.0404 OHSUQA 0.1075 uchsc2 0.1614   UBHFmanual 0.0189 OHSUQA 0.0403 york07ga1 0.1017 uchsc1 0.1610   HFmanual 0.0188 biokiP 0.0394 fdgerun2 0.0894 TsingHua4 0.1603   TsingHua4 0.0178 AIDrun3 0.0390 AIDrun2 0.0882 fdgerun1 0.1522   TsingHua5 0.0168 OHSUQASUB 0.0388 AIDrun3 0.0244 0.0248 EB13Boosting 0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | asubaral3    | 0.0268   | uchsc2                    | 0.0459  | OHSUQASUBEX   | 0.1104 | DUTgen3      | 0.1705   |
| york07ga3   0.0227   EB11Lucene   0.0420   UniNE2   0.1102   OHSUQASUB   0.1684     fdgerun2   0.0216   asubaral3   0.0416   OHSUQASUB   0.1080   icbtwease   0.1619     kyoto1   0.0209   EB12Fusion   0.0404   OHSUQA   0.1075   uchsc2   0.1614     UBHFmanual   0.0189   OHSUQA   0.0403   york07ga1   0.1017   uchsc1   0.1610     HFmanual   0.0188   biokiP   0.0394   fdgerun2   0.0894   TsingHua4   0.1603     TsingHua4   0.0178   AIDrun3   0.0390   AIDrun2   0.0882   fdgerun1   0.1522     TsingHua5   0.0168   OHSUQASUB   0.0388   AIDrun3   0.0528   0.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AIDrun2      | 0.0248   | icbdoc                    | 0.0420  | asubaral2     | 0.1102 | OHSUQASUBEX  | 0.1695   |
| fdgerun20.0216asubaral30.0416OHSUQASUB0.1080icbtwease0.1619kyoto10.0209EBI2Fusion0.0404OHSUQA0.1075uchsc20.1614UBHFmanual0.0189OHSUQA0.0403york07ga10.1017uchsc10.1610HFmanual0.0188biokiP0.0394fdgerun20.0894TsingHua40.1603TsingHua40.0182OHSUQASUBEX0.0392DUTgen30.0883AIDrun30.1536fdgerun10.0178AIDrun30.0390AIDrun20.0882fdgerun10.1522TsingHua50.0168OHSUQASUB0.0388AIDrun30.0848EBI3Boosting0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | york07ga3    | 0.0227   | EBI1Lucene                | 0.0420  | UniNE2        | 0.1102 | OHSUQASUB    | 0.1684   |
| kyoto10.0209EBI2Fusion0.0404OHSUQA0.1075uchsc20.1614UBHFmanual0.0189OHSUQA0.0403york07ga10.1017uchsc10.1610HFmanual0.0188biokiP0.0394fdgerun20.0894TsingHua40.1603TsingHua40.0182OHSUQASUBEX0.0392DUTgen30.0883AIDrun30.1536fdgerun10.0178AIDrun30.0390AIDrun20.0882fdgerun10.1522TsingHua50.0168OHSUQASUB0.0388AIDrun30.0848EBI3Boosting0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fdgerun2     | 0.0216   | asubaral3                 | 0.0416  | OHSUQASUB     | 0.1080 | icbtwease    | 0.1619   |
| UBHFmanual   0.0189   OHSUQA   0.0403   york0/ga1   0.1017   uchsc1   0.1610     HFmanual   0.0188   biokiP   0.0394   fdgerun2   0.0894   TsingHua4   0.1603     TsingHua4   0.0182   OHSUQASUBEX   0.0392   DUTgen3   0.0883   AIDrun3   0.1536     fdgerun1   0.0178   AIDrun3   0.0390   AIDrun2   0.0882   fdgerun1   0.1522     TsingHua5   0.0168   OHSUQASUB   0.0388   AIDrun3   0.0848   EBI3Boosting   0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kyotol       | 0.0209   | EBI2Fusion                | 0.0404  | OHSUQA        | 0.1075 | uchsc2       | 0.1614   |
| HFmanual   0.0188   biokiP   0.0394   fdgerun2   0.0894   IsingHua4   0.1603     TsingHua4   0.0182   OHSUQASUBEX   0.0392   DUTgen3   0.0883   AIDrun3   0.1536     fdgerun1   0.0178   AIDrun3   0.0390   AIDrun2   0.0882   fdgerun1   0.1522     TsingHua5   0.0168   OHSUQASUB   0.0388   AIDrun3   0.0848   EBI3Boosting   0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UBHFmanual   | 0.0189   | OHSUQA                    | 0.0403  | york0/ga1     | 0.1017 | uchsel       | 0.1610   |
| IsingHua4   0.0182   OHSUQASUBEX   0.0392   DUIgen3   0.0883   AIDrun3   0.1536     fdgerun1   0.0178   AIDrun3   0.0390   AIDrun2   0.0882   fdgerun1   0.1522     TsingHua5   0.0168   OHSUQASUB   0.0388   AIDrun3   0.0848   EBI3Boosting   0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HFmanual     | 0.0188   | biokiP                    | 0.0394  | fdgerun2      | 0.0894 | TsingHua4    | 0.1603   |
| Tageruni   0.01/8   AlDrun3   0.0390   AlDrun2   0.0882   Tageruni   0.1522     TsingHua5   0.0168   OHSUOASUB   0.0388   AlDrun3   0.0848   EBI3Boosting   0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TsingHua4    | 0.0182   | OHSUQASUBEX               | 0.0392  | DUIgen3       | 0.0883 | AlDrun3      | 0.1536   |
| Isinghuas 0.0108 OHSUQASUB 0.0388 AIDruns 0.0848 EBISBOOSUng 0.1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tagerun I    | 0.0178   | AIDrun3                   | 0.0390  | AIDrun2       | 0.0882 | EDI2D time   | 0.1522   |
| amharall 0.0157 iahtmaaa 0.0254 fileneen 0.0760 UUUCeee' 0.1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i singHua5   | 0.0168   | OHSUQASUB                 | 0.0388  | AIDrun3       | 0.0848 | EB15B00Sting | 0.1522   |
| asubarali $0.0157$ icdiwease $0.0554$ idgeruni $0.0769$ UIUCconj $0.1495$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | asubaran     | 0.0157   | acubaral2                 | 0.0354  | iobpossoge    | 0.0709 | UIUCCONJ     | 0.1495   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TsingUus2    | 0.0130   | asuvaral2<br>EBI3Boosting | 0.0331  | Teing Hue5    | 0.0091 | TsingHua2    | 0.1415   |
| $\frac{15 \text{ Interms}}{15 \text{ Interms}} = 0.0143 \qquad \text{EDISDOUSUNG} \qquad 0.0240 \qquad 15 \text{ Interms} = 0.0070 \qquad 15 \text{ Interms} = 0.0141 \qquad 0.0287 \qquad \text{TringEline4} \qquad 0.0642 \qquad \text{Interms} = 0.1101$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ichdoc       | 0.0145   | EDISDUUSUNg               | 0.0340  | TsingHus4     | 0.0070 | r silignuas  | 0.1551   |
| $\frac{1}{1000} 0.0141  asubata11  0.0207  15111gmua4  0.0042  Ky0102  0.1191 \\ asubata12  0.0140  ky0to2  0.0235  york07aa2  0.0611  ky0to2  0.1022 \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | asubaral?    | 0.0141   | asuvaral 1<br>kvoto?      | 0.0287  | 1 Siligi 1ua4 | 0.0042 | kyoto3       | 0.1191   |
| asubarar2 0.0140 ky0102 0.0255 y01k07ga5 0.0011 ky0105 0.1022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a5u0a1a12    | 0.0140   | Ky0102                    | 0.0255  | yorko/gas     | 0.0011 | Ky0103       | 0.1022   |

| icbpassage   | 0.0123 | kyoto3       | 0.0204 | TsingHua3    | 0.0560 | asubaral2    | 0.0932 |
|--------------|--------|--------------|--------|--------------|--------|--------------|--------|
| ncbi2007b    | 0.0111 | fdgerun3     | 0.0199 | ncbi2007b    | 0.0552 | asubaral3    | 0.0892 |
| fdgerun3     | 0.0068 | UBHFmanual   | 0.0179 | fdgerun3     | 0.0333 | asubaral1    | 0.0737 |
| kyoto3       | 0.0065 | UIowa07Gen01 | 0.0178 | kyoto3       | 0.0312 | fdgerun3     | 0.0725 |
| kyoto2       | 0.0054 | HFmanual     | 0.0177 | kyoto2       | 0.0302 | ncbi2007b    | 0.0568 |
| UIowa07Gen01 | 0.0032 | ncbi2007b    | 0.0095 | UIowa07Gen01 | 0.0204 | UIowa07Gen01 | 0.0541 |
| hltcairo2    | 0.0013 | hltcairo2    | 0.0042 | hltcairo2    | 0.0203 | hltcairo2    | 0.0396 |
| hltcairo1    | 0.0008 | hltcairo1    | 0.0029 | hltcairo1    | 0.0197 | hltcairo1    | 0.0329 |