
Ranking Biomedical Passages for Relevance and Diversity:
University of Wisconsin, Madison at TREC Genomics 2006

Andrew B. Goldberg goldberg@cs.wisc.edu

David Andrzejewski dmandrzejews@wisc.edu

Jurgen Van Gael jvangael@cs.wisc.edu

Burr Settles bsettles@cs.wisc.edu

Xiaojin Zhu jerryzhu@cs.wisc.edu

Department of Computer Sciences, University of Wisconsin, Madison, WI 53705

Mark Craven craven@biostat.wisc.edu

Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI 53705

Abstract

We report on the University of Wisconsin,
Madison’s experience in the TREC Genomics
2006 track, which asks participants to re-
trieve passages from scientific articles that
satisfy biologists’ information needs. An em-
phasis is placed on returning relevant pas-
sages that discuss different aspects of the
topic. Using an off-the-shelf information re-
trieval (IR) engine, we focused on query gen-
eration and reranking query results to en-
courage relevance and diversity. For query
generation, we automatically identify noun
phrases from the topic descriptions, and use
online resources to gather synonyms as ex-
pansion terms. Our first submission uses
the baseline IR engine results. We rerank
the passages using a näıve clustering-based
approach in our second run, and we test
GRASSHOPPER, a novel graph-theoretic al-
gorithm based on absorbing random walks, in
our third run. While our aspect-level results
appear to compare favorably with other par-
ticipants’ on average, our query generation
techniques failed to produce adequate query
results for several topics, causing our passage
and document-level evaluation scores to suf-
fer. Furthermore, we surprisingly achieved
higher aspect-level scores using the initial
ranking than our methods aimed specifically
at promoting diversity. While this sounds
discouraging, we have several ideas as to
why this happened and hope to produce new
methods that correct these shortcomings.

1. Introduction

The University of Wisconsin, Madison participated in
the 2006 TREC Genomics track. The Genomics track
investigates how we can design information retrieval
(IR) systems that return a diverse set of results based
on a user’s information need. The participants are
given a number of questions such as “What is the role
of PrnP in mad cow disease?” and are asked to re-
trieve passages that highlight as many specific aspects
of the question as possible, e.g., the psychological im-
pact of PrnP, the neurological impact of PrnP, etc.
The participants’ submissions are scored in three dif-
ferent ways. First, the passage-level retrieval perfor-
mance is found: this is measured by the amount of
overlap between returned passages and passages the
judges deem relevant. Next, the aspect-level retrieval
performance is scored by computing how diverse the
set of passages returned is. Finally, document-level re-
trieval performance is computed by essentially count-
ing the number of relevant documents for which a pas-
sage was returned.

Our team decided to start out with off-the-shelf com-
ponents such as the Lemur Toolkit (Ogilvie & Callan,
2001) for our information retrieval needs and focus
our efforts on two other aspects: query generation
and reranking of query results. The query generation
method we implemented uses an in-domain syntactic
parser to automatically identify noun phrases in the
topic descriptions. Since it is not uncommon in a
biomedical setting to have many entity phrases that
refer to the same concept, we use online resources to
expand our queries with synonyms. Since the goal was
to cover as many different aspects of the query topic,
our three submissions differed in how we rerank the

IndexIndex
Builder

Performed
only once

Splitting documents
into paragraph files

Indexing (Phase I)

Figure 1. The system’s indexing component.

information retrieval results to maximize the diversity
of aspects. Our first baseline just uses the order in
which Lemur returns the passages. The second base-
line näıvely clusters the returned passages and reranks
the results by picking out one result from each clus-
ter in turn. Our final experiment uses GRASSHOP-

PER (Zhu et al., 2007), a novel graph-theoretic ap-
proach to reranking information retrieval results. This
algorithm uses an absorbing random walk to rerank
any set of items to maximize both diversity and rele-
vance in a principled way.

The TREC Genomics 2006 submissions are catego-
rized as being generated by automatic, interactive, or
manual systems. Groups are responsible for assign-
ing their runs to one of these categories based on the
amount of human intervention involved in producing
the results. Our three runs fall into the automatic
group, as we do not provide feedback or fine-tune any
part of the system in response to the quality of the
results obtained.

Our system for retrieving biomedical passages from a
corpus of documents consists of four primary phases
(Table 1). Phase I, depicted graphically in Figure 1,
occurs one time only (when the corpus is first ob-
tained), whereas Phases II–IV, shown in Figure 2, pro-
ceed automatically for each topic describing a user’s
information need. Sections 2–5 explore these phases
in depth. Section 6 presents the official results of
our three runs. Finally, in Section 7, we discuss the
strengths and weaknesses of the current system, and
describe areas for future work.

2. Indexing (Phase I)

We decided to use an existing IR toolkit to han-
dle our indexing and query execution needs. Specif-
ically, we used an Indri index built using the Lemur
Toolkit (Metzler et al., 2004; Ogilvie & Callan, 2001).
Indri combines language modeling and inference net-

Table 1. Four phases of our system.

I Indexing Phase

• Split all documents into paragraphs

• Index paragraphs using IR engine

II Query Generation Phase

• Obtain a topic description

• Identify noun phrases (NPs)

• Find synonyms using online resources

• Build structured query

III Retrieval Phase

• Execute query using IR engine

• Retrieve ranked paragraphs

• Narrow paragraphs into passages

IV Reranking Phrase

• Rerank passages for relevance/diversity

works approaches to information retrieval and provides
a powerful structured query language.1 Lemur pro-
vides a framework in which to build an index and use
the Indri search engine.

Before building the index, the entire corpus of roughly
160,000 full-text articles from 59 journals was bro-
ken up into separate paragraph files using the max-
imum legal boundaries defined by the TREC-provided
“legalspans” file. That is, each individual file corre-
sponds to exactly one maximum legal passage. These
separate paragraph files were then indexed by Lemur
to form an Indri repository. Note that we did not per-
form stemming or stopping during indexing.

The pre-processing step of separating paragraphs
into separate files has some noteworthy consequences.
First, we ignore any document-level information. Sep-
arate paragraph files from the same document are han-
dled completely independently. Second, the collection
of separate paragraph files contains many files which
correspond to non-passage sections of the article, such
as references, keywords, and acknowledgments. Empty
or otherwise spurious passages will be ignored by the
information retrieval system, but some non-passage
files may be ranked highly by our information retrieval
system. In particular, files corresponding to the key-
words section of an article can be ranked very highly
due to their high density of relevant keywords, but

1A detailed description of the Indri retrieval model
can be found at http://ciir.cs.umass.edu/∼metzler/
indriretmodel.html.

A

A

Ranking
Final

B B
1)

A
2)

B

C
C

C

Rerank
System

Expansion

Parsing

Query
Structured

Query Generation (Phase II) Reranking (Phase IV)Retrieval (Phase III)

3)

B

C

AIndex

Engine
IR

Q

Performed once for each query Q

Passage Narrowing

Figure 2. The system’s querying components.

these passages would probably not be judged as rele-
vant.

3. Query Generation (Phase II)

3.1. Topic Parsing

One of the goals in our system design is to be able to
take topic sentences as input and automatically gen-
erate structured IR queries from English natural lan-
guage text. To do this, we employ an in-domain syn-
tactic parser to identify noun phrases (NPs), and use
these phrases as terms in the query. Consider as an
example topic 160:

What is the role of PrnP in mad cow disease ?

The highlighted words are parsed as noun phrases.

First, topic sentences are tokenized and tagged for
part-of-speech (POS) using a modified Brill Tagger
(Brill, 1995) trained on the GENIA corpus (Kim et al.,
2003). Second, POS output is fed through a shallow
phrase chunker implemented with a conditional ran-
dom field (Lafferty et al., 2001) using the MALLET
toolkit2 trained on the CoNLL-2000 corpus (Sang &
Buchholz, 2000) using words, POS, and some ortho-
graphic properties such as capitalization as features.
We qualitatively compared the results of this simple
two-phase chunker on the 28 query topics to the re-
sults of a re-trained Charniak Parser (Charniak, 1997)
provided by Matt Lease at Brown University for use in
this year’s TREC task, as well as the Stanford Parser
(Klein & Manning, 2003). Our simple chunker appears
to produce more sound NPs and runs much faster as
well.

2http://mallet.cs.umass.edu

3.2. Query Expansion

After obtaining a list of noun phrases in a topic de-
scription, the next step in our system is to expand
the phrases into lists of synonyms and related terms.
Before doing so, we apply a small set of automated
heuristics in an attempt to correct any parsing errors
and filter out extraneous phrases and stop words. We
use the stop list from the Cornell SMART project,3 but
do not filter out single letter stop words, as these may
have biological significance. We also include as stop
words a small number of common biomedical terms
that appeared in past years’ topic descriptions (e.g.,
role, method, gene, etc). Note that if a stop word is
detected in the middle of an NP chunk, we remove
the word and form two NPs from the remaining words
(e.g., a conjunctive NP like “HNF4 and COUP-TF1”
is split into “HNF4” and “COUP-TF1”). Returning
to the example of topic 160, the first two NPs “What”
and “the role” are ignored because they contain com-
mon words likely to appear in any scientific query.

Now that we have a set of presumably significant noun
phrases (“PrnP” and “mad cow disease”), we expand
them into synonym lists by searching the MeSH (Med-
ical Subject Heading) database.4 We issue each NP as
a query to the MeSH Web service and gather the terms
associated with the top two MeSH headings returned.
We combine these terms with the original NP to form a
preliminary synonym list. For each item in this list, we
then apply additional lexicographic heuristics to trans-
form the terms into phrases which are more likely to
appear as exact phrase matches in a document. Specif-
ically, we remove anything after the first comma (since
this is usually some modifier which would not appear
in this manner in an actual article). For example, one
of the expansion terms for “PrnP” is “prion protein,

3ftp://ftp.cs.cornell.edu/pub/smart/english.stop
4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=

mesh

human,” which we shorten to “prion protein.” We also
remove parenthetical strings, since these are typically
other terms also returned from the MeSH search and
will appear in our list separately. Finally, we remove
all punctuation, since Indri/Lemur ignores punctua-
tion during indexing.

Based on a technique used in Metzler et al. (2004),
we also include in our synonym lists all rare unigram
and bigrams within the original NP. We define rare
unigrams as those not appearing in a list of the top
2000 most frequent words in the Brown corpus. In the
future, we might consider using a more biologically-
relevant corpus for such statistics. Applying this ex-
pansion technique to “mad cow disease” adds the bi-
grams “mad cow” and “cow disease,” but not the com-
mon unigrams “mad,” “cow,” or “disease.” However,
for a specialized phrase like “hypocretin receptor 2,”
we obtain “hypocretin,” “hypocretin receptor,” and
“receptor 2.” As a final expansion, we also add copies
of words with any trailing ‘s’ removed, in an attempt to
convert plurals to singulars. This is a crude heuristic,
but it cannot hurt—having an extra synonym which is
never found in the corpus will not affect our retrieval
results.

For topic 160, the aforementioned expansion tech-
niques produce the following synonym lists:

• PrnP: infectious amyloid precursor protein, prnp
protein, chromosome 20 amyloid precursor pro-
tein, prion protein p27 30, gss protein, prn p pro-
tein, sinc protein

• mad cow disease: encephalopathy, bovine
spongiform encephalopathy, bse, bses, encephali-
tis, encephaliti, bovine spongiform encephalitis,
mad cow diseases, spongiform encephalopathy,
mad cow, cow disease

3.3. Building an Indri Structured Query

We utilize several of the Indri structured query lan-
guage operators in building queries for Lemur to ex-
ecute. We refer interested readers to the URL listed
earlier for a detailed explanation of all the operators
and how they are evaluated to compute query likeli-
hood scores.

We describe our query construction through a run-
ning example using topic 160. We begin at the level
of forming a query term based on a single synonym
list. Specifically, we form a #syn term that treats
each of the expressions it contains as synonyms. The
#syn term contains each item in the synonym list as
an exact phrase via the #1 operator. This means we

look for documents that contain at least one of the
synonyms as an exact match. For example, we rep-
resent one of the topic-160 synonym lists as follows:
#syn(

#1(mad cow disease) #1(BSE)
#1(Bovine Spongiform Encephalopathy)
#1(Bovine Spongiform Encephalitis)
...

)

After forming terms corresponding to each synonym
list, we combine the synonym lists using the #band op-
erator, which requires all of its operands to be present.
For example, we join the topic-160 synonym lists as
follows:

#band(
#syn(

#1(mad cow disease) #1(BSE) ...
)
#syn(

#1(PrnP) #1(prion protein) ...
)

)

So far, our query says that we need to find at least one
synonym for each important noun phrase in the topic.
The #band requires each #syn to “return true,” but
this simply means one of the contained phrases must
be found.

Finally, we employ Indri’s #combine and #filreq op-
erators. Unlike a simple boolean AND, which gives a
result of true or false, the #combine operator gives
a higher score to results that contain more of its
operands. The #filreq operator selects (filters) docu-
ments based on one set of criteria (requirements), and
then ranks them according to another set of criteria.
We assemble these pieces as follows: we use #filreq
to first select documents satisfying the #band criteria
described above, and then rank the results according
to a query term using #combine. The #combine term
resembles the #band term, but lacks the #syn oper-
ators, thus flattening the synonym lists. We end up
with a query of the general form shown in Figure 3.

#filreq(
#band(

#syn(#1(a) #1(b))
#syn(#1(c) #1(d))

)
#combine(

#1(a) #1(b) #1(c) #1(d)
)

)

Figure 3. General form of the Indri structured queries ex-
ecuted by Lemur to locate relevant paragraphs.

The end result is that Lemur/Indri fetches all the doc-
uments meeting the stricter #band criteria, but then
ranks them according to how many matching terms are
found. If we used only the #band query, Lemur/Indri
would essentially rank the documents in increasing
length order (due to shorter documents having higher
likelihood scores than longer ones).

4. Retrieval (Phase III)

After constructing queries as described above, we ex-
ecute them against the Indri index built in Phase I.
This produces a ranked list of paragraph files satisfy-
ing our query, which we map back to byte offsets and
lengths within the original documents. We then ad-
just passage boundaries to include only sentences be-
tween the first and last occurrences of key terms from
the query. Specifically, we locate the set of consecu-
tive sentences maximally spanning all of the matched
query terms. For example, if a paragraph contains
sentences A, B, C, D, and E, and sentence B and D
contain terms in our query, then we form a passage
comprised of sentences B, C, and D.

Consider the concrete example of topic 160. The first
result returned by Lemur is the following paragraph, in
which we have omitted HTML markup and highlighted
the narrowed passage in boldface:

In December 1984 a UK farmer called a veterinary sur-
geon to look at a cow that was behaving unusually.
Seven weeks later the cow died. Early in 1985 more cows
from the same herd developed similar clinical signs. In
November 1986 bovine spongiform encephalitis
(BSE) was first identified as a new disease, later
reported in the veterinary press as a novel pro-
gressive spongiform encephalopathy. Later still
the causal agent of BSE was recognized as an ab-
normal prion protein. Since the outset the story
of BSE has been beset by problems.

The first three sentences lack any exact phrases from
our Indri structured query.5 The next three sentences,
however, each contain terms and phrases from our
query (e.g., “BSE” and “prion protein”). Thus, we
return the boldfaced passage, which is the longest
span of complete sentences covering all of the matched
terms.

5. Reranking (Phase IV)

Given the narrowed passages obtained in the preced-
ing phase, we next optionally rerank them to promote
diversity among the relevant passages and target the

5Our query contained the word “cow,” but only as part
of larger phrases.

aspect-level evaluation metrics.

5.1. Baseline Ranking

Our first submitted run simply lists the narrowed pas-
sages in the order in which their containing paragraphs
were returned by Lemur.

5.2. Clustering

Our second run näıvely attempts to ensure some
amount of aspect diversity through a procedure that
begins by performing hierarchical clustering on pas-
sage bag-of-words vectors, using a cosine-based dis-
tance metric and returning, somewhat arbitrarily, 10
clusters. Under the assumption that clusters group
together passages addressing the same topic, we inter-
leave results from each cluster to form the reranked re-
sults. We consider the clusters in turn, based on their
average initial Lemur ranking. We begin by choos-
ing the cluster whose passages were ranked highest by
Lemur. We then remove the highest ranked among
them as the first result. Next, we select the second
best cluster and remove its highest ranked result. This
process repeats until all of the passages are removed
from all of the clusters.

The hope is that each cluster represents a distinct as-
pect, and the interleaving process ensures that a di-
verse set of aspects is represented high in the ranked
list. For example, in topic 160, the cluster-based
reranking rearranged the Lemur results to produce the
following top five passages (identified by Lemur rank):
1, 9, 27, 3, 2. This means the first result is the same,
the second result was ninth according to Lemur, the
third result was 27th according to Lemur, etc.

Spot checks after submitting the results reveal that
this sometimes produces more diverse highly-ranked
results, but often does not. The outcome strongly de-
pends on how reliable the distance metric is, and the
quality of the results from Lemur. If some results are
irrelevant, they may get ranked highly because they
are about a completely different topic than the truly
relevant results. This method might have performed
better if we could have tuned the number of clusters
and selected a distance metric based on training data.

5.3. Ranking for Aspect Diversity

Our third and final run uses the GRASSHOPPER

(Graph Random-walk with Absorbing StateS that
HOPs among PEaks for Ranking) algorithm to
rerank the retrieved passages as to promote diver-
sity. Existing methods to improve diversity in ranking
include maximum marginal relevance (MMR) (Car-

bonell & Goldstein, 1998), cross-sentence informa-
tional subsumption (Radev, 2000), mixture mod-
els (Zhang et al., 2002), subtopic diversity (Zhai et al.,
2003), diversity penalty (Zhang et al., 2005), and oth-
ers. The basic idea is to penalize redundancy by low-
ering an item’s rank if it is similar to items already
ranked. These methods often treat relevance rank-
ing and diversity ranking separately, sometimes with
heuristic procedures.

GRASSHOPPER is an alternative to MMR and vari-
ants, with a principled mathematical model and strong
empirical performance on artificial data. A complete
description of the algorithm, and successful results in
text summarization and social network analysis, is pre-
sented elsewhere (Zhu et al., 2007). For the current
task, the algorithm ranks a set of passages such that:

1. A highly ranked passage is representative of a lo-
cal group in the set, i.e., it is similar to many
other items. Ideally, these groups correspond to
different aspects.

2. The top ranked passages cover as many distinct
groups as possible.

3. The initial ranking from Lemur is incorporated as
prior knowledge.

Importantly, the algorithm achieves these in a unified
framework of an absorbing Markov chain random walk.
The key idea is the following: We define a random walk
on a graph over the passages. Passages which have
been ranked so far become absorbing states. These
absorbing states “drag down” the importance of sim-
ilar unranked states, thus encouraging diversity. The
model naturally balances centrality, diversity and the
prior. As input to GRASSHOPPER, we use a fully con-
nected graph in which states represent passages. The
edge weight between two passage states is based on
the cosine similarity of the passages using their bag-
of-words representations. Edges between states repre-
senting passages with high cosine similarity receive a
large weight. After the weight matrix is normalized
to form a stochastic matrix, this translates to a high
probability that the random walk will move from one
passage to another similar passage. If a passage gets
ranked and becomes an absorbing state, the similar
passages will not be ranked again for several itera-
tions because a walk passing through them will get
absorbed.

GRASSHOPPER ends up reordering the topic 160 re-
sults considerably, placing the most central passage
(i.e., similar to the most other passages) at the top of
the list. The top 5 ranked passages are now 141, 16, 11,

Table 2. Document, passage, and aspect mean average pre-
cision scores for the three University of Wisconsin, Madison
submissions.

Run Document Passage Aspect

Lemur ranking 0.2368 0.0188 0.1516

Clustering 0.2030 0.0137 0.1319

GRASSHOPPER 0.2208 0.0159 0.1411

15, 35. This means the method placed Lemur’s 141st
ranked passage as the first passage in the reranked list.

Like the clustering approach, this method is prone
to highly ranking irrelevant passages that appear di-
verse (i.e., not similar to other highly ranked passages).
Without training data indicating the aspects associ-
ated with example query results, we did not have a
good way to evaluate different graph topologies or edge
weighting schemes. As a result, it is possible that our
graph does not represent the type of similarity rela-
tionships (in terms of aspect presence) that we assume
exist.

6. Results

We now present the results of our runs in terms of
the mean average precision (MAP) scores for the doc-
ument, passage, and aspect levels (Table 2). Mean
average precision values are determined by first calcu-
lating precision values that represent averages across
some unit of text (passage, aspect, or document) for
each topic, and then computing the average of these
values across topics. While it appears that our docu-
ment and passage scores are only mediocre, the aspect
scores for all three runs appear competitive (compared
to the mean of the median scores obtained by all auto-
matic runs). What surprises us most in our results is
that the first run (Lemur ranking), which did not do
anything specific to promote aspect diversity, actually
achieved higher aspect-level scores. We are pleased
to see that the more theoretically motivated third ap-
proach using GRASSHOPPER did better than the ad
hoc clustering-based method.

7. Discussion and Conclusions

We suspect that the poor overall document and pas-
sage results are due to inadequate query generation for
several topics. In some cases, our topic parsing and
expansion techniques failed to produce a set of exact
phrases that could realistically be found in journal ar-

ticles. Consequentially, we obtained few or no results
for some topics. One solution would be to relax the
exact phrase requirement, using Indri’s proximity op-
erators, which would only require the terms to appear
within some window. This relaxation could be applied
automatically as a fall-back option in cases where the
initial query produces fewer than a specified number
of results. Of course, the corpus may only contain a
handful of relevant passages, in which case we may
introduce false positive results.

A better option would be to refine the parsing tech-
nique and consult additional resources in search of
valid synonyms and related terms likely to co-occur
with the terms in the topic description. Some re-
sources we considered using are the Gene Ontology, the
Unified Medical Language System (UMLS) Metathe-
saurus, and the Stanford Biomedical Abbreviation
Server.6 A more traditional approach to query expan-
sion using relevance feedback might also be beneficial.
In any case, we could use query term weights to rep-
resent our confidence in the various expansion terms
depending on their source.

For the topics for which we did obtain numerous re-
sults, poor precision scores simply indicates many of
the returned passages were deemed irrelevant. In cases
where we generated many plausible expansion terms,
we often returned keywords or references sections as
passages. These are valid spans and loaded with mean-
ingful terms, but it is unlikely that judges would have
marked them as relevant.

We are still searching for an explanation as to why
our reranking methods actually hurt aspect diversity.
One possibility is related to the above problems in
query generation: we simply did not have a good set
of initial passages to rerank. As previously discussed,
both the clustering and GRASSHOPPER approaches
are prone to placing irrelevant (and thus diverse) pas-
sages high in the ranked list. Assuming we did have
many relevant passages, the problem with the cluster-
ing method lies in a lack of meaningful clusters that
group passages by aspect. Of course, the number of
clusters is also critical, which probably should depend
on the specific set of passages to be reranked. Given
relevant passages, GRASSHOPPER strongly depends
on a sensible similarity graph that actually captures
whether passages share the same aspects. Without
aspect-similarity knowledge encoded in our graph, this
algorithm will also fail to produce a useful reranking.

To correct these problems, we plan to experiment with
alternative passage representations, specifically term

6http://abbreviation.stanford.edu

frequency–inverse document frequency (TF–IDF) vec-
tors, where the IDF is computed based only on the
current set of retrieved passages. We believe this may
lead to a cosine similarity measure with greater power
in distinguishing passages based on aspects. In addi-
tion, we may try other similarity measures, such as the
Kullback-Leibler divergence between passage language
models (Zhai et al., 2003). We also believe applying a
threshold to the similarity measure in order to create
a sparser graph may lead to improved results. Finally,
we plan to study the behavior of our reranking algo-
rithms when artificially given only truly relevant pas-
sages. Separating the reranking phase from the query
and retrieval phases will help localize the strengths and
weaknesses of the current system.

We should point out that all of the above problems
could partly arise from a poor indexing strategy. In-
dexing complete documents could be more informative
than indexing individual paragraphs. While a human
judge may be able to determine that a paragraph is
relevant without seeing the entire article, this deter-
mination may depend on subtle anaphora resolution
that the IR engine cannot perform. For example, if
a paragraph begins “The disease affects cows’ brains
by ...” but never explicitly says “mad cow” or one of
the phrases in our query, then the paragraph will not
be returned as a possible result. Presumably, though,
the article included the complete phrase “mad cow dis-
ease” or “BSE” in a previous paragraph or the title of
the article. Thus, the ability to search at the para-
graph level, while making use of document-wide infor-
mation, is a topic we hope to explore in the future.

We have presented the details of our system and three
runs for the TREC Genomics 2006 track. Using an ex-
isting IR engine and query language, we concentrated
on developing automated query generation techniques,
as well as methods for reranking results to boost di-
versity in the high ranked passages. The methods pre-
sented show promise, but still exhibit certain weak-
nesses that we plan to address in future work.

Acknowledgments

This work was supported in part by a Wisconsin
Alumni Research Foundation (WARF) grant. AG was
supported by a UW-Madison Graduate School Fellow-
ship. DA was supported by an NLM training grant
to the Computation and Informatics in Biology and
Medicine Training Program (NLM 5T15LM007359).
BS and MC were supported in part by NSF grant IIS-
0093016.

References

Brill, E. (1995). Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21, 543–565.

Carbonell, J., & Goldstein, J. (1998). The use of
MMR, diversity-based reranking for reordering doc-
uments and producing summaries. SIGIR 1998:
Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Charniak, E. (1997). Statistical parsing with a
context-free grammar and word statistics. Pro-
ceedings of the 14th National Conference on Arti-
ficial Intelligence. Menlo Park, CA USA: AAAI
Press/MIT Press.

Kim, J., Ohta, T., Teteisi, Y., & Tsujii, J. (2003).
GENIA corpus - a semantically annotated corpus
for bio-textmining. Bioinformatics, 19, i180–i182.

Klein, D., & Manning, C. (2003). Fast exact inference
with a factored model for natural language parsing.
Advances in Neural Information Processing Systems
(NIPS), 15.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proceedings of
the International Conference on Machine Learning
(ICML) (pp. 282–289). Morgan Kaufmann.

Metzler, D., Strohman, T., Turtle, H., & Croft, W.
(2004). Indri at TREC 2004: Terabyte track. Pro-
ceedings of the Text REtrieval Conference.

Ogilvie, P., & Callan, J. P. (2001). Experiments using
the lemur toolkit. Proceedings of the Text REtrieval
Conference.

Radev, D. (2000). A common theory of information
fusion from multiple text sources, step one: Cross-
document structure. Proceedings of the 1st ACL
SIGDIAL Workshop on Discourse and Dialogue.

Sang, E. F. T. K., & Buchholz, S. (2000). Introduction
to the CoNLL-2000 shared task: Chunking. Proceed-
ings of the Conference on Natural Language Learn-
ing (CoNLL) (pp. 127–132). Lisbon, Portugal.

Zhai, C., Cohen, W. W., & Lafferty, J. (2003). Be-
yond independent relevance: Methods and evalu-
ation metrics for subtopic retrieval. SIGIR 2003:
Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W.,
Chen, Z., & Ma, W.-Y. (2005). Improving web
search results using affinity graph. SIGIR 2005:
Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and
redundancy detection in adaptive filtering. SIGIR
2002: Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Zhu, X., Goldberg, A. B., Van Gael, J., & Andrzejew-
ski, D. (2007). Improving diversity in ranking using
absorbing random walks. Human Language Tech-
nologies: Proceedings of the Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL-HLT).

